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FRACTAL LACUNARITY AND SCENARIOS FOR THE
NEAR-ISOTROPIC DISTRIBUTION OF GALAXIES

B.B. MANDELBROT
Yale University
New Haven CT 06520-8283, USA

Abstract. The author proposed fractal scenarios for the distribution of galaxies
in 1975 and 1977; they were expanded in 1982 and are being developed further.
The claim is that galaxies have a scale-invariant fractal distribution with a
dimension well below 3. Fractality is the only input that is needed to account for
the observed clustering combined with voids and walls. Unfortunately, the 1975-
1977 fractal scenarios have inacceptable features: they present too many holes
(*lacunas™) to agree with the approximate isotropy of the sky. However, better
chosen fractals eliminate this defect. Indeed, this paper’s words and pictures
show that, in a subtle new way that deserves further study, the impression of
isotropy can be approached arbitrarily closely by a fractal. In fact, there are
many ways of “tuning” a fractal’s lacunarity. Several of the sections improve
on statements already made in 1982 and other earlier publications. Section 3 is
the most novel in this paper: it extends our understanding of lacunarity via a
generalization of Lévy flights to be called “cyclic stutter flights.”

The paper concludes with two important questions: a) an empirical one
that concerns antipodal correlations among galaxies and b) a theoretical one
that postulates a link between fractality and the Laplace or other equations of
gravitation.

THIS PAPER’S ILLUSTRATIONS DEMONSTRATE that a random fractal’s
perceived texture can be made closer than is generally expected to being “ho-
mogeneous” or “isotropic.” Therefore, the perceived smooth texture of galaxy
maps is not an argument against the thesis that the large-scale structure of the
universe is fractal over a very broad range of distances.

More precisely, the shapes that created most scientists’ intuition of fractal-
ity are notorious for being very uneven: they are “lacunar,” in the sense of
being full of holes. This paper’s point is that this familiar high lacunarity is
not an invariable characteristic of fractals. Quite to the contrary, without de-
stroying fractality or changing the fractal dimension, a geometric pattern can
— in a sense — come arbitrarily close to homogeneity or isotropy, hence closer
to representing the galaxy data. In particular, Section 3 of this paper is the
first publication concerning the properties and possible use of a new family of
fractals, namely, “cyclic stutter dusts.”

Because of new material and important background issues, this paper even-
tually expanded into a presentation of fractal lacunarity that may interest math-
ematicians and scientists not directly concerned with galaxies. It must be em-
phasized that many basic issues remain wide open.
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There will be many references to my books [1] [2] [3] but this paper is largely
self-contained. The discussion of lacunarity is both more quantitative than in
my books and more richly illustrated.

Section 6 raises a challenging and possibly important empirical question.
Section 7 sketches the author’s general scenario concerning the solutions of par-
tial differential equations: it postulates a dynamical origin of fractality that may
apply to the distribution of galaxies.

Editorial comment. A shorter paper with nearly the same title [4] appears
in the Proceedings of a NATO School held in Erice (Sicily) in September 1997.
That earlier text was perceived as too concise to be useful, and new results
immediately made it incomplete. I am grateful to this book’s editors for sug-
gesting that this paper should combine, within a more user-friendly and broader
presentation, the bulk of [4] and substantial additional material. An even more
complete treatment is planned for [5].

1. Four basic scenarios for the spatial distribution of galaxies, espe-
cially from the viewpoint of isotropy

1.1.. REASONS FOR DISTINGUISHING MORE THAN TWO SEPARATE
SCENARIOS

When discussing the large scale distribution of galaxies, [1], (2] and [3] drew a
contrast between two scenarios, namely, homogeneity and fractality. See also [6].
Unfortunately, this contrast proved over-simplified, insofar as it led to diverse
misunderstandings. In response, Section 1 proposes that the number of different
scenarios deserves to be viewed as not equal to two, but at least three; moreover
the third scenario, fractality, may deserve to be split further. The reasons are
subtle and are best understood after the fact, rather than before. However, the
better-informed readers may welcome the introductory sketch to be presented
in this Section 1.1. Other readers will prefer to skim it at first reading and
return to it later.

Historical sequence of scenarios for the distribution of galazies: hierarchy,
homogeneity and fractality. Those scenarios can be viewed “dialectically” as
involving a thesis, an antithesis and a synthesis. Newton is reputed to have
thought of a uniform infinite universe, but feared it would be unstable.

The first scenario to find strong advocates appeared shortly after Newton:
it postulated an infinite universe of galaxies that forms a hierarchical structure.
Ironically, this scenario was put forward well before galaxies, clusters and super-
clusters were actually identified as astronomical bodies. It came from the likes
of I. Kant and was adopted by science-fiction writers and only late by a few
physicists or astronomers, like Charlier. Early on, the sole motivation was that
a hierarchy avoids the Olbers paradox. Much later, de Vaucouleurs [7] built
upon early data of Carpenter and obtained an empirical power-law form for the
mass-radius relation; he could not account for it, except by a hierarchy.

The next scenario was not fully formulated until Einstein: it states that
the distribution of galaxies is homogeneous. This came about as a necessary
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consequence of the cosmological principle and an important corollary is scale
invariance with respect to overall (Hubble) expansion.

Even those who ignore or despise the “dialectic” terminology may find it
useful to consider “hierarchies” as a non-physical “thesis” and “homogeneity”
as an anti-thesis primarily based on a theory. A dialectic argument becomes
full when completed by a “synthesis.” The synthetic scenario I proposed in the
1960s and 1970s asserts that the distribution of galaxies can be approximated
by a suitable random fractal dust. The notion that this scenario is best viewed
as a synthesis did not occur to me until long after the fact.

Compared to hierarchical structures, fractality contradicts neither the mo-
tivating desire to solve the Olbers paradox nor the Carpenter - de Vaucouleurs
power-law form for the mass-radius relation.

Compared to homogeneity, fractality is motivated by a theoretical argument
that is in very similar style, but broader on an essential point. This argument
does contradict the cosmological principle, but only by generalizing it to take a
less demanding form I proposed, namely, the conditional cosmological principle.
The key fact is that scaling invariance obviously holds for the homogeneous dis-
tribution, but in addition is shared by shapes that are highly non-homogeneous,
namely, the fractals. (This invariance leads to one of several broad reasons why
geometric fractals are widespread and fundamental in physics: they accompany
the key analytic ideas of renormalization and scaling. )

The novelty brought by the fractal synthesis is that an approximate hier-
archical appearance need no longer be deliberately built-in as an input in the
model. Instead, it is obtained as an essential output. This feature can be viewed
as the major consequence of fractality and justifies - after the fact - the occa-
sional recourse to strict hierarchies as “cartoons” of properly fractal models.

This paper shall only consider those fractals, called self-similar, which are in-
variant under similarities; a self-similar structure is one that can be decomposed
into small parts, each of reduced-scale copy of the big part. (The graph of a
function, for example of a temperature in terms of time, cannot be self-similar.
Such a graph is called fractal when it is self-affine, that is, invariant under
transformations called “affinities”, which are more general than similarities.)

Let us review the reason for the preceding complications. It resides in the
fact that the logical contrast between homogeneity and fractality is very asy-
metric. Homogeneity is uniquely defined, while fractality incorporates a broad
range of possibilities. The first non-hierarchical fractal scenarios for the dis-
tribution of galaxies [1][2] proved clearly inacceptable because of their eztreme
non-isotropy. Some critics reacted to this freature by concluding that the broad
notion of fractal remains inacceptable, even when one moves on beyond hier-
archical structures. The alternative path that I took consisted in seeking to
preserve fractality and scaling under more suitable implementations.

Altogether, many misunderstandings are avoided if the non-hierarchical frac-
tal scenarios are split into two kinds. A) Pedagogical non-hierarchical random
fractals that do not claim to be realistic but are readily implemented graphi-
cally. In their absence, fractality would most probably have failed to attract
any attention. They help understanding and provide strong foundations for
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generalizations. B) Suitable fractals. [3] went to great lengths to disclaim the
pedagogical scenarios as realistic and moved on to subtler and more “proper”
scenarios that involve low lacunarity. When (as often happens) I am criticized
for the resulting complexity, my response has not changed since [3] came out in
1982: I did what I could, asking more questions that I could answer, and kept
inviting the critics to do better.

Once again, this distinction should disappear with the misundertandings
that provoked it.

To summarize, as things stand today there are good reasons to distinguish
four pure scenarios and a multitude of hybrids. Two of the pure scenarios are
classical and my books can be said to have added two more scenarios.

A misunderstanding and a metaphor concerning fractality itself and other
concepts in their historical development. We discussed a confusion between two
roles of hierarchies. It is worth discussing it further in a broader context via a
metaphor, that is, a comparison that is useful but must not be taken textually.
The reader knows that the algebraic notion of group arose about 1830 as a
generalization of the classical elementary operations of addition, multiplication
and rotation. Does it follow that primitive humans who counted using pebbles
on the beach were already practicing group theory? To say so might be correct
on a narrow legalistic sense, but would not only be anachronistic but useless,
in fact, thoroughly misleading. One who invokes group theory ordinarily thinks
of a framework that is broader than addition, multiplication and rotation. To
be fair and precise, various structures that were recognized as groups after
that notion was developed, may on occasion be usefully called “proto-groups.”
Furthermore, when pondering properties of general groups, it is often useful to
see what they become in the case of addition or rotation invoked as “cartoons.”
(Analogous comments could be made about real versus complex numbers.)

Similarly, the hierarchical structures exemplified by Cantor dusts and Peano
or Sierpinski curves arose as special tools of the nascent point-set topology.
However, the actual drawing of any topological object is necessarily an object in
Euclidean space. As a result, in addition to the properties that motivated their
introduction, those structures have a host of non-topological properties. Above
all, they were drawn as self-similar. This property was devoid of significance
until fractal geometry made it of intrinsic interest. Today, those “proto-fractal”
structures provide useful “cartoons” of more significant fractals.

1.2. THE STANDARD HOMOGENEITY SCENARIO FOR THE LARGE-
SCALE DISTRIBUTION OF GALAXIES

The overwhelming majority, considered by Newton but formulated by Ein-
stein [8] assumes a homogeneous distribution, except for “local” disturbances
that must be specified separately and are not highly significant from the large-
scale viewpoint. Their quantitative features include the “local” correlation func-
tion. Their “qualitative” features involve many aspects of texture, clusters,
voids, filaments, walls and the like.
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Figure 1: A simple proto-fractal: an elementary strict hierarchy.

1.3. STRICT NON RANDOM HIERARCHY, THE ANOMALOUS MASS-
RADIUS RELATION, AND THE MASS AND SIMILARITY DEFINITIONS
OF FRACTAL DIMENSION

An ancient alternative to homogeneity postulates that the distribution of
galaxies involves a scale-invariant hierarchy of clearly separate and physically
meaningful levels of structure, together with a well-defined “center”. This view
did not originate with astronomers, but philosophers and science-fiction writers,
as documented in [3]. It was phrased in terms of stars and came about well
before the actual discovery of galaxies and clustering.

The hierarchy shown in Figure 1 is drawn in the plane rather than the space.
It is self-explanatory, but an additional comment is found at the end of Section
2.5, and extensive elaborations are found in 3], pp. 95-96.

The anomalous mass-radius relation at the center. Consider the functional
dependence upon R of the mass M(R) that is contained within a sphere of
radius R whose center coincides with the center of the universe. Each time R
is multiplied by some factor 1/r, M(R) is multiplied by a factor N. Therefore,
writing D = log N/log(1/r), one finds that M(R) is of the order of RP.

In Figure 1, N and 1/r are equal, therefore D = 1. The average density
M (R)/nR? is of the order of R™!, therefore tends to 0 as R — 0.

Classical geometry tells us that the formal relation “M(R) of the order of
RP” also holds in a homogenous distribution, where the exponent D is the
dimension of space and takes the value D = 3. Thus the exponent fractal D



generalizes the role of the ordinary dimension with respect to mass. Hence it is
called mass fractal dimension. When D < 3 in space, this mass-radius relation
is called “anomalous.” Fractal dimension can be defined in many other ways,
but for self-similar structures all the definitions yield the same value.

1.4. PROJECTIONS

The key issue in this paper is the following very controversial one. In order
to fit the evidence, a scenario for the large scale distribution of galaxies must,
after it is projected on the sky, appear near isotropic, that is, near invariant
rotationally.

The homogenous distribution implies, as immediate corollary, the strongest
possible form of isotropy, both in space and in projections on the sky.

By contrast, hierarchical sets and all other fractals occupy a negligible por-
tion of space; strictly speaking, all are of zero volume and are non-isotropic in
space. As to projections, especially projections on the sky, their effect is that
fractal dimension cannot increase, but can decrease. More notably, project a
D-dimensional set in 3-dimensional space on to a plane or the sky. The pro-
jection is at most of dimension 2. Therefore, if D > 2, projection necessarily
decreases dimension; if D < 2, projection may preserve dimension; and D = 2
is a borderline case. The latest data of Pietronero et al [9] suggest D = 2 for
galaxies, therefore this borderline case deserves particular attention. This is
best done in the plane, where the borderline dimension is D = 1. The great
wealth of possibilities is illustrated by five properties of Figure 1, which we now
proceed to sketch.

Projections of the elementary hierarchy in Figure 1, when it is infinitely
interpolated but not extrapolated. First consider the parallel projections along
the directions 8 = 0,6 = 45° and # = 90°. Many points hide behind one
another, and the projections are Cantor dusts made of N = 3 parts each of
which is identical to the whole reduced in the ratio »r = 1/5. The formula
D =log N/log(1/r) for the similarity fractal dimension yields log3/log5. The
fact that this value is < 1 expresses a decrease of dimension under projection.
One can weight each point in the projection by the number of points in space
leading to that projection. This procedure defines a multifractal measure, an
important topic but beyond the scope of this paper.

Next, a parallel projection along the direction # = tan~!(1/3) behaves very
differently: as is easily seen, a projection along this angle fills an interval, no
point being hidden behind any other point. Imagine that the smallest square
including Figure 1 is of side 1, and that the total mass in this square is 1, hence
the density is 1. Then the 8 = tan~!(1/3) projection is of length 6/5 and its
density is 5/6. Similarly, the # = cotan™!(1/3) projection is of length 4 and
density 1/4.

Next, project Figure 1 on the “sky,” which in the plane is the circle of
radius 1 with the same center as the hierarchy. In each of four directions, there
is, once again, exact superposition between small clusters nearby and large
super or super-super-clusters far away; these “hide” one another, and yield the
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same “projection supercluster of angular width 2tan~!(1/5) ~ 23°.” Those
superclusters are separated by large empty arcs of the circular “sky”, adding up
to a very nonhomogeneous projection and a loss of dimension.

Next, modify Figure 1 as follows: rotate the middle fifth by a random angle
< 7r/2, next rotate the middle fifth of the middle fifth, then rotate the middle
fifth of the middle fifth of the middle fifth (approximated on Figure 1 by a point)
etc. This process carried over several hierarchical levels will insure near-isotropy,
but only on a sky with the same origin as the construction itself.

The case D > 1. Figure 1 is readily changed to one of dimension > 1. The
corresponding projections are non-isotropic in the absence of random rotation
and less extensive random rotations suffice to insure approximate isotropy.

1.5. TWO DISTINCT PEDAGOGICAL FRACTALS: LEVY DUSTS AND
ROUND-TREMA DUSTS, THE OBSERVED NEAR-ISOTROPY OF THE
SKY AND THE CONCEPT OF FRACTAL LACUNARITY

Fractal constructions featured and extensively illustrated in [1} [2] [3] affected
greatly the scientists’ perception of what a random fractal is, therefore deserve
to be called pedagogical fractals. They will be studied in detail in Sections 3
and 4, respectively, but deserve to be sketched here.

The more widely known was given a “nickname”, Lévy dust, in [2]. It is
created by running (both forward and backward in time) a random walk such
that the steps’ direction is isotropic and their length U is random and follows
the scaling probability distribution Pr{U > u} = «~P with 0 < D < 2. This
distribution is assumed to hold for 0 < u < oo, implying that Pr{U > 0} = 0.
This divergence is startling but reveals itself to be acceptable upon further
consideration because the resulting infinity of infinitesimal steps adds up to a
finite total contribution. All concerns about rigor vanish if a cutoff v > ¢ is
imposed, and the value of £ disappears from the final results.

The Lévy dust has now become widely known and helps identify what is
meant by “pedagogical fractals.” The Lévy dust’s correlations, both in space and
in projection on the sky were obtained in [10] and the derivation is reproduced
in [8].

The second pedagogical fractal is the “round trema dust,” “trema” being
the Greek word for hole. It will be extensively discussed in section 4 and its
description is best withheld until then.

Projections on the sky of a Lévy dust or a round trema dust. They are grossly
non-isotropic. Figure 2 shows what happens for the Lévy dust with D = 1.23.
The same is true for most of the other widely known fractals.

This last property, when added to the nonisotropy of the hierarchical model,
led to the following widely-held opinion.

Widespread converse belief: the observed isotropy provides sufficient reason
to demand homogeneity and exclude fractality.

In fact, this sparseness is NOT an unavoidable consequence of fractality,
and the bulk of this paper describes scenarios that suffice to establish that
fractality can approximate isotropy as closely as the empirical evidence may
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Figure 2: Projection of a three-dimensional “pedagogical fractal” on the sky.
This fractal is a Lévy dust drawn by a Lévy flight. Its extreme sparseness and
non-isotropy make it clearly inappropriate as a scenario of the distribution of
galaxies.

require. These scenarios are meant to provide alternative proofs of existence
and do not claim to be realistic.

This approach will necessarily be indirect, because it encounters a profound
mathematical difficulty. The general study of the notion of “closeness” is part of
topology, which lists innumerable alternative definitions. In the present context,
however, no standard definition is applicable. Stated differently, no concept
from the presently available mathematics is able to describe the notion that is
required here, namely, that a homogenous distribution can be “approximated”
by fractal distributions.

“Lacuna” is the Latin word for hole. Since non-isotropy is manifested by the
presence of holes, Chapters 34 and 35 of [3] proposed the term “lacunarity” to
describe the propensity of a set to include holes. In advance of an appropriate
quantitative measure of lacunarity, the fact that lacunarity is tunable could not
have been proven analytically. But I demonstrated its validity constructively by
exhibiting several examples of distinct sequences of succesive approximations,
each involving a special construction that leads to explicit pictures. Many years
passed until the appearance and properties of those illustrations suggested, not
one, but several possible measures of lacunarity. None of these definitions were
(or, in my opinion, could have been) guessed in advance.

This indirect procedure did accomplish what was intended. To summarize
this paper, it will go beyond [3] and elaborate on the following surprising fact.

Contrary to widespread opinion, fractality and the absence of conspicuous
holes are not contradictory properties. “ Proper” fractals can be characterized
as made of those cases where these two properties coexist. Additional further
evidence and testing will narrow down the meaning of “proper.”
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1.6. PROPERLY FRACTAL SCENARIOS FOR THE DISTRIBUTION OF
GALAXIES

We come at last to the relatively new synthesis of hierarchy and homogene-
ity to be discussed in this paper. It must be presented and labeled with great
caution, as the “properly fractal scenario.” Once again, [1] [2] [3] call it sim-
ply “fractal scenario” (or “fractal model,” but the word model seems to have a
different flavor in comology.) However, the word “fractal” covers a very broad
range of shapes that are unsuitable for-galaxies. This versatility contributes
powerfully to the broad usefulness of the concept of fractal, but in the present
context it created two sorts of misunderstanding. Each led to a major pedagog-
ical complications.

The first complication is that both classical constructions, namely homogene-
ity and a strict hierarchy, are special cases of fractality, but both are completely
“atypical.” A second source of complication is so fundamental to this paper that
it deserves to be discussed separately in the following subsection.

1.7. A CONTRIVED SEQUENCE OF INCREASINGLY ISOTROPIC HIER-
ARCHICAL STRUCTURES OF UNCHANGING DIMENSION

To begin, isotropy is grossly violated in the hierarchical structure at the top
line of Figure 3. However, without having to change the fractal dimension of a
hierarchical universe, it is easy to change its construction to decrease lacunarity
at will. The remainder of Figure 3 illustrates this possibility.

To continue, isotropy is also grossly violated in the “Lévy dusts” and the
“round trema dusts” of Section 1.5. However, those “pedagogical fractals” are
thoroughly understood, yet of transparent simplicity. Hence, not only are they
unavoidable illustrations of some basic properties of the fractals, but each pro-
vides an excellent point of departure for the construction of “proper” fractal
scenarios, as will be seen, respectively, in sections 3 and 4.

1.8. HYBRID SCENARIOS; THE KEY QUESTION IS WHETHER OR NOT
THE DATA SHOW A WELL-DEFINED AND FINITE CROSSOVER
TO HOMOGENEITY

Let us interrupt to mention an issue that is very important to this paper’s
topic but not to this paper itself. As already mentioned, the mainstream ex-
emplified in [8] represents the galaxies’ overall distribution through a “hybrid”
scenario that grafts local perturbations on homogeneity in the large-scale range.
In this mental picture, fractality gained acceptance in the mainstream as a pos-
sible representation of the local perturbations. Observe that such hybrids are
not scale-invariant.

The large scale is often defined as lying beyond a small cross-over scale rg,
typically 4Mpe. Some time after this hybrid was proposed, the discovery of the
voids convinced many observers, myself among them, that the distance to the
crossover (if there is one) must far exceed 4Mpe. (As a matter of fact, the very
notion of ry is simply the result of inapplicable statistical tests.)
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Figure 3: A stack of Cantor dusts on the interval [0, 1]. The k-th line from
the top shows the construction of a Cantor dust made of N = 2* parts, each of
which is identical to the whole reduced in the ratio r = 4%, Those parts are
equally spaced. Therefore, D = log N/log (1/7) = 1/2 on every line. However,
as k increases, those dusts are perceived as being increasingly “close” to trans-
lational invariance, that is, to the one-dimensional counterpart of rotational
invariance on the sky. This notion of closeness is non-classical and continues to
be somewhat elusive.

The task of determining whether or not the hybrid picture is justified with
a meaningful and finite crossover was faced brilliantly by Luciano Pietronero of
Rome, and his team. Their work [9] interprets fractality as extending to the
very limits of observation. It is described elsewhere in these Proceedings and I
have nothing significant to contribute. Little in this presentation is affected by
the existence of a crossover or its precise value.

2. Diverse observations and beliefs, and the extent to which the
conflicting scenarios agree with them

The reader may either continue with this section or proceed immediately
to sections 3 and 4 for a continuation of the study of isotropy and lacunarity.
Section 4 describes very valuable “trema dusts” . Their construction is based
on a generating shape of unit area called “template.” In the “round trema
scenario,” the template is simply a circle and the trema set is characterized by
big holes and “neutral” lacunarity. For the purpose of galaxies, this lacunarity
is too high. However, as we shall see, changing the template greatly modifies the
texture by making it smoother at all scales. This is achieved without destroying
fractality or even changing the fractal dimension.

The intellectual path being followed presents a bit of paradox.

In this section, each subsection’s title will describe a property that an ideal
scenario is expected to satisfy. Those properties overlap; each will be symbolized
by a letter.
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2.1. OBSERVED PROPERTY B: BUNCHING. GALAXIES FORM CLUS-
TERS AND SUPERCLUSTERS

Since clustering contradicts homogeneity, it is ordinarily set apart as belong-
ing to local disturbances. In the hierarchic structures, clustering is deliberately
put in.

The singular feature of fractals is that they are very special on this account.
In their case, hierarchical clustering need not be a conscious input; it can be
an inevitable consequence. More precisely, every pedagogical and proper fractal
is completely scale-free: its definition involves no linear scale whatsoever. For
example, the definition of Lévy dusts in Section 1.4 involves the probability
distribution Pr{U > u} = u~P over 0 < u < co. After the fact, however, the
picture of every sample of those random fractals is analyzed by human brains
into a largely subject-independent hierarchy of clusters and superclusters. In
other words, samples of random fractals exhibit near-universal clustering that
has no “trigger” in the generating mechanism.

Are galazy clusters “real”” The preceeding surprising and (to my mind)
fundamental discovery creates a question concerning the actual distribution of
galaxies. In the words and gestures of an unidentified attendee at a recent
lecture of mine, could it be that galaxy clusters are here (he pointed to his
head) and not there (he pointed to the ceiling)?

I think this is a serious question that deserves a serious experimental inves-
tigation. To my knowledge, no such question arises in alternative scenarios for
clustering. I view it as a very strong “plus” for the fractal scenario.

2.2. OBSERVED PROPERTY V: VOIDS. GALAXIES FORM VOIDS, FILA-
MENTS, WALLS AND CONFIGURATIONS

The comments in Section 2.1 extend to voids, filaments and walls. At a
much earlier lecture, another unidentified attendee inquired how I had arranged
for filaments to be present in my simulations. At that time, I did not know
about filaments, therefore had made no special arangement. The presence of
filaments simply followed from the fractality that was used.

2.3. PROPERTY C: CREATIVITY. PEDAGOGICAL AND PROPER FRAC-
TALS SEEM “CREATIVE,” INSOFAR AS THEIR OUTPUT AUTOMATI-
CALLY EXHIBITS TEXTURAL FEATURES THAT WERE NOT A DELIB-
ERATE PART OF THEIR INPUT

Because of its importance, the content of Section 2.1 and 2.2 deserves a
restatement. In the homogeneous and hierarchical scenarios, all “output” prop-
erties worth noting are immediate logical consequences of the input. This is why
local disturbances to the homogeneous scenario must be added using entirely
separate free-standing arguments. Starting with a hierarchy, every other feature
must also be added separately.

On this account, both pedagogical and proper fractality stand diametrically
apart from the two older scenarios. The key underlying assumption consists in
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scale invariance combined with the replacement of the usual homogeneity by a
weakened form that suffices to exclude the hierarchical scenarios. As mentioned
in Section 2.1 and 2.2, the surprising key fact is that those assumptions allow
innumerable non-quantitative consequences to be drawn.

2.4. PROPERTY D: MATTER HAS A POSITIVE OVERALL DENSITY

Passion and controversy surround property D. It follows immediately from
homogeneity, and homogeneity follows from scaling combined with a positive
density. To the contrary, all fractal scenarios imply a vanishing overall density.
This includes “improper” fractal scenarios like hierarchies and the pedagogical
constructions, as well as “proper fractals.”

2.5. PROPERTY €: THE UNIVERSE HAS NO PRIVILEGED ORIGIN;
TWO FORMS OF THE COSMOLOGICAL PRINCIPLES: ABSOLUTE AND
CONDITIONAL

A homogeneous universe satisfies an absolute form of the cosmological prin-
ciple: every point is like every other point.

A hierarchical universe includes a privileged origin, namely, the point around
which the hierarchy was constructed. Therefore, the cosmological principle is
invalid. A contrary claim is discussed at the end of this subsection.

The pedagogical and proper fractals led [1] [2] [3] to replace of the usual
cosmological principle by the following conditional form.

“In a frame of reference whose origin is 2, the distribution of matter is
independent of 2, under the sole condition that {2 must be a material point.”

As a consequence, if §) is not a material point and R is fixed, the sphere of
radius R centered on ! is empty with a probability equal to 1.

The basic quantitative consequence predicted by fractality is the “mass-
radius” relation that generalizes the relation described in section 1.3. A “prop-
erly chosen” sphere of radius R contains a mass of the order of RP, with
1 < D < 3. The expression of the order of has a technical meaning imply-
ing that the ratio M (R)/RP is not too different from 1.

It remains to explain the words “properly chosen” center. In the hierarchical
case, the mass-radius relation requires the sphere of radius R to be centered on
the center of the universe. By contrast, random fractals can be constructed so
that the mass-radius rule holds under the far weaker condition that the sphere’s
origin must itself belong to the fractal. Those fractals deserve to be called
fractally homogeneous.

An eztrapolated hierarchical universe and its sequence of privileged origins.
The finite picture shown in Figure 1 is meant to be interpolated and extrapolated
without end. There is a unique natural interpolation, which consists in replacing
each dot by a reduced version of the whole, and so on without end.

But extrapolation is an altogether different matter. Indeed, let us show that
there is an infinity of alternative extrapolations. Each is labeled by an infinite
“directing sequence” of the integers from 0 to 4; in other words, each is labeled
by an identifier G, which is a real number between 0 and 1 that is, written in the
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base 5. The construction starts with Figure 1 taken to be infnitely interpolated.
This figure defines a universe Uy with privileged origin {25. The five fifths of Up
are denoted by 0 to 4. Step 1: enlarge Up in the ratio of 5, identify the part of this
enlargement that is numbered by the first “decimal” of the generating number
G and position the enlargement so that this identified part is superposed on Uy.
This creates an enlarged universe U; with a privileged origin ;. Repeating
the same process creates an enlarged universe U, with a privileged origin (s,
then a sequence of universes Uy with their privileged origins ;. Knowing the
universes Uy and Uy suffices to identify the sequence of origins from Q; down
to 9. When the identifier G is chosen at random uniformly on [0, 1], 2% — oo
almost surely as k — oo and (for given k) the “coincidence event” Qp = Q3
occurs with the probability 1/5.

Altogether, such an extrapolated hierarchial universe is no longer cursed
with having a single privileged origin, but for the wrong reason: because there
is an infinite sequence of privileged origins, characterizing U and a sequence of
“layers” surrounding Up.

2.6. PROPERTY I AND AN INTRODUCTION TO SECTIONS 3 AND 4: AS
SEEN FROM EARTH, THE SKY IS NEARLY ISOTROPIC

This second very controversial issue was already mentioned in Section 1.
Isotropy follows from homogeneity as an immediate corollary, but hierarchical
structures yield a wildly spotty sky. For proper fractals, the situation depends
on the value of the dimension D. It also depends on a feature beyond dimension
that I introduced and called fractal lacunarity. Sections 3 and 4 describe two
distinct ways of controlling lacunarity.

3. Beyond the Lévy dusts: they are too lacunar to represent the
distribution of galaxies but newly-introduced “stutter dusts” allow
lacunarity to take an arbitrarily low value

This section generalizes Lévy dusts in the spirit of the “fractal sums of
pulses,” a concept that is sketched in [11] and will be expounded in [5]. The
generalization transforms Lévy’s independent increments into statistically de-
pendent ones.

A first effect is that the Lévy dusts’ excessive lacunarity can be “tuned”
down.

A second effect concerns the fractal dimension D of stutter dusts in E-
dimensional Euclidean space. For Lévy dusts D cannot exceed 2 and the limit
D — 2 is very atypical; it reduces to a continuous curve, namely the path of
Brownian motion. In sharp contrast, a shining asset of stutter dusts is as follows.
When the “generating template” is cyclic, a stutter dust’s fractal dimension is
only bounded by E.
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3.1. INDEPENDENT INCREMENTAL JUMPS: LEVY FLIGHTS AND LEVY
DUSTS RELATION BETWEEN LACUNARITY AND NON-FICKIAN DIF-
FUSION

The responsibility for coining the nickname, “Lévy flight,” weighs heavily on
my shoulders, because the flight of a bird or plane is continuous, while a Lévy
flight is discontinuous.

In continuous time, Lévy flight L, (t) is a self-affine process with the exponent
a < 2. The only consequence that matters here is that L, (t) diffuses in time like
Ft!/>. Here F is a random prefactor and the exponent satisfies 1/a > 1/2. It
exceeds the value 1/2 that characterizes the atypical o = 2 limit of Lévy flight,
which is Brownian motion. As the dust’s dimension a decreases, the Lévy
flight’s jumps increase, creating increased sparseness. Therefore, the dream of
decreasing lacunarity hinges on the possibility of either braking or breaking the
big jumps without creating a change in dimension with independent increments
the only self-affine jump processes are the Lévy flights, therefore the break-
up of big jumps must necessarily involve statistically dependent jumps. The
special examples needed here are best described in the plane and preceded by
the description of a dead end.

A tempting idea leading to a dead end. One can think of each Lévy jump as
a straight arrow with the weight concentrated at one or both ends. Since big
holes and high lacunarity are due to long arrows, one may want to fill the holes
by spreading mass in a uniform thread between the arrow’s endpoints. Refering
to [3], Plates 296 to 300, this processing would replace a dust by a broken
“contrail” that goes through every point of the dust. However, the resulting
threads will be infinitesimally thin and will not fill the holes. An alternative
modification of Lévy’s construction consists in interrupting each arrow into p
consecutive subarrows of equal length and identical direction. Instead of erasing
the contrail arrows (minus the endpoints), one inserts u — 1 additional points.
This artificial processing also leaves the perceived lacunarity unchanged.

3.2. DECREASE OF LACUNARITY ACHIEVED BY “STUTTERING” THAT
CREATES STATISTICAL DEPENDENCE BETWEEN THE JUMPS; STUT-
TER FLIGHTS AND STUTTER DUSTS

Fractal sums of pulses. Isolated points and the replacement of dusts (totally
disconnected sets of points,) by continuous curves are both inacceptable. Both
are avoided in the fractal sum of pulses (F'SP) introduced in [5] [11] [12]. Visu-
alize the set of Lévy jumps in the space (z,y, t), as arrows attached orthogonally
to the point ¢ of the time axis, each sticking out in the appropriate direction.
The second dead end in Section 3.2 was created by replacing each arrow by u
arrows infinitesimally close to one another.

The thought that suggested the simplest F'SP consisted in replacing each
arrow by p repeats (hence the term, “stutter”), separated by equal finite in-
termissions. During each intermission, other subarrows occur, each “seeding”
matter at its endpoints. If, as we do, one wishes the resulting stutter flight
to be self-affine, an additional condition must be satisfied. The duration of
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intermission must be proportional to (arrow length)°.

Of special importance is the relation of the stutter flights to Lévy flight.
It hinges on another parameter that enters in the construction, namely, the
expected value C of the number of jumps (before splitting) that occur during
a unit of time and whose length exceeds a unit of jump. The theory of the
FSP construction, as sketched in [11] and presented in [5] and [12], is subtle.
A basic fact is that if @ < 2, allowing C — oc makes the “stutter flight”
concentrate increasingly in large jumps that are nearly independent statistically.
As a result, the stutter flight converges to a Lévy flight, following an interesting
new form of convergence, called “lateral”. But for small C the stutter flight’s
structure is very different from that of the lateral asymptotics. It is dominated
by increments other than the largest ones, namely, by increments that are no
longer independent. This is why a decrease in C and/or an increase in g, lead
to a decreased lacunarity.

Fine-tuning the stutter-generating template. The preceeding construction
can be called “forward stutter flight,” because each arrow is replaced by u
subarrows that all go forward in the same direction. The next step away from
Lévy flight is to release the sub-arrows from this special condition and allow
their arrangement to be a dilation or a reduction of a more general prescribed
pattern called “generating template.”

Of particular interest are templates to be called “cyclic.” They are defined
by the property that the vector sum of the contributing p subarrows vanishes;
examples are a) two subarrows, one forward and one reverse, and b) an array
of subarrows that form a regular polygon. Compared to forward generating
templates, cyclic templates are far more effective in “braking” the propensity of
the Lévy jumps to drift away. An illustration is provided by Figure 4.

A wvaluable extension of the range of admissible values of the dimension.
Cyclic stutter dusts have a remarkable and most valuable property: for them,
the dimensional exponent « is freed from the Lévy bound a < 2, and becomes
unbounded. That is, the rules of dependence in a cyclic stutter process are so
finely adjusted that a dust of dimension > 2 can be obtained.

4. Beyond the round trema dusts; their lacunarity, which can be
called “neutral” is too large to represent the distribution of galaxies;
non-circular trema dusts’ lacunarity can be made arbitrarily low

This section, largely reproduced from [4], was written before Section 3, but
can be read independently. Both the modifications of Lévy dusts in section 3
and the modifications of the trema dusts to be presented here involve no artificial
base and lacunarity can be made to decrease, not increase.

4.1. ROUND TREMA DUSTS IN THE PLANE: CONSTRUCTIONS AND
PROPERTIES

It is best to first describe the practical algorithm used in Figures 5A and 64,
and then the theoretical algorithm that underlies and motivates this practical
algorithm. The construction is most easily visualized in the plane. “Trema” is
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Figure 4: A new fractal dust of dimension D = 1.26. Lévy dusts of this dimen-
sion ([3], Plates 296 to 300) enormously more lacunar. This variant is a cyclic
stutter dust for which the generating template is a low-order approximation of
the Cesaro-Peano curve illustrated in [3], Plate 65.

the Greek word for hole. Trema dusts in space will be illustrated in Section 4.3.

Practical algorithm. Calculations are performed in a unit square. One may
also interpret them on a square belonging to a periodic tiling of the plane.
The first input is a seed which a “random” number generator transforms into
a sequence of numbers uy, with k > 1. For each n > 1, one picks the point P,
with the coordinates usn—; and ua,. The second input is a positive real number
that will prove to be a codimension, therefore is denoted by the letter C. (In a
terminology more common in the discussion of the correlation between galaxies,
this letter is +.) For each n, one cuts out from the plane a “trema” defined as
the circle of center P, and area C/2n. Those circles are allowed to overlap.

Principal result. Taken together, the tremas have a positive probability of
covering the unit square. One can show that the probability of covering depends
on C - 2. :

When C < 2 the probability of covering is < 1 and the uncovered set is a
fractal called “round trema dust” that will be investigated in the remainder of
this paper.
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When C > 2, the probability of covering is 1. In that case the area of the
largest trema is > 1, therefore covering might have been expected. However,
this argument is at best heuristic and the actual proof is far more delicate.

Proof that the trema dust’s fractal dimension is 2 — C'. While the following
argument is heuristic, its conclusion can be made rigorous. Given a random
point in the unit square, its probability of not being covered by the n-th trema is
(1—-C/2n). Consider the probability p(¢) of this point’s not being covered by the
tremas from n = 1ton = Nypq., of which the smallest is of area C/2n,q, = T£2.
This probability p(e) is the product [J(1 — C/2n) taken for 1 < n < npmas.
Replacing 1 — C/2n by exp(—C/2n) will introduce errors that amount to a
multiplicative prefactor, mostly due to small values of n. Hence, up to this and
other multiplicative numerical prefactors,

p(e) x exp[—(C/2)Z(1/n)] x exp[~Clog\/Mimaz | x exp(C loge) = €°.

This probability is also the expected value of the area not covered by tremas.
To cover this area with squares of side &, one needs N o £“~2 squares. The
fractal dimension is given by log N ~ Dlog(1/e), hence D = 2 — C, as an-
nounced.

The non-specified multiplicative prefactors are easily compensated for. One
way, which also corrects for boundary conditions, is to restrict attention to the
central portion of the unit square and restrict n to n > nyin, > 1. When C' is
small, as in Figure 5A, these precautions make little difference.

The rigorous trema construction on the whole plane. The preceding simple
algorithm closely approximates an underlying general construction that I intro-
duced in 1972 (see [3], p. 282) on the line and extended to space in [13]. A
preliminary step is one that has already been taken in the context of stutter
dusts: the origin {z,y} and the radius r of a circle to be cut out are used to
define an “address point” in an “address half-space” of coordinates x,y and
r > 0. The construction consists in selecting the address points at random in
this half-space, independently of each other, using the following rule.

The number of points in the product domain [z, z+dz] x [y, y+dy] x [r, r+dr]
is taken to be a Poisson random variable of expectation (C/7)r=2 dzdydr. It
follows that the number of tremas such that 0 < z < 1, and 0 < y < 1, and
area > 7r? is itself a Poisson random variable of expectation (C/2m)r=2 =
(C/2)/area.

The practical algorithm stated early in this subsection is obtained as follows:
The Poisson variable is replaced by its expectation and the resulting value is
identified with the rank n of a trema in order of decreasing areas. In this
practical algorithm, the sizes of small tremas are accurate, but the largest tremas
are distorted because their random size is replaced by a “typical” value.

4.2. NON CONVEX TREMA DUSTS IN THE PLANE: INCREASINGLY
“FRAGMENTED” TEMPLATES INJECT A SELF-SIMILAR SMOOTHING
THAT PRESERVES DIMENSION BUT DECREASES LACUNARITY

When C is sufficiently small, the round trema sets are actually not dusts,
but connected sets perceived as being the whole plane, minus an infinity of holes
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or gaps that are near-circular. My search for generalization began with a view
concerning human perception. In black-and-white patterns, it seems that the
impression of texture combines the respective areas of the two colors and the
areas and perimeters of the large single-color domains. This belief suggested
that the texture could be changed and made more uniform by increasing the
perimeters of the largest visible domains.

To achieve this result the broad recipe is to proceed like in the trema set
construction of Section 3.1, except for one change rich in consequences: the
circles are replaced by reduced or expanded versions of a more general non-
round domain called “template.” The template is normalized to be of area 1
and must have a perimeter beyond the value 2./7 that characterizes the circle
of unit area. The proof that p(e) = £ follows from the distribution of the areas
of the tremas, and does not involve their shapes. Therefore, their result remains
valid. Therefore, the trema set’s dimension remains unchanged.

The simplest templates, all of which were investigated, are as follows: the an-
nulus (bounded by two concentric circles), the union of several non-overlapping
annuli, the sieve (a circle with many holes), the “counter-sieve” (to coin a word
to denote the holes in a sieve) and the rhombus. Non-isotropic templates are
made statistically isotropic by combining reduction with an arbitrary rotation.

Examples are shown in Figures 5A,B,C,D, 6A,B,C,D and 7. In both Figures
5.A, the template is a single circle of unit area. In both Figures 5.B, it is made
of 4 circles, each of area 1/4 (namely, a “base” circle, and 3 circles centered at
random but without overlap on a “orbit” concentrical to the base circle). In
both Figures 5.C, there are 10 circles, each of area 1/10 (namely, a base and 9
circles placed on two orbits). In both Figures 6.D, there are 19 circles, each of
area 1/19 (namely, a base and 18 circles placed on three orbits.)

Aside. The fact that fragmentation of the template decreases lacunarity
takes time and pratice to be accepted intuitively, and the reader attentive to
mathematical subtleties may have identified a delicate point that demands re-
assurance. It concerns the fact that a simulation necessarily concerns the inter-
section of a trema set with a finite square. With a probability equal to 1, such a
square would fall entirely within a gap of the set, an event that must be excluded
by carrying out the simulation carefully. Furthermore, when a template is frag-
mented, a round trema close enough to the square’s boundary creates holes
beyond that boundary. Conversely, some large round tremas that lie wholly be-
yond the boundary will create visible holes within the boundary. These issues
have been investigated carefully and their outcome will be described elsewhere.

4.3. TREMA DUSTS IN SPACE

Principle of the construction. The generalization from 2 to 3 dimensions is
obvious. The address space is now the product of the 3d space by a half-line,
and, the address point density becomes C(3/4m)r~* dz dy dz dr. In the practical
algorithm, the volume of the n-th trema is taken to be C/3n.

Ezamples. The two examples in figure & show that a suitable choice of
template can achieve a fractal that the eye perceives as arbitrarily close to
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Figure 5: Trema sets on the plane when the template is a circle or a collection
of circles, as described in the text. This figure gives a direct visual proof of a
basic fact concerning lacunarity: by breaking up the template, one can decrease
a trema set’s lacunarity as much as one may wish. Here, the codimension C of
the tremas is small, hence the dimension D = 2 — C of the trema set is close to
2: the lacunarity decreases clockwise from top left.
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isotropy. In one example, the template is an annulus (space between two con-
centric spheres). In the other example, it is a collection of a few spheres.

5. Alternative numerical measurements of lacunarity

Thus far, the fact that the selection of a non-circular template decreases la-
cunarity expressed a subjective judgement based on pictures. As seen in Section
3.2, and confirming an observation in [3], this suffices to provide constructive
examples that show that the perceived isotropy of the sky can be approximated
by properly constructed fractals of low lacunarity.

Completing a roundabout procedure described in Section 1.6, an examina-
tion of such examples suggested measures of closeness appropriate for the study
of fractal lacunarity. I think that this sufficient stimulant was also necessary.
Actually, several alternative measures come to mind.

5.1. ANTIPODAL DEPENDENCE AS PARTIAL MEASURE OF LACU-
NARITY; ROUND TREMAS YIELD ANTIPODAL INDEPENDENCE AND
“NEUTRAL” LACUNARITY; NON CONVEX TREMAS THAT DECREASE
LACUNARITY ALSO CREATE POSITIVE GLOBAL CORRELATIONS

We now proceed to describe a first quantitative measure of lacunarity, and
continue by making an interesting —and not yet verified— prediction concerning
galaxies. It is necessary to begin with a few definitions.

A thin two-directional spatial cone can be viewed as made of two “antipodal”
half-cones with the same apex. A spatial distribution will be called “antipodally
independent,” if everything concerning its intersections with one of those thin
half-cones is statistically independent from anything concerning the other half-
cone. However, it is impossible to test for independence, while it is easy to test
for the presence or absence of correlation [14] [15] [16].

In this spirit, consider the masses that lie in the two above-defined thin
half-cones and at a distance r from the apex satisfying Ry < r < R, where
0 < p < 1. Because of the postulated scale invariance, the correlation between
those masses is independent of R. 1 observed that this correlation is a useful
(while only partial) indicator of texture.

Lacunarity will be said to be neutral in the case of antipodally uncorrelated
sets. When the correlation is positive (resp., negative), lacunarity will be said
to be low (resp., high) and the value of the correlation is in a position to serve
as one possible numerical measure of lacunarity.

The preceding definitions are useful, indeed immediately applicable. Con-
cerning the Lévy dusts I showed in [10] that in space they are antipodally
negatively correlated. This confirms that texture is clumpy to an inacceptable
degree, as already mentioned and illustrated in Figure 2. As to the round-trema
dusts (e.g., Figures 5A and 64) it is easy to see that they are antipodally inde-
pendent, since a round trema can intersect one or the other very thin half-cone,
but not both.

A more interesting case is that of a non-convex template (e.g., Figures



233

: , e éli':’ BN “i’g‘,& : s 3 s ,' >,
Ll § "&}Ew&?ﬁoﬁmx o

Figure 6: Same as Figure 5, except that now the codimension is larger, hence
the dimension is smaller.
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5B,C,D, 6B,C,D, and 8.) In this case, the same trema can intersect both antipo-
dal half-cones. This situation, when it occurs, introduces a kind of smoothing
with a range of the order of magnitude of the overall trema radius. Because
trema radii vary widely, the smoothing is present, overall, at all scales. As a re-
sult, as is readily seen, the corresponding trema dust exhibits positive antipodal
correlation.

The preceding paragraph leaves aside the case of non-circular but convex
templates (Figure 7). Those templates also yield a vanishing antipodal corre-
lation! Hence, a proper measurement of lacunarity unavoidably involves addi-
tional complications. The issue only arises in the case of highly non-isotropic
templates and may be irrelevant to many applications. Nevertheless, it was
raised in [15], where it is argued that, in the general case, strictly antipodal
half-cones do not suffice, and one must also consider correlation between half-
cones that are nearly antipodal.

5.2 AN ALTERNATIVE DEFINITION OF LACUNARITY, BASED ON
MINKOWSKI EPSILON-NEIGHBORHOODS

The motivation stated in section 3.2 should now be restated: it relied on a
presumed link between uniformity of texture and the length of the boundary
between white and black. The concept of “epsilon-neighborhood” provides a
way to formalize this link, therefore our alternative definition of lacunarity.

Given a set S and a radius £ > 0, the epsilon-neighborhood S; is defined
by replacing every point of S by a disc bounded by a circle of radius e. When
S is an ordinary curve of dimension and codimension C' = D = 1 and length
L, it is obvious that “area (S.) ~ 2¢L = 2Le€.” When S is a fractal, one has
a more general formula “area (S.) ~ A=2¢€.” The role of C in this formula
is classical (due to G. Bouligand), but the prefactor 1/A remained without
concrete interpretation. I argued in [14] that this prefactor is one of several
possible measures of lacunarity.

6. An empirical question: Is the antipodal correlation positive in the
case of galaxies

The question raised in the title improved itself as soon as isotropy was in-
terpreted as lower-than-neutral lacunarity, but the issue is of obviously wider
physical interest.

In the case of neutral dependence, one can say that, when the origin of our
bilateral thin pencil cone is part of the set, it acts as a screen between the half-
cones it links. When lacunarity is not neutral, the origin fails to act as a screen.
Given the long-range nature of gravitational forces, such screening would be
surprising, and positive overall dependence would be expected.

In the same spirit and in conclusion, it is interesting to point out a curious
form of the contrast between locality and globality. When the universe is viewed
as homogenous overall, the very term local applied to the disturbances implies
that distant portions are statistically independent. To the contrary, every fractal



2:3:5

Figure 7: Three-dimensional trema sets seen in projection on one eighth of the
sky. The simulation is carried on in a cube of side 1. To represent it, one corner
of the cube is taken as origin, a sphere of unit radius is drawn around this origin,
and the remainder of the simulation is erased. The position of this eighth is as
indicated in a small additional diagram, or its symmetric.
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universe is non-local, insofar as distant portions are statistically dependent. In
statistical physics, this dependence is measured by a correlation exponent, which
in this instance is 3 — D. What is shown by the study of lacunarity is that the
concept of non-local dependence is richer than has been thought: It also involves
additional features which go beyond D. Neutral lacunarity expresses that, given
the value of D, long range dependence is as small as can be. A low lacunarity
is a manifestation of long-range dependence stronger than the minimal value
compatible with the given D.

7. A very important theoretical issue: the origin of fractality in
partial differential equations

How does fractality fit in a view of Nature that is dominated by PDEs
that is, partial differential equations? The smoothness of the solutions of those
equations seems to flatly contradict fractality. However, Chapter 11 of [3] argued
to the contrary: fractality need NOT contradict the basic PDE, but may, to the
contrary, describe the long-range properties of their solutions, for example, their
moving singularities and boundaries.

The PDE ruling an assembly of classical point masses is the Laplace equa-
tion, and those point masses themselves are singularities of the solution. Ac-
cording to the thesis of Chapter 11 of [3], the distribution of those point masses
should tend toward fractality. All computer simulations of large assemblies of
classical point masses appear to be compatible with this prediction.
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