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Abstract

In an earlier paper |[MR| the authors introduced the inverse measure p'(dt) of a
given measure p(dt) on [0, 1] and presented the ‘inversion formula’ fT(a) = af(1/a)
which was argued to link the respective multifractal spectra of p and pf. A sec-
ond paper [RM2] established the formula under the assumption that g and p' are
continuous measures.

Here, we investigate the general case which reveals telling details of interest to the
full understanding of multifractals. Subjecting self-similar measures to the operation
p— ut creates a new class of discontinuous multifractals. Calculating explicitly we
find that the inversion formula holds only for the ‘fine multifractal spectra’ and not
for the ‘coarse’ ones. As a consequence, the multifractal formalism fails for this class
of measures. A natural explanation is found when drawing parallels to equilibrium
measures. In the context of our work it becomes natural to consider the degenerate
Holder exponents () and oco.

1. Introduction
Let p be a probability measure on [0, 1]. Tts distribution function M (x) = u([0, x])
is an increasing and right-continuous map of [0, 1] to itself. There is a natural way
of defining an ‘inverse function” M1 of M. Tts differential is a probability measure
w! which we call the inverse measure of p:

" o AR o) AMIE {t: M(t) > 6} iff <1

As will be shown uf is indeed a measure, and ,u” = .
Our interest lies in a possible relation between the multifractal spectra f and f1 of
p and pf and the implications of such a connection. (For definitions see Section 2.)
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In part I [MR] it was argued that the so-called inversion formula should hold:
fla) = af(1/a). (2)

Part IT [RM2] established the formula under the assumption that p and p' are
continuous.

The practical use of such a formula is most evident when dealing with left-sided
spectra [M90, MEH, RM1] since it allows to transform the infinite range [ayin, 00|
of Holder exponents of a left-sided spectrum into the finite range [0, 1 /@min] of a
right-sided spectrum.

A further application of the inversion formula is to self-similar measures which
reveals telling details on the multifractal formalism. Recall that a compactly sup-
ported measure p is traditionally called self-similar if and only if

u—1
p=> pipw; (), (3)
i=0

where wy, ..., w,_1 are similarity maps of R with contraction ratios r; € (0,1), and
where the probabilities p; > 0 satisfy py+...+p,—; = 1. As [H] showed, such measures
exist and are unique even under the weaker condition that the w; are contractions.

Computation of the multifractal spectrum requires knowledge on the amount of
possible overlap in (3). The widely used open set condition OSC of [H] is said to hold
if there is a bounded, open set O such that w;(O) are mutually disjoint subsets of
O. For the ease of dealing with inverse meagures of self-similar measures, we will
assume that the OSC holds with O = (0, 1). Then, it is well-known (see [AP, R1] and
also [CM, F2, O]) that all reasonable definitions of the multifractal spectrum of p
coincide. In particular, all spectra equal the Legendre transform 3*(c) = inf ;(qa —
3(q)) where

u—1
Zpiqri—ﬁ(q) = 1. (4)

i=0
It is easy enough to verify the inversion formula (2) for self-similar measures with
full support [0, 1]: In this case we have ry + ...+ r,_; = 1, and a moments thought

shows that the inverse measure ' is self-similar with ratios 7] = p;, and probabilities
pf = ;. Thus, g = —87(q"). ¢ = —B(q), and (2) follows easily from f = 3*.

If p is supported on a Cantor set K C [0,1] then ry +... + 7,1 < 1 by the OSC
(note that dim (K) = —3(0) < 1). In order to obtain an invariance for b it is useful
to add similarities w; (j = u,...v — 1) to the family wy, ..., w,; such that (0,1) is
still an open set and such that v, + ...+ r,_; = 1. Assigning the probabilities p; = 0
(J = u,...v — 1) to these maps leaves y unchanged and finds p! invariant under
(w),...,wh_).

This observation leads naturally to extending the notion of self-similar measures
by allowing ratios r; = 0 and probabilities p; = 0. A first possible extension of the
inversion formula for non-continuous measures is, thus, to verify whether (4) (the
sum taken only over all 7 with rj #+ 0, i.e. p; + 0) continues to rule the spectra of this
broader class of self-similar measures, As we will show. this is indeed true for the two
Hélder spectra fy(a) and fp(c) which are defined as the Hausdorff and the packing
dimension of the set K, of singularity exponents a. respectively (see Section 2).
The ‘coarse’ Holder spectra fi(a) and fi,(o), however. which are obtained through
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partitioning of [0, 1], contain less information on the singularities than fy, and the
inversion formula fails here. This is due to the presence of atoms. They shadow the
finer details of the dense parts of the measure to an analysis from the ‘global’ point
of view of fi. which manifests itself in a linear part in the graph of fq.

As a consequence, the multifractal formalism which states fy = fp = fo = fu, fails
for this class of multiplicative measures. Moreover, the inversion formula (2) does not
hold for fi; and fi, in general. In more positive words, information hidden in a linear
part of fi; may be recovered by analysing its inverse measure. It is worthwhile to
note that such a procedure is not equivalent to the ‘fixed mass algorithm’, unless p
1s continuous and non-vanishing.

Section 2 provides definitions and the proof of (2) in the continuous case. In Sec-
tion 3 the discontinuous self-similar measures are introduced and their full multi-
fractal analysis is provided. Section 4 contains the proof of (2) for fy and fp for
general probability measures on [0, 1].

2. Preliminaries
We start this section by establishing some claims made in the introduction. Then,
we introduce the various multifractal spectra and relate them to each other, Finally,
we prove the inversion formula (2) in the continuous case.

Levya 1. MT as defined in (1) is monotonous and right-continuous. Hence, pt is a
easure.

Proof. Monotony of MT is immediate. Consider a sequence 0, ™, 6. By definition
of MT(0), we can choose {t,}, such that M(t,) > 0 and t, < MT(0) + 1/n. For
every n we find k, with M(t,) > 0, . hence, t, > M1(0,) = MT(@) and MT is
right-continuous.

LeMMa 2. We have ' = u. In other words, M1 = M.

Proof. Take t < 1 and let 8 := M(t). Recall that MTT( = inf {6": MT(¢") > t}.

Agsume first that M’TT(t) < 6. Then, we find ' < 6 with MT(¢") > t. Take th
with MT(6") > #'. The definition of M implies M (') < 6" < 6 = M(t), a contradiction
to monotony.

Assume now that M1 (1) > 0. Then, we find ¢ > 0 with M1(0) < ¢. Take ¢ > t.
The definition of MT implies M(t') > ¢'. Letting ¢\, t yields M(t+) = 6’ > 0, a
contradiction to right-continuity.

2:-1. The multifractal formalism. Recall the definition of y-dimensional Hausdor[f
measure in RY

n"(E) = sup 1] (E), g (B) =inf {3, [Ic|": E C Uiy and || < 6}

5—0

where [I] stands for the diameter of I and where the sets Ij, are arbitrary. The
Hausdor[f dimension is then defined as

dim (E) = inf {7y = 0:77(E) = 0} = sup {y = 0:n"(E) = o0}.
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Following |Tr], we define the y-dimensional packing pre-measure

#7(E) = inf #](E), A7(E) = sup { Z || {Ix } & is a 6-packing of E}
2

50

A §-packing {I; }r of E is a collection of mutually disjoint, open balls, each of length
at most & and each intersecting . The y-dimensional packing measure is given by

77(E) = inf { S B, EC UE}
(the sets E.,, are arbitrary) and the packing dimension by
Dim (E) = inf {y 2 0:7"(E) = 0} = sup {y = 0: 77 (E) = oo}.

For convenience, we set dim () = Dim (0) = —oc. Let u be a measure on [0,1]4.
Given a number «, 0 < « € 00, called "Holder exponent’, set

log p(1
F,=1<t€0,1]* limsup log ud) <«
1—qy log ||

. og (I
G, = {te[0,1]% liminf log plf) Z o
1—{t}  log |1]
with the convention log 0 = —oco. Here, I — {x} means that I is a cube containing
x, and that the length of [ tends to zero. Finally. set

Ka,a’ = Ga cht‘
K(.r = Kc)e,(.‘a'

K, is sometimes called the ‘set of Holder exponent o’. Denote the corresponding
sets of uf by FI ete.

Definition 3. The two fine multifractal spectra are the Hausdorff spectrum and the
packing spectrum, respectively, which are defined as
fule) =dim (K,) and fp(a) = Dim (K,),
respectively. We also introduce their continuous versions:
fH,rs(a) = hn}l dim (Kr?{fE.Q‘FE) and f}’, u(a) = hn‘b Dim (Kafs,r_ﬂ'e)-
£— s

The continuous versions are, by definition, more regular than the usual ones. fy .
has been studied by [LN] in the context of infinite Bernoulli convolutions and a
closely related notion has appeared earlier in a work by [BMP, theorem 2|.

Of practical interest is yet another approach to multifractal analysis. Based on a
partition of R?, we will define two coarse multifractal spectra fi and fi,. For simplicity
we stick to the case d = 1; the general case is obvious.

Definition 4. Let Hg be the set of all intervals B = [I6, (I + 1)6) with integer [ and
with p(B) £ 0. Let By == [(I — 1)8, (I +2)8). The grid spectrum is defined as
log Ns(c, €)

() =lim limsup —————
f(a( ) = 50 640]3 IOg l/é
where

Ns(a,e) = #{B € Hs: |Bi|*"® < p(B1) < [Bi|* "}
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Here, Ns denotes the number of “intervals from a grid of size § with coarse Holder
exponent «(B) = log u(B)/log |B| roughly equal to «’. As was described earlier
in |[R1], the straightforward or naive way of counting intervals gives poor results in
theory ag well as in numerical application. Among the various possible improvements
suggested by [S, LN, O, AP| and one of the present authors, we favour the given
one for itg simplicity and accuracy [R1, PR].

Though tempting it is wrong to interpret [ as the box dimension of K, (Exam-
ple 1). The truth is that K, has the same box dimension as its topological closure
which is, in the case of self-similar measures, equal to the whole support of the mea-
sure. In fact, recalling K, o = G, N F, and setting

A ={t € [0,1]: [T|*7% L p(I) < |I|*"* if t € [ and |I| < 1/m} (5)

yields
Ns(a,2¢) = #{B € Hs: BN A,, + 0}, (6)

provided 36 < 1/m. Denoting the box dimension of a bounded set 4 by A(A) we
have
log #{B € Hs: BN A, £0 , log Ns(a, 2¢
A(A,,) =limsup og #{ :  + 0} < lim sup w
P log 1/6 5—0 log 1/6

[t is well known that Dim (1) < A(-) (see | Tr, F]). Together with U, A,, D Ko ¢ ase
and Dim (U, A,,) = sup_ Dim (4,,), one concludes fi () = fp (a). In combination
with dim (.) < Dim (.) [F. Tr]. we obtain the following relation between the various
spectra:

LemMa 5. fola) 2 fr () 2 fe(e) 2 fula) and fola) 2 frda) 2 fu.la) 2
Ju(a).

[f the box dimension was a-stable like Hausdorff and packing dimension, one could
argue fo(a) = sup,, A(A,) = AU, A,,) = A(supp (p)) which is obviously not true.
The spectrum fq is related to the partition function 7(q)

log )4
7(g) = lim inf 8 2 pen, MB
-0 log 6

through the Legendre transform [R1]
7(g) = inf (g — fu(). (7)

This relation holds also in the much more general context of Choquet capacities (see
[LV, theorem 3]). The tentative inversion formula (2) translates to:

¢ =-7, 71=-q (8)

Most evidently it holds for self-similar measures (compare (4)). In general, however,
(8) will fail as is the cage with discontinuous self-similar measures. It may also fail
for continuous measureg, e.g, if their spectrum fi; is not strictly concave.

Definition 6. It is natural to introduce the Legendre transform of 7(g) as a multi-
fractal spectrum:

fulo) = j}g{z(qa —7(q)).
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An equivalent form of (7) is to say that fi, is the concave hull of f;. Consequently:
Leyya 7. fola) € fula).

For tvpical values of o, we have equality. In fact [R2]:

fola®™) =ga™ —71(q) (g>0)
fola™)=qa™ —71(q) (¢ <0)

where o™ = 7'(g+) and o~ = 7'(g—) denote the one-sided derivatives of 7(q).

The multifractal formalism is closely related to the thermodynamical formalism
and means that equality holds in Lemma 5. To establish it under various assumptions
has been a point of major interest in multifractal analysis (see [KP, CLP, Ra, LN,
AP, O, R1, PW| and aforementioned authors ). In general, however, the estimate (6)
can clearly be sharp, meaning that an interval B can show a coarse Holder exponent
a(B) = «a although it contains no point t with a(?) = a. The most simple example is
the absolutely continuous measure g with density ¢(t) =t on [0, 1], i.e. M(t) = ¢/2.
Here, a(t) = 1 for 0 < t < 1 and «(0) = 2, hence fiu(1) = 1. fu(2) = 0 and K, is
empty otherwise. A direct calculation shows, on the other hand, that fu(a) = 2—a for
1 €< a < 2. What seems to be a paradox is readily explained: while log p()/ log |I|
tends to 1 for all £ > 0. a coarse graining on any ‘pre-asymptotic’ level § > 0 will
gshow a non—trivial distribution of Haélder exponents. The inequality fi > fy is a
direct consequence of the highly non-uniform convergence of the Holder exponents
a(t).

Further examples of a similar kind are present with the inverse measures of self-
similar measures. Before introducing them in Section 3. we provide some intuition on
inverse measures by giving the proof of the inversion formula (2) in the continuous

9)

case.
2:2. The continuous case. By saying loosely that we are ‘in continuous case’ we
mean that
M(t) = p([0,t]) is continuous and strictly increasing. (10)
Equivalently, we could require that one of the following conditions are satisfied:
(i) ¢ and pf are both continuous.
(1) M: [0, 1] = [0, 1] is onto and one-to-one with inverse M7,

Provided (10) holds and 0 < v < 00, we have

te K, o Mt)e K], | (11)

/o
or, more generally,
M(F) =G M(Ga) = F],,.

1/a?

This is a simple consequence of |M(I)| = w(I) and p"(M(I)) = |I| which holds for

arbitrary intervals I due to (10).
PROPOSITION 8. Let 11 be a probability measure on [0, 1] and let A be a subset of G,
(0 < @ < o0). Then,
dim (A) Zz a. dim (M (A4)).

Proof. Fix o/ < a and let A,, = {x € A:p(I) < |I|* ifz €I and |I] < l/m}.
Obviously, A = U5 A,
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Let a denote the left boundary point of an interval I. Then, |M(I)| = u(I\{a}) <
w(I) since M is right continuous. Let {I;}; be a covering of A,, by intervals of length
less than 1/n (n > m). For the I; which intersect A,,, we have
\M(L)| < w(I;) < 151" < (1/n).
Consequently, {M(I;): I; N A,, £ 0} forms a covering of M(A,,) by intervals of
length less than ¢, = (l/n)“’ and we find
Tl (MAR) < D0 M) <L
INA,+0 J
Taking the infimum over all coverings of A, we find
M (M(Am)) € 0], (Am) < 07(Am) < 07(A),
thus, dim (M(A4,,)) < dim (4)/a’. With the o-stability of Hausdorff dimension, i.e.
dim (M(A)) = sup,, dim (M (A,,)). the claim follows by letting o " a. [
Prorosirion 9. Assume that M is continuous and strictly increasing. Then
Dim(A4) € a. Dim (M (A4))
Jor any subset A of F,,. provided 0 < o < 00,

Proof. In its basic structure, this proof is very similar to the one of Proposition 8
above. Note that & = 0 is allowed. Fix o > « and let

Ap={z€Ap) 2 |I|* ifzeTand |I| < 1/m}.

Consider a 1/n-packing {I,}; of A,, which is a collection of mutually disjoint, open
intervals, each of length less or equal 1/n and each intersecting A,,. Since M and
MT = M~" are continuous, the collection of all M ([;) provides a packing of M(A4,,).
The central estimate is
|M(I)| = (L) = [1;]°

which holds due to (10). All that is needed to get the obvious argumentation started
is an upper estimate of the length of M(/;). Once more we use the continuity of
M, more precisely its uniform continuity. Choose 6 > 0. Then there is n such that
1| < 1/n implies | M (I)| < 6.

In summary, {M(I;)}; is a §-packing of M(A,,) provided n is sufficiently large.
This allows to estimate the v-dimensional packing premeasure 7

7 (MAn) 2 D 1M1 > YL
It is an easy task now to complete the proof in a similar way as above. [

CoroLLARrRY 10 {(Inversion formula in the continuous case). Assume that M is onto
and one-to-one. Let 0 < o < co. and let A be any subset of K. Then,

dim (A) = . dim (M (A)), and Dim(A) = a.Dim (M (A)).
Finally. Ky is at the most of dimension O but might be empty:
dim (K,) = Dim (K) < 0.
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Consequently,
flle) = dim (K1) = dim (M (K, /4)) = a dim (K, ,,) = af(1/a)
and similar for fp.

Remark 11. In the continuous case, f is properly linked with the spectrum fr
obtained by the so-called “fixed mass algorithm’, provided 7(q) is a strictly concave
diffeomorphism [R2]. As its name suggests, fp is obtained through a partition of
[0, 1] into intervals of equal mass. This partition translates immediately into a usual
erid on the f-axis. As a consequence, the inversion formula holds in this case also for
fo and fi.

Proof. Note first that M (A) C Kf/a and that MT(M(A)) = A due to (2). Applying
Proposition 8 once to g and A C K, C G, and once to uf and M(A) C K:r/a - GI/G
yields dim (A) = o dim (M(A)) = dim (MT(M(A))) = dim (A). The argument for
Dim () is similar.

Remark 12. Proposition 8 could be used to establish the inversion formula in gen-
eral if it were not for a generalization of (2) which appears to be cumbersome. In the
context of Section 4, this generalization will come more natural.

Remark 13. In the definition of K, F,,,.... all possible intervals are considered.
In certain situations, however, it is convenient to restrict the attention to a family
F of intervals. Then, if K, F, and G, are defined using only elements of #, the
sets Kjﬂ, F(‘;T, and GLT have to be defined using the family M (#) of intervals on the
f-axis. The definition of dimension has then to be modified accordingly on the {- and
the f-axes.

3. Disconlinuous self-similar measures

In this section, we provide the full multifractal analysis of a broader class of self-
similar measures, allowing also discontinuous ones. As a corollary, we obtain the
inversion formula (2) for fi and fp in this special case as well as a counter example
showing that (2) may fail for f; and fi,. Moreover, we obtain a weak form of the
multifractal formalism for the discontinuous self-gimilar measures, namely, that the
‘coarse’ spectrum fi is the concave hull of the “fine’ spectrum fy.

What might look like a loss can be turned into a gain: Coarse multifractal analysis
of the inverse measure of a given measure may provide the information hidden in the
linear part of f — as is the case with discontinuous self-similar measures. (Note that
this procedure is nol equivalent to the fixed mass algorithm which is as sensitive to
the presence of atoms as fi; [R2].)

We conclude the section by comparing discontinuous self-similar measures with
equilibrium measures of dynamical systems.

3-1. Eatended notion of self-similar measures We start with two simple examples.

Frxample 1 (Failure of the Multifractal Formalism). Consider the self-similar
measure pe invariant under the maps wy(t) = rot and wy () = (L — ry) + rit with
ro + 71 < 1 and with probabilities p, = p; = 1/2 (see (3)). By definition, intervals of
zero e measure correspond to atoms of the inverse measure e’ Since their lengths
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add up to 1. uc’ must be purely atomic. A closer look reveals that pc! consists of
a hierarchy of atoms situated in the binary points 1/2, 1/4, 3/4, 1/8, etc. having
masses s =1 — 7y — 71, ToT2. T1T2, ToToT2, ToT1T2, T1ToT2. T17172. etc.

Introducing a third map ws(t) = ry + rof with probalility ps = 0 leaves peo
unchanged. The inverse measure pet, on the other hand, is then invariant under
wl(8) = 8/2, wh(0) = po+p2.0 = 1/2 and w!(0) = py + p2 + p1.0 = 1/2 + /2 with
probabilities ry, ro and r, respectively.

Though purely atomic, pc' possesses non-trivial spectra since its support is not
countable. By Corollary 22, (8) and (4), the fine multifractal spectra f[]r[ and f}t of
pe' are composed of the origin and a bell-shaped curve which is the graph of the
Legendre transform of

B1(s) = —log, (r§ + 7).
This curve has maximal value 1 and touches the line of slope D through the origin.

D being the dimension of the support of pc, i.e. the zero of 3.
The rough estimate

BEH, /sn E=0 z..epe{01}k

S A

i 8
Li=irf =

(R

7

which is made precise in Proposition 18, implies

. iT. 8 e
¥iz) { G7(s) fors< D

a 0 otherwise.

Thus, the inversion formula (8) holds exactly for ¢ = 0. i.e. for 7 =2 —D. By Theo-
rem 19
. D.a for0<a< (BY (D),
t e o _
fota) = file) { fl@) fora= (31 (s)and s < D.

Note that fg.,((]) = 0 by direct calculation. This is in stark contrast to the fact that
the set of atoms is dense. hence. of box dimension 1.

Ezample 2 (Failure of inversion formula for the coarse graining approach). Take
po € (0,1) and let p; = 1 — p,. Consider the multifractal measure p composed of
Dirac measures p - p; in the points 1/27:

p= Zplp(?vé{?*"}-
n=0

Note first that g is invariant under wy(t) = t/2 and w,(t) = 1 (compare (3)). As
before, it is convenient to add a map w»(t) = t/2 + 1/2 with probability ps = 0 to the
invariance family of .

For the fine multifractal spectra fi and fp, we find: f(0) = 0, f(ce) = 1 and
flag) = 0 for ag = —log py/ log 2, which is the Holder exponent at £ = 0. For all
other a;, we have K, = 0.

Straightforward calculation yields 7(q) = apg for ¢ < 0 and 7(g) = 0 otherwise.
Also by explicit caleulation or using Theorem 19, one finds fg(a) =0for 0 < o < ay

and fi(a) = —oc otherwise.
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By drawing a graph of M. it is easy to see that u' is of the same form as p:

o0
p' = 22—71 ~Oippy-
n=1

In conclusion, the inversion formula (2) can been verified for the fine multifractal
spectra fy and fp, but if fails for the coarse multifractal spectra fg and fi, in all
points but o = ayy. For 7(q), the inversion formula (8) holds only at ¢ = 0.

Consider the following definition of a self-similar measure p on [0, 1] which is
broader than the usual one [H, CM, R1]:

Definition 14. A probability measure g on [0, 1] is called self-similar if and only if

uw—1

WE) =Y pin(w](E)), (12)
i=0

where w; is a similarity map of [0, 1] into itself with contraction ratios r;. and where
we require that ro + ...+ 7, 1 = 1, po+ ...+ py—y = 1. 7; 2 0 and p; 2 0 for all 4.
Furthermore, we call p discontinuous self-similar iff 7; = 0 % p; and r; + 0 % p; for
some i and some j.

If p; = 0 for all ¢ with 7; = 0, then p is self-similar in the usual sense [H]. Allowing
p; = 0 means to include measures supported on a set of dimension strictly less
than 1. Allowing r; = 0 means to include the inverse of such self-similar measures.
The condition r; = 0 % p; implies that there are atoms while r; + 0 # p; avoids
the triviality of p reducing to a finite number of atoms. Discontinuous self-similar
measures are purely atomic: by n-fold application of (12) the mass not lying in an
atom 1s smaller than (zr,#(l p:)" which tends to zero..

Here, we stretch the notion of self-similarity beyond its original meaning that “the
whole” can be ‘regained” by enlarging any little part of it. Still, these measures are
invariant, unique, and they can be obtained by ‘redistributing mass’ in intervals in a
self-similar way. In particular, the cylindrical sets V|, = w,, ... w,, ((0, 1)) obtained
by iteratively applying the maps w; continue to be useful when approximating the
measure j&: (W(Vajn) = €nPoy - - - - - Po, With ¢ € &, < 1/c for some constant ¢ > 0.

It is not necessary to use maps to produce the sets V,|,, and one can think of a more
general construction of measures through a nested family of sets V;,. sometimes
called Moran constructions. As is shown in [CM, R1, PW], the multifractal spectra
do not depend on the actual positioning of ‘daughter sets” V;,,+; within V5, as long
as the obvious separation condition is respected. Applying the inversion formula in
its general form (Theorem 21), we conclude that the actual masses of the atoms
(p; > 0 = r;) of a discontinuous measure are not essential but the ‘multiplicative
process” which rules the length and mass of the intervals that seperate them. The
spectra will, therefore, depend only on the non-degenerate entries, i.e. the maps with
r; # 0% p;.

We need adopt the separation condition.

Definition 15. Given a self-similar measure, the open sel condilion is said to hold
with K if and only if K is compact with nonempty interior O such that w;(0O) are
mutually disjoint subsets of K.
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For ordinary self-similar measures. this definition coincides with the usual one, e.g.
with the one used in [AP]. The fine multifractal spectra of a discontinuous self-similar
measure (12) can be computed in the straightforward generalization of (4):

TurorEM 16. Let p be a self-similar measure and define the concave, differentiable
Junction 3 through

S pfnPO=1, (13)

i+ 0+p;

Assume that the OSC is satisfied with K = |0,1]. Then,

Jul@) = fu,cla) = fela) = fp (o) = 3%(a) = q8'(q) — Blq)

at o = [3(q) for ¢ € R as well as for ¢ — +o0o. For all other o € (0, 00), we have K, = 0.
Ky is al most counlable and it is non-emply if and only if there is  with r; = 0 % p;.
K contains nonempty open intervals if and only if it is non-empty and if and only if
there is 7 with p; = 0 =% r;.

Remark 17. The theorem holds also in the random case in the sense of [AP], given
that assumption 1-1 (iii) of [AP] is replaced by: (iii’) there is a number ry;, > 0 such
that r; is either 0 or larger than r,;, with probability 1 and similar for p;.

In our context, infinite Hélder exponents occur only in gaps. We include them for
reasons of symmetry and completeness. In general, infinite Holder exponents may
occur also as non—trivial limits. As an example, we refer to the left sided multifractal
presented in [MEH, RM1]. Some of these infinite self-similar measures are continu-
ous and non—vanishing, and have Hélder exponent co (Lebesgue) almost everywhere
[RM1. example 1].

Proof. Using the inequalities between the various spectra as stated in Lemma 5.
it is enough to show that fp . < 3% and 8* < fg.

We think of the points ¢t € [0, 1] as being encoded by a sequence @ = g;ay ... in the
usual way, i.e. 0 € Z:={0,...,u — 1}V and the sequence wy|,(0) =Wy, ©... 0w, (0)
converges to ¢. The coding is unique for all but countably many points ¢ (if , = 1/10
for all 7, then this is just the usual decimal representation). We denote by X7 =
{o € Z:iry, # 0 % p,, }'. All but a countable number of points t on supp . e.g. the
atoms of p, are encoded with sequences of 7. Note, that sequences from X7 can also
encode atoms.

Some notation is useful: X, :={0,...,u — 1}, Z, =, Z,., and similarly £/ and
2. Let oln =0 ...0,. It will be clear from the context whether &|n is an arbitrary
word of length n or whether it is the beginning segment of length n of a given longer
word. Lietw, 1 =15 « oo Fops Bl TPy < Do WA

Js={oln € Z,: 1opp <6 < Ty and pyy, £ 0} J§ = Js NEL (14)

These sets Js can be thought of as being constructed iteratively in the following way.
Arrange the set of non-vanishing 7, in non-increasing order and let 6,,, be the m-th
value in this ordering. For convenience, set &) = 1 and ry := L. Then, induction starts
with Js, =0, Js, = {0,...,u — 1}, and Js,., is obtained from Js,_ by replacing words
aln with 74, = 8 by all extensions 0y ...0u+ With p,,, + 0 (r,,,, = 0 is allowed).
Finally. Js = Js  for m such that 6, <6 < §,,_;.
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Let Vo jn = w,/n((0, 1)). By induction, it is easy to see [H. R1] that {V,,: o|n € J§'}
forms a cover of all points with address in £" and that

Z pcr|nq?no'|n_;3(m =1 (15}

olneJg

for every Jj. Moreover, |Vyn| = ropn and u(Vopn)/p((0, 1)) = pojn.

Now, it is easy to check that the claim is true for Holder exponents 0 and oco: First,
«(t) is bounded from above for all ¢ provided p; > 0 for all 7. This follows easely by
considering the intervals I,, defined to be the r™ parallelbody of V,,, for any sequence
o that encodes ¢, and by noting I > ¢, |I,,| < 37", and p(I) = p((0,1)) - pojn (here,
r and 7 denote the smallest. nonvanishing and the largest r; respectively). Thus, if
K, =+ 0 there exists necessarily a j with p; = 0 # r;. But if so, the interior of K is
obviously not empty.

For Holder exponent 0 note that «(t) is bounded from below by min;(log p;/ log r;)
provided r; > 0 for all 7.

Assume for the remainder that 0 < o < oo. Let £ > 0 such that o — ¢ > 0. The
coding sequence of a point of K,_. o+. must belong to £ by definition. For this
restricted set of digits, the usual arguments apply as we are about to show.

For the upper bound one considers A, as defined in (3). For m large enough and
6 < 1/m, a cover of A,, is formed by {V,,,: o|n € Jf and pon? = Tg‘n(qmmqa‘)}. Then.

E -8 : +3|gz|—Bla) — +3|qe|—B(q)
1= polnqrﬂn @ > Z Tglnqa lgz|—Blg) — E (|V0|n|]qa las|—Bla)

olneJf olneldg olngJg

implies Dim (A,,) < A(An) < qa + 3|qge| — B(g). Taking the infimum over all g we
obtain Dim (A4,,,) € max (3 (o + 32), 3* (a — 3¢)). With
DA 5 s s S Dim A= sup Dini(A:)
m
the upper bound fp . < §* follows by letting € — 0. The random case can be treated
as in [AP].

To obtain the lower bound, consider the invariant measure @, defined by (12) where
the p; have been replaced by p, = p;%r; 7?9 Here, only letters from Z] need to be
considered since 0 < o < oo. We would like to apply the results of [AP]. (The random
case reduces trivially to the determistic case when choosing Dirac distributions for
the random variables.) Since we do not have Z, .op; = 1. the various steps in [AP]
need to be verified. First, we do have @ (0K) = 0 for all ¢ € R. Next, the strong
open set condition holds for the family w; (i € Z7) since it has been shown to be
equivalent to the OSC by [Sch| and by [Pa]. At this point, we may conclude already
that @, concentrates on the points ¢ with address o € " such that

](}g pa’\n _
log T4n

108} jjffln .

— /!
a, = ('(g) and b

gog — B(q) = 5 (ag)-

Now, we claim that a(t) can be computed using V, /.. @, almost surely. Then, it
follows that K, itself has full ®, measure, thus positive 3*(a,)-dimensional Haus-
dorff measure. We proceed as in [AP, lemma 3-8]. Some caution is needed, though.
since mass may lie on the boundary points of K, = w,»([0,1]). Rather than
with K, we have to argue with V,,, = wsn((0,1)). Due to the OSC (Vo) =
Poin-1((0, 1)). Since V;,, is the interior of K,|,, we may substitute the basic estimates
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B(h(g),7) O Ko|k, o) and B(h(o),7) C K, i () in [AP] by B(h(a),7) D Voji,.(0) and
B(h(a),7/2) C V4. (s)- This is obviously sufficient for the estimation of Hélder expo-
nents. (Hereby, h(o) denotes the point £ with address o). Together with |V, /.| = 14y
the claim follows as in [AP]. It relies heavily on the fact that the distance of a point
to the boundary of K is log-integrable with respect to @,. In other words, points in
K, do not come too often too close to the atoms of . [

In order to compute the coarse multifractal spectra, let us first investigate 7(g).

ProrosiTioN 18. Let p be a discontinuous self-similar measure. Define 8 as in (13)
and denote its zero by DT. Assume that the OSC is satisfied with K = [0,1]. Then, the
partition function 7(q) of p satisfies

_ [ Blg) ¢< D
T(q) = { 0 otherwise.

Proof. To avoid trivialities, we discard with letters i such that r; = p; = 0. We use
the notation of the proof of Theorem 16.

Due to its self-similarity, (12) p possesses atoms: denoting by a; the fixed point of
w; we have u({a;}) 2 p; if r; = 0. By Definition 14, there is at least one atom. i.e.
p; > 0. As a matter of fact, y consists entirely of atoms. We will not use this fact.
though.

The exact values m; = p({a;}) > 0 (a; € Ay) are not important and depend on
the fact whether 0 and/or 1 are atoms. The OSC implies disjointness of the sets
Van = won((0, 1)) for o|n € 7. But overlap may occur for other o|n, i.e. for atoms:
The OSC can not be iterated for the sets V; which are contained in the boundary
of K. The partition function 7(g), describing a scaling behaviour, depends not on
m;. but only on the way how the further atoms are produced by the multiplicative
process as one iterates (12) in order to obtain more detailed information about .

Assume first that p({0}) = p({1}) = 0. See Example 1. Consider the set Js as
defined in (14) and recall its iterative construction. The following remarks are most
easily established by induction. First, the set

Jg = Js\J; = {oln € Js: 75, = 0}

encodes atoms. More precisely. the sets V), with o|n € J{ are singletons and the
tails 041, Opsa, . . . are of no significance since 7, = 0. The set J7. on the other hand,
encodes mutually disjoint open intervals V5, of positive length r,,. Between any
two atoms of J§ lies an open interval V,,, (o|n € Ji). The sets V), (o|n € Js) cover
the support of ¢ up to finite many points of zero measure. We have

Potn-p((0,1)) if ofn € J.

. 16
Poln—1Mq, if O"ﬂ = Jg (16)

.U'{Vo'\n) = {

Finally, still by induction, the mass of an arbitrary atom a = w,,(0) (o|n € J§) is
comparable to the mass of an entire neighbourhood of a:

p{a}) = w(Von) < plla — ré, a + 16)) < cop({a}). (17)

where 7 = min {r;: r; + 0} and ¢y = 1 + 2u((0, 1))/ min,;(m;)) are constants. To see
this, assume for a moment that Js had been constructed allowing also words with
Poin = 0. Then, the sets V,. |, (¢'|m € Js) cover all of [0, 1] up to finite many points
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of zero measure. By induction, a is a boundary point to two open intervals Vo,
and Vi, (o'|m, " |k € J§) with m,k > n and ¢'|n — 1 = 0”|n — 1 = a|n — 1. This
implies (Vo jm)/1((0,1)) = Potjm € Pajn—1 = p({a})/mg, . Since Vo), and Vo are
of length at least rd, the claim follows easily.

In the general case, that is if we allow atoms in 0 andjor 1, the list of atoms a;
at ‘first stage’ (boundary points of the intervals Vi (i € X7) with positive mass)
will contain not only the fixpoints of maps w; with r, = 0 < p;. We may still have
m; = pu({a;}) = pi (see Example 2) and the arguments above are valid. In general,
however, overlap will occur on the boundary of V; (i € ;) leading to m; > p; for some
of the atoms a; at first stage. If so, we have to adopt the definition of Js slightly:
in the iterative construction of Jg, a ‘newly arriving” atom V;, may coincide with
an already existing one, say V. which must lie on the boundary of the parent
Voin-1. Consequently, a,, must encode one of the atoms in 0 andfor 1 and m < n,
o'lm—1 = o|m— 1. In this case we keep only the shorter address o’|m and discard o|n
(the additional mass supposed to arrive at V), was already accounted for by m,. ).

It is important to note that we may assume without loss of generality that there
are atoms of the form a; = w;(a;) € (0, 1) at ‘first stage’: if not, we use that p is also
invariant under the family w;;. The claim follows then from the very definition of
discontinuous self-similar measures (Definition 14) and by choosing an enumeration
for Z,. This said, we hurry to add that (16) and (17) hold in general.

In order to compute 7(g), it is convenient to estimate Ss(g) = ZBEHa w(B)?
against Y, Pojn? for some & which is a multiple of 5.

Consider an interval B € Hs. Choose & = . Since p(B) = 0 by definition, we find
a set V|, (o|n € Js) intersecting B and conclude pu(By) 2 (1(Vyn) 2 ¢iPgn, Where
¢y > 0 is a constant. Thus, Ss(q) < ¢? Zr]é, Poln? for g < 0.

In addition, By intersects at the most ¢ =1+ 3/r sets V,,, with o|n € J§,. Con-
sequently, B, contains at the most the same number of atoms V,,, with o|n € J§.
Let o|n(B) denote the word corresponding to the maximum of these masses, lLe.
oln(B) = argmax {u(V,,): o|ln € Jy and By NV, # 0}. Then, u(B) < p(Bi) <
2CoPo|nmy- Since every won((0,1)) (o|n € Js) can intersect at the most 4 intervals
By, we conclude Ss(q) < 4(2¢2)? Z%f Pain? for g 2 0.

Now, consider o|n € Jg . Assume first that o|n € Jg& and choose § = §'r*/3. Since
Vn is a singleton formed by an atom, there is B € Hs which contains it. By (17)

1/0339«5[-71 < }U'(Va\n) < ,tL{B]) < CUJU(VUI?).) < C3Po|n (18)

for some constant ¢y. If, on the other hand, o|n € JI, pick an atom Vjp+q in V. A set
of this form exists since there is an atom a; = w;(a;) in (0, 1). There is B € Hs which
contains Vyjn+(. By choice of 6, B C V,, and mq,,, Pajn € H(B1) € oMoy, Poln-
Thus, increasing ¢z if necessary the same estimate (18) holds.

The argument just given is, of course, closely related to the fact that u is an infinite
gum of atoms. In summary

1(’ 1 p(f ?'Lq
£(q) = limint & 223 Pein’
50 log 6
For the asymptotical behaviour of this sum, note first that the words o|n € J§ are
of length n between log §/log r and log é/log 7 with 7 = max {r;}. For every word
oln € JZ, on the other hand, there is o'|m € J; with ojn — 1 =0o'|n — 1.
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Assume first that ¢ > DT. Then, there is i such that

oC o0
pI<Y 2o DD Paln® =) (Zpa:q) < o0,
Js

n=0 ZT n=0  {ieil

thus, 7(q) = 0. For ¢ = DT, in a similar way p? < ZJ¢ Pajn? < log 6/log ¥ and
FOY) =0
If ¢ < D7, then

5D " po? 2 5D " pgnT = E(6) D PotnToin PP = £(6) (19)
Js Jz Ji

where we used (15) and where £(8) is bounded between min {1,779} and max {r@, 1}
for all 6. Thus, 7(q) < 3(g).

Finally, we estimate the sum over J§ from above in a very crude way. Including a
factor £ = 3", m. we can discard with the last digits of such words o|n and replace
them with o|n — 1. Then, ry,—; > é, and since 3(g) < 0

log §/log 7
—3 -4 _
s § pg|nq <& E pcr|n—1q740'\n-—l Bla) <€ E E paianU‘n Bla)
olnedy alnedg n=0  oglneXl

< Elog 6/ log T.

Together with (15), we obtain 7(g) = 3(g). This completes the proof. In fact it was
shown that 7(g) assumes the limit § — 0.

TraroreM 19. The grid spectrum fo of a self-similar measwre (12) equals the Legendre
transform fi,(«) of T(q).

The formula for 7(qg) made already clear that the multifractal formalism must break
down for discontinuous self-similar measures in one or the other way: fi, contains a
linear part of slope D!, The graph of fi and fp, on the other hand, consists of the
origin and and a strictly concave curve which touches the line of slope DT through
the origin (Theorem 16). Due to Theorem 19, the damage is even worse: also fg,
which contains in general more information than the partition function 7(g) [R1],
does not provide the full singularity spectrum fy.

CorovLLary 20. The maudtefractal formalism does not apply lo disconlinuwous self-
stmilar measures. i.e. fu = fp + fo = fu. 4 weaker form holds. though: f}f = fL.

This comes to its extreme with measures the fine multifractal spectra of which
consist of only two points: the grid spectrum is a line connecting these two points
(see Example 2 and a degenerate case of Kxample 1).

Proaf. The ‘classical” case is well known [R1] and we may assume that p is a
discontinuous self-gimilar measure. The upper bound fq < fi, holds in general. For
a = (), this implies immediately f;(0) = 0 which can as well be obtained by direct
computation. It remains to provide a lower bound on fq(«) for a > 0. For notation,
we refer to Proposition 18.

Let h € (0, 1) and set &' = 8" and 6" = ér?/3.

Consider a word o|n € J§,. For é > 0 small enough, 7, = ré’ > & and J§ contains
all a|n + 1 with v, = 0. For each such atom, there is B € Hg» with (18). For each
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a|n € J§, select one such interval and denote it by B(c|n). Since B(o|n) C Vain, this
is unique within Jg,.

Assuming now r5iF < pojn < ?‘r_‘fl:f we find p(B)) < ¢36'°7° < o) BP9
|B,|M=29) provided § < 1/r? - ¢,~'/?"*. Here we use that ¢, depends on a, h, and ¢
but not on é. Similarly, u(B,) = |B;|"***) provided § is small enough.

Let J§ (a,¢€) = {o|n € J5: 1517 < Pon < ?‘ffljf}. As we will show in a moment, a
large deviation result allows to conclude that

i i) o L
e—0 §—0  log 1/6'

In fact, the proof is formally identical with the one given in [R1, theorem 7]. Since

log Ns(ha, 2he) . log #J§ (o, 2) hl()g #Jg (o, €)

log 1/6 7 logt/s log 1/8
we conclude that fq(e) = h3* (/). This proves the theorem.

In order to apply a large deviation result of Ellis-Gartner [E], we recall the asymp-
totic behaviour of the partition function corresponding to JZ. By (19): > Jr pzln =
£(6)6 %1 where £(8) is bounded.

Now, consider the probability spaces Jg with uniform distribution where 6, — 0 is

an arbitrary sequence. Denote the moment generating function of the random vari-
ables X,, = log psjn by cn(t) = Elexp (tX,)] = ZJZ‘ pgln/#Jgﬂ. Let a, =log &, —
—o0. Then, we have
1
cft) = lim — log ¢, () = B(t) — 3(0).
n—00 (g,
Since ¢ is concave and differentiable, [E, theorem T1-2] applies: denote by P, (U) the
probability that (1/a,)X,, lies in U for a randomly picked o|n. If U is open and U’
is closed, then
log P, (U
1(U) < lim inf 285U}

S —lp

log Pull") _ p7m

lims
lfl:olip —n
where [(U) =sup {I(a): « € U} and I(a) = inf ;(ta — c(t)) = 5*(cr) + B(0).

Choosing U = (@ — /2, + £/2) and U’ = [a — 2¢, a0 + 2¢] we have P, (U)-#J; <
#J; (a,e) < P(U')-#Jg for n large enough. [

3-2. Egquilibrium measures A natural generalization of the notion of self-similar
measures are the equilibrium measures which appear in the theory of dynamical
gystems. In a typical situation on the line, one will consider a conformal mapping
g which maps some disjoint intervals I; C [0,1] onto [0, 1] such that —log |¢'| is
negative and Holder continuous. The invariant measure p in question will then live
on the repeller of g, more precisely it will be the equilibrium measure of another
Halder continuous function ¢. This scheme reduces to the self-similar case it g is such
that the w; are its inverse branches and if ¢ takes the constant value log p; on I;.

The multifractal formalism, which basically states that fy(a) = fi(e). has been
established for Cookie-cutters by [Ra], and for equilibrium measures of certain Moran
constructions by [PW]. Set ¢ = exp (¢—P{¢}) with P denoting the pressure function
and let 3 be (uniquely) defined through P{qlog ©»—8(—log |¢'|)} = 0. Then, 7 equals
3, and the spectra of g collapse with the Legendre transform 3*. Note, that the
definition of 3 reduces to the usual one (13) in the self-similar case.
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Tt is tempting to produce new measures analogously to self-similar measures, i.e. to
exchange the roles of ‘geometry’—log |¢’
with the inversion. Assume, therefore, that ¢ = —log |I’| for some function h with
properties analogous to g. Denote the h-invariant equilibrium measure corresponding
to ¢ = —log |¢'| by T

The fine multifractal spectra of g can be obtained through the inversion formula,
i.e. they equal the Legendre transform of the inverse 7', In analogy with Proposi-
tion 18, we conjecture that the partition function of u' is min {37',0}.

Being an equilibrium measure, @ has its fine multifractal spectra equal to B* where,
as before, P{tlog ¥ —B(—log |A'])) = 0 with ¢ = exp (¢— P{}). Though very closely
related, the spectra of uf and 7 are very well distinguished, i.e. 3 # 37", unless P{¢}
and P{¢} vanish. But this is the degenerate case when T and p are supported on all
of [0, 1].

One particular difference between the spectra of u! and 7 is the slope of their tan-
gent through the origin, i.e. the zero of 37 and 3, respectively. With the continuous
T, this slope is 1 while it is strictly less than 1 for the discontinuous p!. This fact
reflects the fundamentally different way of dealing with the fact of ‘loosing mass’
when approximating the measure iteratively by p(V;),). With p', loss of mass in
the generating process is compensated by producing atoms. To the contrary with
7i which is ‘renormalized’ in each step by a factor e=f in order to prevent it from
dying out or exploding (compare [Ra, p. 389]). (For the equilibrium measures A f,
the sets V|, are obtained iteratively as the components of the sets h”l(VG‘n_| ).) This
re-normalization brings a shift in the Holder exponents which causes the distinet yet
closely related shape of the spectra of uf and 7.

Tt is this different way of compensating mass which causes the failure of the mul-
tifractal formalism for the inverse measure pu'.

and ‘mass’ ¢, and to compare this procedure

4. The inversion formula in the general case.
This section is devoted to the general proof of the inversion formula for fy and fp.

Ifor notation, we refer back to Section 2. Our main result is

TrHEOREM 21. Let j1 be a probability measure on [0, 1] and p' its inverse measure.
Assume 0 < a < o < co. Then,

1/a. dim (Ka o) 2 dim (K|, ) 2 1/a. dim (Ka, o)
and
1/a/ . Dim (Ko o) < Dim (K], ) < 1/a.Dim (Kq, o).
CoroLLARY 22 (Inversion formula). Let u be a probability measure on [0, 1] and pf
its tnverse measure. Asswme that 0 < o < 00. Then,
fia) = af(l/ae)
where [ may stand for fu. fe. fu, e or fo,.
Proof.
(0) The plan. Tt is possible to apply the arguments given for fy in the continuous

case to general measures (see Proposition 8). Difficulties arise, however, if some of the
atoms of g lie on the boundary of gaps, the main problems lying in a generalization
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of M(K,) = Kf/a_ In addition, the argument for fp(a) cannot be generalized in this
way because there is no one-to-one correspondence between packings of K, and K IT ™
in the presence of gaps. It is worthwhile, therefore, to give the following, somewhat
more elaborate argument which proves the inversion formula in full generality for
the Hausdorff spectrum and the packing spectrum.

The first step (i) consists in perturbing g slightly to obtain a new measure p# which
is non-vanishing. The corresponding M?(t) = p?([0,t]) is strictly increasing but not
necessarily continuous.

As will be shown in (i1)—(ii1), ¥ and i have the same Holder exponents in all points
of interest. More precisely, we have K2 , N% = K, o 1 #, where

R={tc|0,1]: u(l,) — 0 < |I,| — 0 for all sequences (I,,) with ¢ € I,, Vn}.

We call the points of Z p-reqular. Restricting attention to # means, in particular, to
exclude the points in the gaps of 1 which would contribute the pP-Holder exponent
1. Non-regular points either belong to the closure of some gap or are an atom of
. Therefore, K, o\Z is at most countable and the spectra fy and fp of p are not
affected by replacing K, o by Ka o2 For p7, on the other hand, excluding points
outside # changes the spectrum. Here, we will take advantage of the fact that the
inversion formula holds for subsets of K? _,.

The change from pf to p#t = (u?)t cor:responds to an expansion ¥ on the f-axis
which we introduce in (iv). Tt is, unfortunately, not globally bi-Lipschitz. On each
G! . however, the distortion is small enough to preserve dimension. This is shown in
(v)—(vii).

Once it is established that the perturbation does not affect the spectra, we simply
apply the same procedure to v = pP'. This produces ¥ which is continuous and
non-vanishing by construction. The inversion formula holds, thus, for ¥ which has
the same dimension spectra as v = P’ and, hence, the same as pt. Tts inverse 7T has
the same spectra as vT = pP'" = 4P, which coincide with the spectra of p. Through
this chain of equalities, carried out in detail in (viii). we will obtain the desired result.

(i) The perturbed measure 1P Let ¢(e) = '/%. Let .o/ denote the countable, possibly
empty set of values which M takes more than once. For notational simplicity, we
reserve the letter a for elements of 7. For every a let L, = {t: M (t) = a}. a so-called
gap. which is an interval closed to the left and open or closed to the right. Let

,up:=,u+ZAﬂ
a

where )\, is an absolutely continuous measure on L, defined as follows: if the bound-
ary points of L, are denoted by s < t then Ay ([s, s+ h]) = Ao([t =R, t]) = ¢(h) for 0 <
h < |Ly|/2. The total mass added to p in L, is mg = Ag(La) = 2¢(|La|/2) < &(|Lal).
Outside of the gaps, MP(t) == u”([0,t]) increases strictly since M does, inside a gap
it is differentiable with derivative ¢'(h) > 0, h being the distance to the boundary
of the gap.

(ii) Comparing pand p?. Let T be an interval of length [ < 1 which is not contained
in any gap, in other words, which contains a point from Z. Let [, == |L, N I| for all
a€ .o Duetol, <l wehave Y, _ o(la) < Xl =11 (la/DY < 1Y (/1) <
I'/" from which we conclude

() < pPI) < p(I) + o(|1)). (20)
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For all sufficiently small intervals I containing a point £ of K, .-, pu({) will eventually
be larger than |[I]?**" and hence larger than ¢(|I|). Relying on this idea, we will
prove the claims announced in (o). From (20). it follows also that p? has total mass
pP(R) € [1,2]. We refrain from normalizing p* for the sake of simplicity.

(iii) Holder exponents of (. Consider a sequence of intervals [, which converges
down to t € #. Assume that
iy g n)

log |I,]

and take € € (0,a). If || is sufficiently small, we have ¢(|1,,]) < [L.|*" < u(ly).
With (20),

(1) < 2p(ly), (21)
implying o (I,,) = log u?(I,,)/ log |I,,| — «. Assume, on the other hand, that o#(I,,) —

a. For sufficiently small |I,|, we find ¢(|L.]) < |I.|*™* < (1/2)|1.]*™ < (1/2)pP(1,)
and conclude with (20) that a(l,) — «. Altogether,

o(l,) — o ifand only if o®(I,) — a, (22)
from which
K NA=K, »NA,

provided 0 < a € o’ < 0o0. Note that we need ¢ € £ in order to obtain (21).

(iv) Inverse measure Pt of pP. In order to compare u! and pPf, which can be
regarded as a ‘perturbation’ of the former, we introduce the expanding map ¥ on
the f-axis which identifies the points M (t) and M?(t). On #7 = M(#), we may define
Y = M? o M~ or, more generally

YR\ >R 6P =0+> m,
a<f

with m, = Au(Ly). To avoid confusion, we will use the superscript ? for objects in
the image-space of .

¥ is continuous on R\.Z because Y-, g <q/nMa — 0 for all § ¢ /. Obviously,
there is no continuous extension to ./, the atoms of u'. Each a € & is ‘stretched’
into a whole interval

LP = [uy, v, ] = [sup ¥(B), inl F(0')]
f<a 8'>a

which is of length m, = A,(L,). On the boundary of L, the Holder exponent of p?T
ig infinite, in the interior it is 1. It is clear that we have to exclude these points from
our considerations. Since

o CR\R' =R\M(#) and L? = M?(T,) C R\MP(R),

this will happen automatically, so to say, by restricting our attention to # and 21,
the p and the pf-regular points. Tt is useful to denote the set of these points in the
P-space (which are the ones of interest to us) by

R =V (R) = V(M(R)) = MP(R). (23)

Here. we are glightly inconsequent in our notation since #P7 is not the entire set of
(P -regular points but only the ones that do not lie in any LP.
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Note some simple properties. Let I” be an interval and let I be the convex hull of
its pre-image under ‘P, ie.

I="'(1")) =¥'(")U{a € o: L? C I?} (24)

which is again an interval. Denote by I the interior of I and by I its closure. The
definitions imply

T =10 <|P|= 1|+ |ENr <+ m, (25)
acl acl
and
! (F) < pPt (1) < p' (1) (26)

with equality in (26) unless [? ends in some L2, in other words, unless an atom lies
on the boundary of I. The essential ingredient for the remainder is a translation of
the ‘error estimate’ (21) used in (iii). To this. we note

> ma < d(ILal) < SO 1 Lal) < ¢(ul(D) (27)
acl acl acl
for all intervals I, which follows using first the same argument as in (20) and finally
|La| = ui({a}).

(v) Comparing K| _, = GP' N FT is the obvious set for pFt.)
The basic idea is clear: The term > Mg in (25) can be neglected due to (27) as soon
as an upper estimate of uf(I) against |I] or [I?| is available. If so, Hélder exponents
must be identical. Minor difficulties arise, however, from the fact that some details
of intervals I” on the §7-axis are not reflected by (¥~1(I7)), in particular when I7
ends in some LP.

Take 8 € G N#T, £ € (0,a) and let 67 .= ¥(0). Take an interval I? 3 6% of length
smaller than 1/n and let T := (¥~'(I?)). Certainly, 0 € T and |I| < |I7| < 1/n. Assume
that n has been chosen large enough to ensure pf(I) < |[I]*7% and ¢((1/n)*F) < 1/n.
The latter implies ¢(z) < '/~ whenever 0 < = < (1/n)*%. With = = pf(I) and
(27). we obtain Y,y mg < p! (1) < |I]. Thus, (25) and (26) combine to

and K" .. (K"

p
o

log p(I) _ log p'(I7) _ log pi(])
log |1| = log I T log Zm

(28)

which proves 07 € GE!. Moreover, (28) provides the desired knowledge on the accu-
mulation points of o(I7). With (23), we get LP(Kiﬂ, NR) C Kf:[ﬂ, N %P7,

For convenience, we repeat the assumptions for (28): 0 € GIL N &1, IP 3 07 :="¥(9),
and I* of sufficiently small length.

(vi) Let 87 € GETN P and take £ € (0,a/2). The argument we will give is almost
identical to the one in v) only that we estimate >, m, against u?!(I?). For later use
in (vii), we start again with I? 3 87 and let [ == (¥~'(I?)). Unlike (28), we have to
produce an estimate involving uf(I) rather than pf(7) or w(I). So, we have to deal
with the possibility of I# having a boundary point in some LE.

Assume that |I?| < 1/n where n is large enough to ensure

PP < |IP1°0, ((1/n)* ) < t/n, and n 3 2/,

We have ¢(x) < /@72 for all z < (1/n)*7% and |IP|@~)/(«=2) < (1/2)|1?|. Con-
gider an arbitrary LP which intersects I7. By assumption 67 ¢ L = [u,, va]. in other
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words, I must contain a boundary point of L. Say we have LE N I? = [u,, w,]
for some w, < v,. (The argument is similar in the symmetric case.) By construc-
tion, L2 = MP(L,) and there are s < t with MP?(s) = u,, MP(t) = w,. Since M? is
one-to-one, s must be the left boundary point of L, from which

Wa = o = [LE NIP| = P((5,4)) < Bt = 5) = (™ ((tra wa)))

and

SOILENI <7 (0 (way wa)) < (D w7 (00, wa))) < $iu (7))

acl acl ael
follow. Choose = = pPt(IP). Then, z < |[IP|*~5 < (1/n)72¢ and

ST < PP 2|1,
With (25)
I < |17 < 2|). (29)

For convenience, we repeat the assumptions of (29): 07 € GPI N Pt I? > 67, and I?
of sufficiently small length.

This bound is all we will need in (vii) to estimate dimensions. To conclude on
Holder exponents, however, we have to estimate uf(I) against p?f(I?) which is not
possible under such general assumptions. Fortunately, we need only consider the
following situation: take any interval I containing 8 :="¥~1(67) and let

=) =wvnul Iz (30)
acl
Then, ! (1) = Pt (1Y) by (26), and I = (¥~1(I")). Substituting I for I? in (29) we
obtain, for [I"| small.
log pPt(1") o log w1 . log wrt(r) _ log pt(I)
log ([I%[/2) = log|I| = log|I¥| ~ log (2/1])°
But, letting T\ 6 implies IV ™, 67 since }" _ mq, — 0 (¥ is continuous). Together

with (v) we conclude:

Grt N vt = T(Gi Nat) and K2, Nat =w(k! , Nat).

(31)

We add a short note: (28) provides information only on the lim sup and the lim inf
of sequences o1 (IP) (1P , {6P}), while (31) gives a stronger result: provided 6 €

K Nzt
al(l,) » o asI, ™\, 0= ()pr(I:’) — Q.

In addition, the type of argument given here does not apply to FI for this reason.
(vil) Dimension estimates. Let A be a subset of G, N#'. According to (v), we have
Y(A4) C GETN#*T. We claim:

dim (A) = dim (¥(A4)) and Dim (A) = Dim (¥(A4)).

Take ¢ € (0,a/2). Let n be sufficiently large, i.e. ¢(1/n*"%) < 1/n and n <
25/({1725)‘ Set

A, ={0€ A:W(0) € I? and |I?| < 1 /n imply pPt(17) < |17|*¢}
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where I? denotes arbitrary intervals. Defining 1" as in (30) let

Anm=1{0€ Ap: ¢ €I and |I| < 1/m imply |I¥| < 1/n}.

By continuity of ¥ and (v), A = UpAy, =U, mAn m (A, and A, are increasing in
n and m). For n large enough, the estimate (29) applies to I'* for any interval I of
length |I| < 1/m which intersects A, ,,. But (29) means that ¥ is uniformly Lip-
schitz continuous on A4, ., and preserves dimensions. Together with the o-stability
of Hausdorff and packing dimension the claim follows.

Since ¥ is defined on R\# only, this argument might not seem trustworthy to the
reader. This step being crucial to the whole proof, we proceed giving the details.

Consider a covering {I;}; of A,, ,, by open intervals of length |1;| < 6 < 1/n. Due
to (28) and (29) II;P| < 2|1, provided I, intersects A,, ,,. We conclude,

i € Y, LY 5]
i

JiLNAL W F0

and
ng(‘{l(Anm)) <27 ng(An,m) <27y (A).

Using o-stability [Tr], we continue dim (‘¥(A)) < sup,, ,, dim (¥(4,,)) < dim(4).
The opposite inequality is trivial since ¥ is one-to-one and expanding.

Finally, let {I7'}; be a packing of '(A,,) by open intervals of length [I7| < 6 < 1/n.
Consider I; = (¥~'(I)). First, each I; meets A C G}, due to vi). Second, the I; are
digjoint since ¥ is one-to-one and only atoms a with L. C I} belong to I; by (24).
Third, the last argument shows in addition that I; is open. Thus, {I;}; forms a
packing of A,. Due to (28) and (29), we have [} < 2[[;] and the rest follows by
copying arguments of above and of Proposition 9.

(viii) The specira. Again some notation. We apply the procedure described in (i) to
pPt . Let v := uP' for the ease of notation. By construction, v is a continuous measure
on the #7-axis. Its perturbation v is, consequently, continuous and non-vanishing.
In analogy to (i), we consider its inverse measure 1”1 as being defined on the #*-axis.

Let N(67) = MPH(OP) = v([0,07]) and NP(P) = vP([0,67]). The correspondence
between points N(6P) on the t-axis and N?(6F) on the tP-axis is provided by an
expansion x. As described in iv), we have x(t) = NP o N7'(¢), provided N7'(t) is a
v-regular point. But all points of #P1 = M?(2) are certainly v-regular. In agreement
with (23), we consider only the points of interest and set & == #P.

By definition of 2, M? is a bijection between 2 and #PT with inverse M7t = N.
Hence,

x(t) = NP(MP(L)) for (&R
This expresses in a very clear picture how we distorted 8- and t-space to get rid of

gaps (by M?) and atoms (by N?) of the measure p. In analogy with (iv), we let Ll
denote the points of interest on the tP-axis:

o7t = NP (&) = NP(@PT) = NP(MP(R)) = ().

Propositions 8 and 9, i.e. the inversion formula apply to the pair v and P, We
already know that —as far as the spectra are concerned — v is ‘close’ to v = uP' which
again is close to puf. It remains to relate g and 17T, more precisely, their ‘sets of Holder
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exponent’ K, o[p] and K, o [vP1]. Take A C K, o [p]NZ%. By iii) A C K L [p]NZ.
By Lemma 2, i and v' coincide and K, o/ [¢P] = K, o [v1]. Applying vi) to v yields
X(A) C Kq o [VPT]NFPT with equality if A = K, o NZ. It follows from (vii) that A
and y(A) have the same Hausdorff and packing dimension.

The inversion formula will provide us now with a dimension estimate of N?Tox(A)
where NPT(tP) .= vP1([0,t7]). This. we would like to compare with the dimension
of M(A). By (10), NP' is bijective with inverse N?. We conclude that N?T o x =
NPT o NP o MP = MP, and, fort € &

NPloxy=MP=%¥o M. (32)

The ‘diagram’ commutes. In other words, the distortions of the ¢ and the # axis
‘match’. Furthermore, the inverse of ©?' is ¥? by Lemma 2, and (32) shows that
MP(A) is a subset of K, o [vP]¥. Again, we have equality if A = K, . NZ.

Finally, M (A) and MP(A) have the same dimensions by vii). Furthermore, ¥~' is
well defined on all of MP(A) due to #°" = W(#'). Thus, M(4) C KIT/Q,, e N A" with
equality if A= K, o NZ.

Using the results of the three preceding paragraphs, and applying Proposition 8
to the measure vP7, our chain of estimates reads:

dim (A) = dim (x(A)) = a- dim (N?7 0 x(A)) = - dim (¥ o M(A)) = o dim (M (A)).

Similarly,
dim (A) = a. dim (M(A)) 2 /¢’ . dim (4)

and
Dim (A4) € o/ .Dim (M(A)) < a'/a.Dim (A).

This is the strongest result available with the arguments given here. As already
mentioned, we loose details on the ‘Hilder analysis™ by mapping with ¥ and x. In
particular, the only accumulation points of «(f) (as I ™, {t}) which are preserved
are the limsup and the liminf, On the other hand, we need information on both of
these accumulation points since G [v*] = Fo[v*T]. O

As an immediate consequence of step (viii) above, we have

COROLLARY 23. Lel p be a probability measure on [0, 1] and let R denote ils regular
points. Then

M(Earoo N8 = Ky, N

In other words, for all but countably many t the following equivalence holds: a(t) = o if
and only if of (M(t)) = 1/a.

Final remark. In the case of (discontinuous) self-similar measures, the explicit
construction of the measures ¢, with ¢4(K,) = 1 (Theorem 16) implies that K, is of
full f(a)-dimensional Hausdorff and packing measure. In other words, the inversion
formula is sharp for self-similar measures in the senge of giving ‘exact dimensions’.
It would be interesting to know whether this is true in general.

With the notion of discontinuous self-gimilar measures a new family of multi-
fractals have been introduced. While generalizations of self-similarity to infinite
number of copies and to randomly picked maps result in concave spectra. we find
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here for the first time self-similar measures with non-concave fine multifractal spec-
tra. So far, non-concave spectra were known only for non-multiplicative measures
where K, is no longer dense in the support of the measure.
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