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We give criteria of pointwise regularity for expansions on Haar or Schauder basis
(or spline-type wavelets) corresponding to large Hélder exponents. As an applica-
tion, we determine the exact Holder regularity of the Polya function at every point
and show that it is multifractal.  © 1996 Academic Press. Inc.

Suppose that a function F: R — R is known by the explicit knowledge
of its coefficients in a given basis. Can one deduce the local or global
regularity of F from simple criteria on these coefficients?

Stated as it is, this problem is far too general to have a nontautological
answer; however, a natural and common expectation is that a positive
answer can hold only if the elements of the basis have at least the corre-
sponding regularity and the regularity is given by a decay condition on the
coeflicients. Three well-known examples are

e If Fx)=Yc,e™ and ¥ |c,| |n|*< C, then Fis C*

o Let ¢, , =2"2Y(2/x —k) (j,keZ) be a wavelet orthonormal basis
of L(R). If

F:Z Crxltyx (1)

and y is C7 for a y>«, then Fis C*(R) if and only if |C, | £ C2-12%n,
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« Under the same asumptions on the wavelet basis, if
|Gl EE P U] 20—k ) fora f<a, (2)

then Fis C¥{(xp)-

However, the general expectation suggested by those examples has
puzzling exceptions. At the beginning of the study of Fourier series, in
1873, Dubois-Reymond discovered that if F 1s continuous its Fourier series
need not converge uniformly; but in 1909, Haar showed that its Haar series
(which is of the form (1), where ¥ =1 27— 1{12,17) does converge
uniformly. Paradoxically a basis composed of discontinuous functions
seems more adapted to the representation of continuous functions than the
trigonometric basis, which 1s composed of C* functions.

One side of this paradox was fully investigated later, namely, the
pathological regularity properties of Fourier series (see [4 or 10], for
instance); but the very puzzling discovery of Haar seems to have had no
following. One of our purposes is to understand how regularity criteria can
be derived on expansions in the Haar basis. For instance, we will see that
for almost every x,. condition (2} for Haar coefficients implies that £ is
(?(x,) for any J <z, no matter how large « is.

Our simple necessary conditions and sufficient conditions of regularity
for coefficients in the Haar basis are close to be sharp. They do not depend
very much on the particular choice of the Haar basis. The key property is
that it i1s a wavelet-type basis composed of piecewise smooth functions.
Thus our criteria will immediately extend to decompositions on the
Schauder basis, or “spline” wavelet bases, such as Stromberg or Battle—
Lemarié wavelet; see [6 or 9] (the typical case where they cannot be
applied is Daubechies compactly supported wavelets). We will actually
state most of our results in the case of the Schauder basis because of the
following motivation.

In a famous paper [ 8] published in 1913, Polya defined a “Peano type”
function which is a continuous mapping from [0, 1] onto a rectangle tri-
angle (not isoceles). We will compute the coefficients of the Polya function
on the Schauder basis. A space-filling function must clearly be very
unsmooth. Nonetheless, Lax proved that, if the triangle is flat enough, the
Polya function is differentiable on a large set of points (see [5]). In order
to recover and improve Lax’s result one has to obtain differentiability and
higher regularity criteria that bear on the coefficients on the Schauder
basis, whose elements are not differentiable; we are thus back to our initial
problem. Using the regularity criteria that we will establish in Section 2, we
will obtain the Holder regularity of the Polya function at every point (and the
Holder exponent can be very large at some points if the triangle is flat
enough). As a consequence, we will see that the Polya function is multifractal.
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F1G. 1. Points whose binary expansion starts with 0.110110... are mapped into the striped

triangle.

The Polya function F,(f) is defined as follows: Let re[0,1] and let
t=0-1,¢t,--- be its binary expansion. We now show that each ¢ defines a
sequence of embedded triangles (Fig. 1).

The altitude issued from C (where the angle is 7/2) divides the triangle
(A4, B, C) into two partial triangles similar to the initial one. If 1, =0, ¢ is
mapped in the smaller of these two triangles, and if 7, =1, 7 is mapped in
the larger. We then iterate by dividing again these rectangles into two
pieces by the same rule; the choice is now a function of ¢, and so on. One
thus defines step by step the image of any te[0,1]. If ¢ is dyadic, one
checks easily that the two possible expansions of ¢ give the same result (for
instance, 1 is mapped on C) and that the mapping F, is onto and con-
tinuous. We now recall Lax’s remarkable result (see [5]).

THEOREM 1. Let O be the smallest angle in the triangle (A, B, C).

o If30° < 0<45° F, is nowhere differentiable.

o If 15° <8< 30° Fy,is not differentiable almost everywhere, but is dif-
ferentiable on a set which has the power of the continuum.

o If 0 <15° F,is almost everywhere differentiable.

We will sharpen this theorem as follows; we will determine the regularity
of F, everywhere and thus deduce for each Hélder exponent H, the dimen-
sion f(H) of the set where F, has this Hélder regularity. This Holder spec-
trum f(H) will be nonconstant on a whole interval. Thus the Holder
singularities of F, are located on a whole collection of sets of different
dimensions, and F, is truly a “multifractal function.” Let us now give some
precise definitions.

Let x, € B and a > 0; by definition, a function F is C*(x,) if there exists
a polynomial P of order at most « such that

| f(3) = P(x + xo)| < Cl(x — xo)[* (3)
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The Holder exponent of f at x, is

a(x,) =sup{ B: fe Ch(x,)}-

The Holder spectrum of F is the function f(«) which associates to each a
the Hausdorff dimension of the set of points x where a(x)=a (conven-
tionally the dimension of the empty set is — ).

Let us recall the definition of the Schauder basis. Let

A(x)=1inf(x, 1 —x) if xe[0,1]

=0 otherwise.

The Schauder basis is the set of A, ,=A(2/x—k) for j=0 and k=
0,...,2/ — 1. The coefficients of a continuous function F defined on [0, 1]
(and vanishing at 0 and 1) on this basis are given by

k+1/2 k k+1

The first section exhibits the remarkable expansion of the Polya function
on the Schauder basis.

Section 2 gives pointwise regularity criteria bearing on the coefficients of
functions on this basis. Such criteria are well known for Hélder coefficients
smaller than one (for instance the results of [2] that are recalled in
Proposition 1 clearly work for the Schauder basis) but they were not
believed to hold for larger exponents; the heuristic reason is that one
cannot use a basis to determine regularity exponents higher than the
regularity of the basis itself because regularity conditions are usually given
by decay conditions of the coefficients on the basis. Let now F by any ele-
ment of the basis, its coefficients have the best decay condition possible:
they all vanish except for one of them; nonetheless F is not smooth, so that
no such decay criteria can hold. We will show how this argument can be
turned in the case of the Schauder basis, and mcere generally for Haar or
“spline” wavelets.

Section 3 will apply theses criteria in order to compute the regularity of
the Polya function everywhere, and derive its Holder spectrum.

The results given in Section 2 are due to Stéphane Jaffard. Applications
to the Polya function are a joint work between Stéphane Jaffard and
Benoit Mandelbrot. A more geometric approach to the local regularity of
the Polya function was developed by Benoit Mandelbrot. Its starting point
is the remark that we can choose a new time variable t such that equal
areas are covered in equal time. With this intrinsic time, the Polya motion
is everywhere C'? and not smoother. Results concerning the Polya
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function itself are obtained by remarking that the change of variable we
performed is the primitive of a binomial measure; details can be found
in [7].

1. THE SCHAUDER Basis ExpaNsiON oF THE PoLya FuncTion F,

In order to fix ideas, suppose that 4 is the origin (0,0) and B is the
point (1, 0); let S, be the symetry around the bisector of the angle BAC

and let S, be the symetry around the bissector of ABC; let H, be the
homothety centered at 4 of ratio sin & and let H, be the homothety cen-
tered at B of ratio cos §. The recursive definition of F, shows that

¥xe[0, 1], Fo(x)=8SHyFy(2x)
V¥x€[1,1], Fo(x)=8,H,Fy(2x—1)

because S, H, maps the triangle (4BC) on (ACH) and S, H, maps the tri-
angle (ABC) on (CBH). Define now

Gy(x)=Fy(x)—(x,0) if xe[0,1]
=0 otherwise.
Clearly G, is continuous and, except perhaps at 0 and 1, has the same
regularity as F,.
On the interval [0, 1]
Gy(x)+(x,0) =S Ho(Gy(2x) + (2x, 0))
so that

Gy(x) =S80 Hy(Gp(2x)) — (x, 0) + So Hy((2x))

where S, H, is the linear mapping associated with the affine mapping S, H,
(the two mappings coincide because by convention A is the origin, but
S, H, and §,H, do not coincide).

Since S,((2x, 0)) =2x(sin 24, sin ¢ cos 0), we obtain

Gp(x) = sin 05, G4(2x) + x( —cos 286, sin 20). (5)
On the interval [}, 1],

G,(x)+(x,0) =S, H,(Gy(2x — 1) + (2x—1, 0))
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so that
Go(x)=S81Ho(Gp(2x—1))—(x,0)+ S, H,(2x -1, 0).

Since B 1s a fixed point of S, H, and since the distance from (2Zx—1,0) to
(1,0)1s 2(1 — x), we get

SIH(2x—1,0)=(1,0) +2(1 — x)(—cos %6, sin d cos 0),
so that
Gyo(x) =cos 05, G,(2x — 1)+ (1 — x)( —cos 26, sin 26); (6)
(5) and (6) can be rewritten more compactly as
Yxe[0,1] Gy(x)=sin 05,G,(2x) +cos 0S,G,(2x — 1)
+ A(x)( —cos 20, sin 20). (7)

Let us now deduce the Schauder basis expansion of F,,. Plugging the defini-
tion of G, given by (7) in the right-hand side of (7) and iterating, we obtain
the everywhere convergent series

Go(x) =), C iy 1dX)
where C; , are defined as follows:
if k277=0-4,---1,

Cix=[1sin 0" " cos 6" [] S,(—cos 20, sin 26).

2. POoINTWISE REGULARITY CRITERIA ON THE SCHAUDER AND
Haar Basis COEFFICIENTS

Let us first recall the classical pointwise regularity criteria for smooth
orthonormal wavelet bases (see [2]).

ProposiTiION 1. Let N=>0. Suppose that YyeCY(R) and Yn<N
(W) < C(1+ |x]) ™. Let C;  be the coefficients of a function F on this
wavelet basis. For any Holder exponent o <N, we have the following
pointwise regularity criteria:

If Fe C*(x,) then

1G] BB R RE) P % 9
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Conversely, if there exists § <a such that
|Coil £ C270P+2I(1 + [2x — K| )P. (20

then Fe C*(x,).

Condition (10) is the classical two-microlocal condition of J. M. Bony
and is denoted Fe C* ~#(x,). This result immediately extends to the
Schauder basis as long as « < 1. Because of the different normalization we
choose for the Schauder basis, the two-microlocal conditions become in
this case

Gl S C27Y(1 + [2/x —&|)* (11)

and we will denote this condition $* ~#(x,) for any value of « and . We
remark that for « = 1 this condition is not related to the two-microlocal con-
dition C* ~#(x,) (because, for instance, if Fe C* ~#(x,), then Fe C*~#(R),
whereas it is obvious to construct nondifferentiable functions satisfying the
corresponding criterium S* ~#(x,)). However, we will often call such con-
ditions “two-microlocal conditions” for short.

In this part we want to establish regularity criteria for a function whose
expansion on the Schauder (or Haar) basis is known. We consider scalar-
valued functions; the extension to vector-valued functions (which we need
for the Polya function) is straightforward. Let us elaborate on the main
problem that we will meet by using two very simple examples:

o The function A(x) is not differentiable at J, whereas A(x)+
$4(2x) +3A4(2x — 1) is C* at %, nonetheless, these two functions have the
same coefficients on the Schauder basis for j= 2. This example shows that
no simple sufficient condition of regularity can be found for Hélder expo-
nents larger than 1.

+ The function x* has Schauder coefficients C; , =2"* but it is C*;
this decay is rather slow because the biorthogonal system of the Schauder
basis has only its first two moments vanishing. Thus no simple necessary
condition of regularity is available for Holder exponents larger than 2.

We remark that the functions of the first example are C* except at some
dyadic points, so that the usual sufficient wavelet regularity condition
might work at points where all the functions of the Schauder basis are
smooth, i.e., at points which are not dyadic. This is certainly too optimistic,
but it turns out to be true for points which are “far enough from the
dyadics.” Let us first give a precise definition of this notion.
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DerFmiTiON 1. Let xe[0,1]. The rate of approximation of x by
dyadics is by definition

log dist(2'x, 7)

12
log:2=? * ()

r(x) =lim sup

One always has r(x)=1. If r(x)>1+4¢, it means that one can find
arbitrarily large /s such that the binary expansion of x contains only 0’s
or only 1's between ranks J and J + &J.

The results of this part are ordered in roughly increasing difficulty;
Proposition 2 is best possible if we disregard the exact values of the coet-
ficients corresponding to Schauder functions having singularities “very
close” to x,; whereas Proposition 4 takes that behavior into account at the
“worst point” x,=3. Theorem 2 addresses the general case without any
restriction on x,. Once and for all, we will state and prove our results in
the case of the Schauder basis. Proposition 3 shows how they adapt to
spline wavelets.

PROPOSITION 2. Let F(x)=3 C,  A(2/x—k). If F is C%x,) for a <3,
there exists a constant A € R such that

|C 2 —A27 % < C27¥(1 + |2/x— k|)~, (13)
Conversely, if there exists a constant A € R such that

|C; e — A27H| < C279(1 + |2/x4— k|)# (14)
for =1 and f <a, then

a—1

r(x)

alxg) =1+

For almost all x, we have r(x)=1, so that for almost all x there is no
loss between this criterium and the one given in Proposition 1. For the
sake of simplicity, we suppose that o < 3; the reader will easily check that
criterion (13) can be easily extended to larger Holder exponents by sub-
stracting the Schauder coefficients of (x —ky,27/)7, ...

The first criterion is not very convenient to use, but (13) implies that

1Cjoke = Chraean | SC27¥(1 + 2750 — k)7, (15)

and we will rather use (15), or higher order differences, in Part 3 as a (non-
optimal) necessary criterion of regularity.
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Proof of Proposition 2. Let ky=[2'x,]; if Fis C*(x,),
k+1/2 k k+1 ko+1/2
G-t ((rr(iy) (5
ko ko+1
@+ (57)

which is bounded in modulus by C(]k —k,|/2/)* because it is an order 3
difference and a < 3. Thus

Ci1=Cj 1yt O279(1 + |2/x0 — K| )*). (16)

Let now kg =[2/"'x,1; C; 4 — 4C;-1. k, s an order 3 difference of values
of F near x,, so that

Chin=1C_1.65=0(27%). (17)

But (17) implies that there exists a constant A such that
Ciry=A2"740(27%)

(consider the sequence d,=2%C, ), which together with (16) implies (13).

In the converse result, we can suppose that 4 =0 because 2% are the
Schauder coefficients of the function x? which is C*. Actually, by sub-
stracting the Schauder basis coefficients of B(x —ky2 /)%, C(x —ky2 7)%,...
where k,=[2/x,]) the reader will immediately obtain general criteria
similar to (14) for a arbitrarily large, which will be optimal not only when
o< 3, as Proposition 2, but for larger values of «.

We thus suppose A4 = 0. consider the quantity

F(x)— F(xg) — (x —x¢) Y. C; 22/A4'(2/x4 — k). (18)

The series at the right-hand side is convergent because A'(2/x,—k)=0 if
|27x,—k| = 1, so that (14), implies that the general term of this series is
bounded by 2/2 %; (18) can be written

Y C, o A(2/x —k) — A(2xg—k) — (x — X,) 2/4'(2/xo —K)).  (19)

We define J by

=l s =
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we define J' as the first integer such that x and x; are not in the same
dyadic interval of size 277", We consider three cases:

o If j<J', then A(2/y—k) is an affine function on the interval
bounded by x and x, so that

A2x — k) — A(2xy — k) — (x — xo) 2/4'(27x, — k) = 0.
o If j=J, bounding each term independently, we bound (19) by

CY 2792 W) +C Y. 279+ C ¥ 279(2/ |h|) < C2-Y < C |h|*

JzT izJ j=J

o If J'<j<J, we can only bound |A(2/x—k)—A(2/xy—k)—
(x —xp) 274" (2/xy— k)| by C2/|x,| and the corresponding terms in (19)
are bounded by C2* " |x —x,|. This is the worst estimate, which can-
not be improved, because of the irregularity of the Schauder basis.
However, it is bad only if J— J' is large. By definition of r(x), for any £ > 0,
if J is large enough, J' = (J/r(x)) —&; hence we have Proposition 2.

Only one feature of the Schauder basis plays a particular role in this
proof: the locations of its singularities. The same result holds for expan-
sions on the Haar basis or piecewise linear wavelets of Stromberg and
Lemarié and it adapts (with obvious modifications) to higher order spline
wavelets Let us just make this translation once and state a regularity
criterium for spline wavelet bases expansions; the proof exactly follows the
previous one and we leave it as an exercise.

We call spline wavelet basis of order N an orthonormal wavelet basis (or
a set of two biorthogonal bases) such that 1 is Lipschitz of order N (the
derivatives of order N are in L*) and is piecewise polynomial of degree N
between the half integers (see [6 or 9] for such examples). The Haar basis
is a spline wavelet basis of order 0.

PROPOSITION 3. Ler C, , be the coefficients of a function F on a spline
wavelet basis of order N and suppose that we are in the “nontrivial” case,
where a2 N, so that Proposition 1 does not apply. Let K=[a] and let

M= | Y (x)(x = xo)" dix.
If there exist constants A,, ..., A 5 such that

:
Cox— Y, AM2,

n=N

L C2-O2 0] ¢ |2x—k|)?
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for a f<auo, then

a—N

f'(xo).

a(xy) =2 N+

We thus have necessary criteria of regularity and sufficient criteria of
regularity which are quite sharp except when r(x) is large; this was to be
expected since such a point x is close to the singularities of the functions
in the Schauder basis. We now focus our analysis at such points. In order
to understand what sharp regularity conditions can be, consider the “worse
points,” ie., the dyadics themselves. Since the analysis at all dyadics is the
same, we only consider the point . Regularity will be obtained under two
conditions of different nature: a natural “two microlocal” condition and an
“algebraic” condition which expresses the fact that the graph of F at 3
should not have an angle. The necessity of such a condition is clear if one
considers again the first counterexample mentioned at the beginning of this

part.

PROPOSITION 4. Suppose that the coefficients C, , satisfy the following
condition: there exists A€ R such that

|C; e —A27Y < C27Y(1 + |27 1/2—k|)# (20)
Jor <o and a>1.If
Coo=(Cio+Ci1) - +277HChar_+Cpa-1)+ -1, (21)

F is C*(1) but if (21) does not hold, F is not differentiable at 3.

Proof. The term 42~ % in (20) can be dismissed in the proof because it
amounts to adding a C* function and because (21) remains invariant
under this change. Because of (20) the series at the right-hand side of (21)
1s convergent.

We separate the sum 3 C; ., , into two parts. The first one contains
the indexes that do not appear in (21); the proof of Proposition 2 takes
care of this sum because 1 is “badly approximated™ by dyadics different
from itself.

As regards the indexes that appear in (21), we rewrite the corresponding
sum,

Y HChzimioa+ Crai- WAy i1 o+ Ay -1 +277 g o)

izl

(C_z,l—l T Cj‘Z-j_l)(Aj42f"—] —Aj_szl];

J

=

+
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the functions A, ,j-1_;—A; »-1 have a wavelet type localization and are
linear between 1—2"/"' and +2 /!, thus the proof of Proposition 2
adapts immediately to the term

Z %(Cj\ i CJ: 2.%')(/1;,2-’-'71*/11'.21' L)

which is thus C* at 3.
As regards the first term,

gx)= 3 3(Craro1+ Croi WAoo+ A i1 42771 g ),

Jj=1

the functions w;=A; 5j-1 _ + 4, -1 +2/7'4, , are constant in the interval
12777114 27/=1] Let h>0 and let J be the integer defined by

15Tz Pz,

We have

J
G+ —gG) =% 3Cyom1 1+ Cram)@,(5+h) —,(3).

j=1

Using the mean value theorem and (20), we obtain

J
g3+ —gHI<C Y C279(2/h) < C27+ < Ch

i=1

hence we have the first part of the proposition. The converse part is
straightforward; if (21) does not hold, there exists a0 such that
F(x)+ad(x) satisfies (21); thus F(x)+aA(x) is differentiable at i; since
aA(x) is not differentiable at i, neither is F(x).

Let now x be not dyadic, but such that r(x) may be larger than 1. For
each j we define &, by

4 _x|=inf |——
2 B I}lell .
and SN by
jes il b b

TSY gy

The sparcity of § is clearly related to #(x); for instance, if r(x)>1+4¢, we
can find arbitrarily large J’s such that § does not contain J,J+1, .,
J+[e]].
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Suppose that J belongs to S and let J' be the first index such that
|k ;27 — x| =277/4. Let

2
E;=Cyy gyeryp— 2. ZJ_J{CJ: 22-9—1+ Cj 24k (22)
J=J

(if x =1, the only element of S is 1 and E, is exactly the difference between
the left and the right-hand side of (21)).

THEOREM 2. Suppose that the Schauder coefficients of F satisfy
|Gk —A27¥| < C279(1 + |2/x —kl)*
for f<o. Let

55 log |k; /2 — x| log E;
F; e S
Py log2~ ~ < log2—7/

If ao>Timinf(1 + (o, — 1)/r,(x)), the Hélder exponent of F at x is

a(x)—liminf@ﬁ"”i); (23)
r(x)

else
o(x) = o (24)

This theorem improves Proposition 2, especially when r(x) is large, and
it 1s actually close to a necessary and sufficient condition of regularity for
a <3 (if « =3, we have to make the modifications mentioned above).

Proof.  We split the sum } C; , 4, ; into three pieces:

The first one corresponds to indexes that do not appear in the sum at
the right hand side of equality (22). In this case, the singularities of the
corresponding 4, , are always at a distance at least 27//2 of x, and the
situation is the same as in Propositien 2 for a point such that r(x)=1; the
same proof shows that this sum 1s C*(x).

The second sum corresponds to the sum on the remaining indexes
except for C;_ (4, 1) that we replace by C,_, ,,_,» — E,. The purpose
of this substitution is to have no singularity at k,2~7": for a given J, the
corresponding sum

7
(CJ—I,(kJ—l)/Q_—EJ) AJ—I.(k}—lh‘2+Zz Cj.kAj‘k
J ok
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(where k takes the tworvalues 2/~'k;—1,2/77k) is C* at k,277 and the
same argument as in Proposition 4 shows that the sum (over all values of
J} of these blocks is C*(x) (because the two-microlocal estimate implies
that |E,| < C2~%).

The remaining term is g(x)=3 E,A(2' 'x—(k,—1)/2). Here the
proof of Proposition 2 immediately adapts and shows that the Holder
exponent of this term satisfies

—1
(x) = lim inf(l i );
Jes r(x)

hence (24) and the proposition will be proved if we get the converse
inequality in the case where a <lim inf(1 + (x;— 1)/r,(x)) (since in that
case the two previous terms bring a contribution which is smoother than
a(x)). For that we construct, when Je S, a finite difference of sufficiently
large order, centered near k,, which vanishes for all functions A(2'x —k,),
when [e S, except for A(27 " 'x— (k,—1)/2).

Let j=J' —1 (recall that J' is the first index such that |k,/27 — x| >
277/4). We split the interval [k,27/, (k;+ 1) 27/] into four subintervals of
equal length A=[k27/, (k;+1/4)27/],.., D=[(k;+ 327, (k;+1)277].
The finite difference 4, we construct is the sum of three finite differences:

Ay f=2f{k;+1/2) 27) = flk;27}— fl{k; + 1) 27).

A, 18 a finite difference of order 2 centered on A and A, is a finite difference
of order 2 centered on D. One can clearly choose 4, and 4, such that
A,=4,+ 45+ 45 has an arbitrarily large order.

If I<J—1, A(2'x—k,) is linear on [k;27/,(k,+1)27/] so that
A_,{Z’x—k;]):{).

IE b e, A AT sl = DY) e ACAL 2T Dol = 20
so that

A/A(2J.\'—kj})=A1/1(2"x—kf)) =2.2 4+
If [z J, the support of A(2'x —k,) is included in B or D so that

A(A(2"% — k)= A A% ~ k) = A(A(2x = k) = 0.

We remark that j=Jr,(x) so that

A’(g)zEJz j+J=2 —ayd - II'J(‘\')‘FJ:
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but, if a function F is C*(x), |4,(f)| < C277", thus

—oyJ—Jr,(x)+J
Jr;

ax) < lim inf

which ends the proof of Theorem 2.

3. POINTWISE REGULARITY OF THE PoLyA FUNCTION F),

We will now use the criteria of regularity given in the previous section
in order to determine the pointwise Holder regularity of the Polya function
F,. We first remark that (8) implies that the order of magnitude of C, , is,
ifk27/=0-4,---1,

il
[C il ~ T (sin @) ~"(cos 0)". (25)
fl
THEOREM 3. Let

B = sup |C el

lk2=/—xol <227/ :
and
. . .logD,
f(xo) =lim mf10g 2_"’}.;

Jor any x,€ [0, 1], the Holder exponent of Fy at x, is f(xy).
Proof. 1f f(x,) <2, Proposition 2 implies that

x(xo) < B(xq). (26)
If 2< B(x,) <3, the difference of two consecutive values of C; ; is
C)_ 1. (k2y(sin 08, —cos 26, sin 26) + cos O, ( —cos 26, sin 26))

which is of the order of magnitude of C, ,, hence (26) in that case. Taking
differences of higher order does not make the order of magnitude of the
coefficients smaller, hence (26) even when f(x,) is arbitrarily large. We
now prove the converse inequality, which will be a consequence of
Theorem 2.

Let us first prove a “two-microlocal” estimate. Consider now a given
coefficient C; ,. Let J be defined by

I k2= <2277, (27)



280 JAFFARD AND MANDELBROT

In the product (25), the first J terms are the same as for one of the C,,
which appear in the supremum defining D,; thus |C; ,|<D,cos6/~’
(because cos 0 = sin &), which can be written

1G] < D20l =) o8
where a,,;, =log cos 0/log (3). But (27) and (28) imply that
} C:; k ‘ é C2 —(Blxo)—2) J |2jX0 — kv"‘f-\'u) e imin' (29)

This implies Theorem 3 when f(x,)<1. Suppose f(x,)=1; we write
Xo=0-t,---1t,. Then JeSift,, ,=¢t;and ¢, | #¢, LetJ asin(22). Then

J

~ [T (sin @) ~“(cos )" (cos 6)" ~7

and

7
|E,| < H (sin &) ‘*"(cos())”<1+ Z 27=Y((sin )/ =7 4+ cos 0)/~ "'))

=1 j=J

J

]_[ sin )' ~% (cos 8) 27 ~(cos )~

(because cos 8 > \/5/'2). Thus,
EntiC2 Y P
but r,(x)=J'/J, so that

o;— 1 - log D,
ry(x) " log2~"

and thus (24) implies that a(x) = lim inf{log D, /log 2 ~""); hence we have
Theorem 3.

If x is normal in base 2, ie., if it satisfies N(j)/j— 1, the existence
of this limit implies r(x)=1, and the Holder exponent at x is
{log cos  —log sin #);2 log 2. Since almost every point is normal in base 2,
we have proved the following proposition which improves Lax’s result.

PROPOSITION 5.  For almost every x, the pointwise Holder regularity of
the Polya function at x satisfies

—log (cos @ sin 0)

= 2log?2
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If x satisfies N(j)/j—p 0<p<1, again r(x)=1 and Theorem 3 implies
that

_plogcos &+ (1+p)logsin @
h log (1/2)

a(x) (30)

We will note the function of p at the right-hand side e( p). Points for which
N(j)/j— p have Hausdorff dimension

plogp+(1—p)log(l—p)
log (1/2)

dy(p)=

(see [1]); hence, if we define f(«) between a,,;, and «,,., by
fa)=dyle () (31)

the Holder spectrum of the Polya function is larger than f{«). Actually it
is easy to check (cf. [3]) that the dimension of the points such that
p=limsup N(j)/j is exactly d(p). Since these points have Hdolder expo-
nent a(x) given by (30), the following result holds.

CoroLLARY 1. Let o, = log cos G/log(1/2) and a,,,, = log sin O/log(1/2).
All points have Hélder exponents between these two values, and in the inter-
val [ @mins Amax | the Holder spectrum of F,, is equal to the function f(a)
defined by (31).

Remark. A straightforward computation shows that

{ [log (2% sin O)log (log (2% sin &) i
—log (2% cos #) log (log (2%cos 6)) —log (log (sin 0 cos £))]

log (,/sin 0 cos 8)

da) =

1

A D AT

1 1 1
30° < 8 < 45° 15° < 8 < 30° 0° < f < 15°

d{w) {(cr) I(ex)
‘ 1 T‘c ) e

Fi1G. 2. Holder spectrum of the Polya function: In order to compare easily with
Theorem 1, the possibilities distinguished by Lax are plotted separately.
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