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Abstract

We showed in an earlier paper (1995a) that negatively correlated fractional Brownian motion
(FBM) can be generated as a fractal sum of one kind of micropulses (FSM). That is, FBM of
exponent H <% is the limit (in the sense of finite-dimensional distributions) of a certain
sequence of processes obtained as sums of rectangular pulses. We now show that more general
pulses yield a wide range of FBMs: either negatively (as before) or positively (H > %) correlated.
We begin with triangular (conical and semi-conical) pulses. To transform them into micro-
pulses, the base angle is made to decrease to zero, while the number of pulses, determined by
a Poisson random measure, is made to increase to infinity. Then we extend our results to more
general pulse shapes.

Keywords: Fractal sums of pulses; Fractal sums of micropulses; Fractional Brownian motion;
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1. Introduction

This paper shows how fractional Brownian motion can be obtained as a limit of
processes defined as sums of pulses generated by a Poisson random measure. In the
limit, the pulses become infinitely numerous and infinitely small, so we call them
micropulses.

When we think about the process difference X(t) — X(0), we visualize it as the sum
of heights of all pulses alive at time ¢ minus the sum of heights of all pulses alive at time
0. The sums at ¢ and at 0 may diverge, however, if considered separately, and we wish
to set X(0) = 0. Therefore, we define X(¢) as the sum of changes in the pulse amplitude
between times 0 and t.

Section 2 investigates triangular pulses of two different shapes, or “templates”. The
right triangle (semiconical) pulse starts with a jump (a discontinuity) and then decays
linearly. The isosceles triangle (conical) pulse increases linearly to a point and then
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decreases with the same rate. We also allow for pulses with negative amplitude. The
location of the pulse in time, its width (the base of a triangle) as well as its height are all
random and governed by an appropriate Poisson measure. The analogous construc-
tion for “up-and-down” (rectangular) pulses was already considered in Cioczek-
Georges and Mandelbrot (1995a), to be referred as Micropulses (1995). There we
transform pulses into micropulses by letting the height of the pulse go to zero. Here,
we let the tangent of the base angle go to zero.

Section 3 extends our construction to more general pulse shapes. Negatively
correlated FBMs with 0 < H < 4 were examined in Micropulses (1995). The present
discussion compares the generalization with the results of this paper. We also include
several examples of less regular pulse shapes.

Rectangular or triangular pulses that yield stable self-affine stochastic processes
with stationary increments are described in Cioczek-Georges et al. (1995) and
Cioczek-Georges and Mandelbrot (1995b). See also Mandelbrot (1995a) or (1995b)
for more general discussions on fractal sums of pulses.

2. FBM with 0 < H < 1 as a sum of triangular micropulses

Let us consider pulses of the two triangular shapes described above and introduce
the pulse address space 4 = R x R x R, where R, = (0, c0). Each semi-conical or
conical pulse is represented in A4 by a point with coordinates x, T and w, correspond-
ing, respectively, to the tangent of the base angle of the triangle, the time of birth and
the width (duration) of a pulse. A pulse peaks at 7 in the case of right-triangular pulses
and a pulse peaks at © + w/2 for isosceles triangles. Now we introduce a scale factor
& > 0, that will eventually be made to decrease to 0, and consider only pulses of the
base angle tangent rescaled to ex and unchanged t and w. Thus, the amplitude at time
t of a “rescaled” pulse with coordinates x, T and w equals

ex(w—t+ It <t <14+ w]
for semi-conical pulses, and
ex(w/2 — |t —t—wi2DI[t <t <1+ w]

for conical pulses.

The number of pulses with given coordinates is determined by a Poisson random
measure. Let .o/ = #(A4) be the Borel o-field on A. For each & > 0, we consider
a Poisson random measure N, on (A4,.e/) with mean n, given by

n(dx, dr, dw) = ¢ 2w 1F(dx)dr dw,

for (x,7,w) e A, where 1 < d < 3 and F is the distribution of a random variable X with
finite second moment. In the simplest situation, when X is a non-zero constant, the
shapes of both triangles defining pulses are fixed, i.e. pulses differ only by 7 and w, but
have the same base angle determined by &.
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Adding up pulses corresponds to the integration of the difference in the pulse
amplitude with respect to the Poisson measure. Let us define two functions; for the
semi-conical pulses,

Xi (= J exg, (t, T, w) N (dx,dr,dw), ¢ =0; (2.1)
A
and for the conical pulses,
X, (1) := '[ exg»(f, T, w)N,(dx, dr,dw), =0, (2.2)
A

where g, and g, equal, respectively,
git,wy=w—t+lt<tr<t+w]l —(wH+ [t <0< 7+ w], (2.3)
gt oWy =w2 =t —t—w2PI[t <t <14+ w]
— w2 —=lt+w2)[t<0< 1T+ w] (2.4)

We want to investigate what happens when ¢ — 0. Do finite-dimensional distributions
of {X(t), t = 0} converge, and if they do, what is the limiting process fori = 1,2? We
shall conclude that the finite-dimensional distributions of {X,(¢), t = 0} converge to
those of fractional Brownian motion (FBM) {By(r), t = 0} with the self-affinity
exponent H = (3 — §)/2 (for definition of FBM look at Mandelbrot and VanNess,
1968). First, however, let us determine when the integrals in (2.1) and (2.2) are
well-defined random variables, i.e. whether these integrals converge and in what sense.

In general, stochastic integrals with respect to a Poisson measure are defined in the
sense of a.s. convergence. They exist for (non-random) functions which are integrable
with respect to the Poisson mean (intensity) measure (cf. Resnick, 1987, p. 127).
This implies that (2.2) is well-defined for 1 <d <2 since, in this case,
[alexg,(t, T, w)le 2w " 'F(dx)drdw < 0. The situation is more delicate for 2 < J < 3.
Here we define Poisson integrals in the sense of some conditional a.s. convergence,
which basically means the integrals are a.s. limits of finite ordinary Poisson integrals.
The condition sufficient for such a convergence is the integrands’ L*-integrability with
respect to mean n,. We proceed as follows.

Let A, =RxRx(27" 27" 1, n=1,2,..., and Ay = RxRx(l, o), be a parti-
tion of the address space A. Note that xg;I[4,]€ L"(n,) if > 1 (this condition is
required for i = 2 to ensure the finiteness of the integral over A,) and, moreover,

J exgi(t, T, w)e 2w 2 1 F(dx)dtdw =0, n=0,1,2,...,
An

Hence, random variables _[Aﬂgng(t, T, w)N,(dx,dr,dw), n=0,1, ..., for i = 1,2, are
well-defined and they have zero expectations. Their characteristic functions at £ € R
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equal’

Eexp (ié J exg;(t, 7, w)N¢(dx, dr, dw}).
An

= exp (J (elé==oltnw) — 1)p (dx, dz, dw))
An

= exp (J (ele ) 1 — i&exg;(t, T, w))n,(dx, dr,dw)). (2.5)
An
We claim that the series
) J exgq(t, T, w)N,(dx, dt,dw) (2.6)
n=0 n

converges a.s. Since the Poisson measure N, is independently scattered the terms are
independent random variables and it is enough to show convergence in distribution.
Note that the logarithm of the characteristic function in (2.5) is bounded by

1
Ej E2x2gE(t, T, w)w 4T LF(dx) dr dw.

Summing over n we get

Y

ézEXz‘[ gZ(t, T, wyw " T drdw. (2.7)
RxR,

The above integrals are finite if 2 <d <3 fori=1and if 1 < <3 for i = 2. Thus,
under the same conditions the series (2.6) converges in distribution and a.s.

We have proven the conditional a.s. convergence of integrals in (2.1) and (2.2). As
the Poisson integrals are, in fact, infinite sums, their conditional convergence may be
understood in this context as an order imposed on summing heights of the triangular
pulses. To ensure convergence, we first look at the pulses with the largest width w and
sum the differences of their heights between points ¢ and 0. Then we proceed to the
shorter pulses in descending order.

We summarize our findings in the following theorem.

Theorem 2.1. The processes {X,(t), t =0} and {X,.(t), t = 0} are well-defined for
2<d6<3 and 1 < <3, respectively, with the a.s. convergence of integrals being
unconditional for 1 < & < 2 and conditional for 2 < & < 3.

To prove the convergence in the sense of finite-dimensional distributions of { X ;,(t),
t 20}, i=1,2, to the appropriate FBM, consider the characteristic function of

! As noted by our referee, these integrals can also be interpreted as integrals with respect to “centered” (or
compensated) Poisson measure N, = N, — EN, = N, — n,.
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Sro EXilty), =0, & eR k=1,2,...,n, ne N, and notice that it equals

exp {J [e‘zlliﬂﬂ"-‘ﬂ“*”*“’ —1—i) &exgilt T, w):| ng(dx, dz, dw)}.
A k=1

The arguments showing the convergence in distribution of the series (2.6) (in particu-
lar, a bound analogous to (2.7)) can easily be changed to prove that the above
characteristic function approaches that of 3 _, X (ti), where (X (t,), X(t2), ... , X (tx))
is a Gaussian vector with the covariance matrix

Cov(X (t), X (1)) = EXZL ) gilti, T W)gi(tj, Tw)w ™" 1 drdw

1

=§EX2{j g2 (ty,,w)w ™" Ldrdw
RxR,

+J g2t T, wyw o 1drdw
R xR,

_f (g: (tx, T, W) — gi(t;, T, W)W == ld'rdw}

The change of variables t/t — 7, w/t — w, shows directly that the first two integrals are
proportional (up to the same constant) to ¢; ~° and ¢; ~°, respectively. Similarly, using
a simple translation in 7, followed by the scalings /|ty — t;] = v and w/|t, — ;] = w,
we can show that the third integral is proportional to |t, — ¢;|* ~°. More precisely, if
one puts

Cp= J gi(l, T, wyw™ " 1drdw,
RxR.

then

2
Cov(X (6 X (1)) = G- (@™ + 870 =1t = 1,°72)

which is the covariance of FBM with the self-affinity exponent H = (3 — 4)/2. We
have proven

Theorem 2.2. As ¢ — 0, the finite-dimensional distributions of {X (1), t = 0}, i = 1.2,
converge to those of FBM with exponent H = (3 — 8)/2 and variance EBf(1) = C;EX?
Jfor i =1,2, respectively.

Remark 2.1. The main difference between {X,(t), t =0} and {X,,(t), t =0} is as
follows. The process {X,.(t), t = 0} always approaches negatively correlated FBM
with 0 < H < 4. In contrast, {X,,(t), t =0} may also converge to the positively
correlated FBM with 3 < H < 1 as well as to the ordinary Brownian motion with
H=4
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3. Extensions to more general micropulse templates

Note that functions g;, i = 1,2, given by (2.3) and (2.4) can be written in the
following form:

gilt, 7 w) = w[ﬁ (t - T) ~f ( fﬂ \

where

i) =A=-pI0<y<1]

and

L) =072—y—12DI[0<y < 1].

Hence, f;’s are the “generic” triangles, or “templates”, used to determine the pulse
shapes. This representation suggests a generalization by replacing f;, i = 1,2, by any
function f'supported in the interval [0, 1]. The amplitude of an f~shaped pulse, starting
at r and ending at v + w, depends also on the angle ex and equals

I~
exwf ( ) :
w

at time t. As before, we define

X, ()= J EXW |:f([ — T) —f(:)} N.(dx.dt,dw), t=0.
A w w

If 6 > 1 and

J |:f(1 _T) —f( _T):|2w1_’5d'cdw < o, (3.1)
_ w w

X.(t) is well-defined in the sense of conditional a.s. convergence described in Section 2.
Indeed, under condition (3.1) integrals

= (5)-15)

are also finite forn = 1,2, ..., and for n = 0if 6 > 1, since in this case L>-integrability
implies L'-integrability. Moreover, condition (3.1) (analogously to (2.7)) implies that
the series of respective independent zero mean random variables converges a.s. to
X, (o)

The proof of Theorem 2.2 extends to the present case and yields

w2 F(dx)dtdw

Theorem 3.1. As ¢— 0, the finite-dimensional distributions of {X,(t), t = 0}, with f
having support in [0,1] and satisfving (3.1) for some 1 < < 3, converge to those of
FBM {By(t), t = 0} with variance

Var By(t) = EXZJv [f(t — T) f(_t>]2w1 “ddrdw.
Een w w
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Clearly, the above integral is proportional to £* ~? and the self-affinity exponent equals
H=(3-9d)/2

It remains to investigate what type of functions fsatisfy condition (3.1). Micropulses
(1995) considered functions which are Holder continuous in [0, 1] with an exponent
o (cf. condition (5.4) with 0 = § — 2). It turns out that if & > (3 — §)/2 then (3.1) holds
(cf. Proposition 5.2. of Micropulses (1995)). This assertion, however, required that
2<d<3 (0<0<1), hence, does not allow to obtain positively correlated
(I <0 < 2) FBM via templates which are Holder continuous. Now we are ready to
make a stronger statement which improves the results (Proposition 5.2) of Micro-
pulses (1995).

Proposition 3.1. Let a function f, with the support in [0,1], be Holder continuous in
[0,1] with an exponent o > 0, i.e.,

|fG) =f() | < M|x — yI*

Jor some M > 0 and any x, y € [0,1]. Then (3.1) holds for max(2,3 — 22) < < 3. Ifin
addition f(0) = f(1) = 0, then (3.1) holds for 3 — 20 < d < 3.

Proof. Both parts of the theorem easily follow from Holder continuity and bounded-
ness of f. In particular, in the proof of the first part use the boundedness of f to
evaluate the integral in (3.1) over the regions {(t,w): 0 < (1 — 7)/w <1, —1/w < 0}
and {(t,w): 1 <(1 —1)/w, 0 < — 7/w < 1}. In the proof of the second part, first note
that /(1 — ©)/w) =f((1 —7)/w) —f(0) and — f( — t/w) =f(1) — f( — 7/w) in the re-

spective regions and then use Hoélder continuity. [

Remark 3.1. The two triangular shapes in Section 2 are both Holder continuous with
« = 1, therefore, they clearly pinpoint the difference indicated in Proposition 3.1. To
obtain positively correlated FBM (H > 3) or even ordinary Brownian motion (H = %
we must add micropulses which do not have jumps at their starting or ending points,
i.e., which are continuous on the whole line. In addition, to obtain an FBM with
a given H (which determines the smoothness of the sample paths of this FBM) we
require the pulse to be smooth enough, namely we require o > H. It is the exponent
d in the intensity of w, however, which ultimately determines the value H = (3 — 9)/2.

Remark 3.2. Although Proposition 3.1 can be used in place of Proposition 5.2 (i) of
Micropulses (1995), we must underline that the two papers take entirely different paths
towards FBM. Indeed, the process {X,(t), t = 0} of this paper and the process {X,(t),
t = 0} of Micropulses (1995) have different finite-dimensional distributions (compare
e.g. their characteristic functions). Their existence, however, is guaranteed by the same
condition (3.1), both have zero means and the second moments are off by a factor of
one-half (again, a consequence of (3.1)). The process {X,(t), t =0} was a natural
generalization of a process obtained as a sum of simple “up-and-down” micropulses
which can never lead to positively correlated FBM (cf. discussion in Section 2 of
Micropulses (1995)).
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Remark 3.3. It is also possible to generalize part (i) of Proposition 5.2 in Micropulses
(1995) by allowing the template f to possess first-order discontinuities. More precisely,
suppose that f has a finite number of jumps in [0, 1] and otherwise (i.e. in the open
intervals between jumps) is Holder continuous with an exponent o; then (3.1) holds if
max(3 — 22, 2) < § < 3.

Examples illustrating the above extension and remarks. The simplest templates are, of
course, Lipschitz functions, i.e., having Holder exponent o = 1. Hence, for instance, all
differentiable functions with bounded derivative can be used to construct FBM with
any 0 < H < 1. The self-affinity exponent H is then determined solely by the power .
There is, however, a large collection of other, more irregular shapes which satisfy
Proposition 3.1.

1. A rescaled part of the graph of the typical FBM sample path with the self-affinity
exponent n > (3 — 8)/2. This template was already used in Micropulses (1995). It this
part of the graph starts and ends at 0 (as in Fig. 1, adapted from Voss 1988), we can
allow for 1 <6 < 3,1e 0 < H = (3 — 8)/2 < 1; otherwise we have only0 < H < 4.

Fig. 1. Sample FBM graph with # = 0.8 and equal initial and final values.

Fig. 2a. Lévy staircase with o = 0.9.
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Fig. 2b. Cantor “pyramid”.

Fig. 3. Trinomial multifractal staircase.

2. Cantor or Lévy staircases, i.e. the singular Cantor distribution function or the
inverse of the sample path graph of the Lévy x-stable motion, 0 < o < 1 (cf. Mandel-
brot, 1982, pp. 286-7, 371, and Fig. 2a). Cantor and Lévy staircases are Holder
continuous with maximum exponent log 2/log 3 ( > %) and «, respectively. Hence, they
yield FBM with H <3 or H < min(3,«), unless we use two “staircases” to make
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a “pyramid” (as in Fig. 2b) in which case H < log2/log3 or H < «, respectively. (Of
course, both functions are constant almost everywhere. Thus, the Holder exponent is
determined by the points of increase.)

3. Multifractal staircases, that is, graphs of cumulative multifractal measures on
[0, 1] (for the theory of multifractals, see, for example, Evertsz and Mandelbrot, 1992).
A simple example of trinomial (multinomial base 3) measure is presented in Fig. 3,
adapted from Mandelbrot (1975). The originality of multifractal theory is that the
Hélder exponent is not defined on an interval (as above) but is a local quantity. Its
variation is described by a function f(x), called multifractal (or Hélder) spectrum; the
usual (interval) Hélder exponent is o,,;, = inf{a: f{a) > 0}. In that case it is enough to
require the exponent H of the constructed FBM to satisfy H < 2,,;,. In addition,
because of the discontinuity at 1, we need H < 3.
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