stochastic
processes
and their
applications

i
IER Stochastic Processes and their Applications 60 (1995) 1-18

A class of micropulses and antipersistent fractional
Brownian motion

R. Cioczek-Georges, B.B. Mandelbrot *
Department of Mathematics, Yale University, New Haven, CT 06520-8283, USA

Received August 1994; revised May 1995

Abstract

We begin with stochastic processes obtained as sums of “up-and-down™ pulses with random
moments of birth T and random lifetime w determined by a Poisson random measure. When the
pulse amplitude ¢ — 0, while the pulse density ¢ increases to infinity, one obtains a process of
“fractal sum of micropulses.” A CLT style argument shows convergence in the sense of finite
dimensional distributions to a Gaussian process with negatively correlated increments. In the
most interesting case the limit is fractional Brownian motion (FBM), a self-affine process with
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the scaling constant 0 < H < 3. The construction is extended to the multidimensional FBM

field as well as to micropulses of more complicated shape.

Keywords: Fractal sums of pulses; Fractal sums of micropulses; Fractional Brownian motion;
Poisson random measure; Self-similarity; Self-affinity; Stationarity of increments

1. Introduction

The paper establishes two facts:

A. Fractional Brownian Motion (FBM) with scaling parameter 0 < H < % can be
obtained as a sum of infinitesimal contributions, called “micropulses,” generated by a
Poisson random measure.

B. A micropulse representation is also possible for a wider class of random functions.

The micropulses construction was first mentioned, without detail, in Mandelbrot
(1984). Processes obtained as sum of noninfinitesimal pulses are investigated in Man-
delbrot (1995a,b) Cioczek-Georges et al. (1995), and Cioczek-Georges and Mandel-
brot (1995b). In this paper, a general discussion concerning fact B is presented in
Section 2, while the remaining sections are devoted to FBM. Other ways of imple-
menting the idea of micropulses are discussed in Cioczek-Georges and Mandelbrot
(1995a).
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In Mandelbrot and VanNess (1968), a process {By(¢),t =0} is called FBM with the
scaling parameter 0 < A < 1 if its multidimensional distributions are Gaussian with
zero mean, By (0) = 0 a.s. and the covariance function is

r(s,1):= EBy(s)Bu(t) = 3 {Is|" + (" — |s — ¢ }EB (1), (1.1)

The process is called standard FBM if EB%(1) = 1. As with Brownian motion, there
exists a version of FBM with a.s. continuous sample paths.

We begin in Section 3 by obtaining FBM as a sum of infinitesimal simple “up-and-
down” pulses determined by a Poisson measure as follows. Jumps of size ¢ appear at
uniformly distributed random instants 7, 7 € R, of density § = ¢72/2, and each is fol-
lowed by a “canceling echo” (—¢) at time 7+ w, where w > 0 is a generalized random
variable with Pr(w > wg) ~ wga, 0 < 0 < 1. We define a process {X,(¢), =0} as
the sum of heights of pulses alive at time ¢ minus the sum of heights of pulses alive at
time 0. Using a CLT-like argument we prove that, when ¢ — 0 the finite dimensional
distributions of {X;(¢), 1=>0} approach that of FBM with 0 < H < 1. We show that
FBM also arises when amplitude of an “up-and-down” micropulse is of the form &4,
where A4 is a random variable with finite second moment (Theorem 3.2).

Section 4 extends this construction to multitemporal isotropic FBM with 0 < H < %
Standard FBM with the parameter 7 € R? is defined in the same way as FBM with one-
dimensional ¢, except that in (1.1) the expressions |s|, ||, |s —¢] must be understood
as Euclidean norms in RY, and By(1) is the value of the process at any point 1 on
the unit sphere S9! of R?.

Finally, in Section 5, we consider two successive formalizations of the notion of
micropulses. First, the amplitude is taken to be of the form &4 f, where the compactly
supported deterministic function f need not be the indicator of an interval. Second,
the amplitude is itself taken to be determined by a random process, which could be
FBM of exponent # > H. This approach to FBM is new, but remains in the spirit of
shot-noise processes.

2. Informal background, study of nonfractal sums of micropulses and heuristics
concerning the representation of FBM

This section touches a variety of topics, and is written to be understood by readers
whose interests do not include the fine mathematical detail.

Pulses and micropulses. In the original context of Mandelbrot (1984), the mi-
cropulses construction was motivated by an effort to reinterpret the notion of moving
average; eventually the motivation broadened. A Gaussian moving average process is
of the form X (¢) = [ dY(7)K(t — 1), where d¥(t) is a Gaussian variable called “inno-
vation at time ,” and the kernel K (¢ — 1) describes the linear decay of the innovation
dY(7) during the increment ¢ — ¢ of continuously varying time. However, when dealing
with atomic (i.e., discrete) phenomena, linear continuous-time decay is a nonphysical
approximation. Thus, radioactive decay is exponential, but individual atoms do NOT
decay. They remain unchanged from birth to death, and their lifetime is exponentially
distributed. But let atoms be very numerous and very small, denote by d¥(t) the
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number of atoms in an “input” added during the time increment dt and follow this
“Input’s” decay in time. This decay will be usefully approximated by an exponential
kernel K(¢# — t). Such is really the reason why moving averages are useful in this type
of physical situation. Building upon this situation, Mandelbrot (1984 ) investigated an
alternative form of innovations: during their lifetime, they remain constant, equal to
one atom, and their lifetime is a random variable # with a given probability distribu-
tion F(w) = Pr(W <w) and the corresponding tail distribution P(w) = Pr(W > w) =
1 — F(w).

The first task, then, is to determine under what conditions on the covariance one
can interpret {X(¢)} as an integral of discrete innovations of this special form, or of
microinnovations that remain equal to an “infinitesimal” ¢ > 0. In the latter case,
each microinnovation would contribute a “self-canceling rectangular micropulse” that
begins at time 7 with a rise of 4+¢ and ends at time v + w with a fall of —¢, a
canceling echo. The motivation for speaking of micropulses is that the results relative
to ¢ > 0 are always meant to be eventually replaced by a limit. In the asymptotic
(“thermodynamical”) limit, ¢ — 0, the number of micropulses per unit time — oo,
the distribution of W may also change, and the sum of the innovations in the time
increment dt becomes an asymptotically Gaussian dY (7). This leads back to the usual
moving average formula X(r) = f dY(t)K(t — 7). We shall momentarily show that, if
X(t) has a micropulse representation, its increments over successive equal time spans
are such that their spectral density at O is itself 0. Therefore, moving averages that
do not satisfy this necessary property cannot be represented as sums of rectangular
micropulses.

A vanishing spectral density is a restrictive property, but is broad enough to be
interesting. In particular, it holds for FBM with H < % However, in order to obtain
FBM, it is necessary to take P(w) =w ", 0 > 0. This expression satisfies P(0) = >
and must be handled with care. As an introduction to its study, we now discuss the
case when P(0) = 1.

Non-fractal sums constructed with rectangular micropulses for which P(0) = 1.
To the positive pulses that have been defined, we could add negative pulses that start
with a fall —¢ and end with the rise +&, but this extension would only change the
scale parameter in the distribution of X (¢); therefore, it can be omitted with no loss
of generality.

To evaluate the variance EX?(¢) if X(0) = 0 and ¢ is fixed, assume that the number
of positive pulses originating in (0,¢] has density ¢ and introduce the function P(¢) :=
f{; P(t)dr; this function P(z) is always cap convex (or “concave”) like /2. The pulses
that make a positive contribution to X(¢) — X(0) are those which rise for T > 0 and
do not cancel out before time ¢. Averaging over 1, we see that their expected number
takes the form

fap(r — 7)dt = 8P(1).
0

The same result holds for the pulses originating before time 0 and canceling out at
7+ w € (0,¢]. Thus, the total X(7) is the sum of 26P(r) jumps of sign +e. As ¢ — 0
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and & — oo, we want this sum to converge. If 26¢> = 1, it converges to a Gaussian
random variable of zero mean and variance

EX?(1) = 266*P(t) = P(1).

By the very nature of the pulses, the increments of {X(r)} are stationary and the
increments over nonoverlapping time spans are negatively correlated.

To investigate {X(¢)} further, consider the increments of {X(¢)} over fixed length
time intervals of equal duration s > 0. Their correlation

C(k) = E{[X(to + (k + 1)s) — X (to + ks)][X (10 + 5) — X (1)1}

is independent from #; because the increments are stationary. For £ = 0, C(0) = P(s).
For k& # 0, we find

C(k) = JIP((|k| + 1)s) — 2P([kls) + P(([k| = 1)s)].

Three properties are worth noting. (A) The cap convexity of P confirms that C(k) < 0
for k # 0, as stated above. (B) As k — oo, C(k) — 0 monotonically. (C) C(k) satisfies
5.7 C(k) =0, hence the spectral density S of {X(¢)} satisfies S(0) = 0.

Heuristic study of fractal sums of rectangular micropulses that yield FBM. The
last-written property, Y. C(k) = 0, is compatible with asymptotic or exact self-
affinity. In the case of greatest interest, we want {X(¢)} to be FBM, which satisfies
EX?*(t) = t*". The fact that {X(7)} must be negatively correlated (antipersistent) will
immediately restrict the discussion to FBM with 0 < H < % (However, the case
% < H < 1 can be handled by generalizing the shape of pulses — cf. Cioczek-Georges
and Mandelbrot (1995a).)

In the present informal argument, let us assume that the relation between EX?() and
P(w) continues to hold even if P(0) # 1. This assumption yields P(w) = 2Hw?~1,
which is indeed a possible asymptotic behavior for the tail probability when 0 <
H < }. The corresponding density is —P'(w) ~ w*~? for 1 < w. Replacing the
jump height ¢ by ¢~/ and keeping 268% = 1, we find that, if a Gaussian limit does
indeed exist, it is independent of ¢. Uniqueness of the self-affine Gaussian process with
stationary increments causes this limit to be FBM. However, this heuristic argument
does not suffice, and the proof advanced in Section 3 will use a slightly different
approach.

An alternative: reinforcing micropulses, in which the final fall is replaced by a
second rise of equal value. To make this generalization possible, it becomes necessary
to allow negative pulses, yielding a symmetric distribution of X (¢). The correlation
for k # 0 continues to take the same expression as for the canceling pulses, except
that now it is positive. It follows that 0 < > _C(k) < oo, which expresses the
fact that dependence is local (short range). Therefore, the reinforcing micropulses are
incompatible with asymptotic or exact self-affinity. In particular, positively correlated
FBM'’s, which correspond to % < H < 1, cannot be obtained as sums of reinforcing
micropulses.

An argument more complicated than for canceling echoes gives the following ex-
pression for the second moment of the limit X(¢) for reinforcing pulses. The three
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terms correspond, respectively, to pulses originating before time 0 with the second
rise in (0,7], pulses originating in (0,f] with the second rise also in (0,7], and pulses
originating in (0, ] with the second rise after 1.

0 t
EXZ(I):/ Prl-t < W < t—r]dr+4[ Pr(W <t —t]dt

e 0

£

+f Pr[W >t —1]dr
0
:f’(t)—i—4f(1 — P(t — 7)) dt + P(t) = 4t — 2P(1).
0

This expression confirms that it is impossible to find a distribution for W such that
EX?(t) ~ *# for H > 1. Moreover, let us take the density of W to be proportional to
w22 more precisely to be —P'(w) = ew? " 2/M*~! for 0 < w < M and P'(w) =0
otherwise. It follows that limy oo P(w) = 1 for w > 0 and limy_.. P(t) = . The
finite dimensional distributions of the process {X(¢#)} depend on M; when M — oo,
they approach those of the Brownian motion; in other words, the original H is replaced
by H = % This defeats, once again, any hope of using discontinuous pulses to obtain
FBM with ] < H < 1.

More general micropulses whose amplitude is no longer constant during their life-
time, but varies according to some, possibly random, function. Some such micropulses
are discussed in Section 5. For example, the pulses can itself follow an FBM, with
time argument restricted to (0, 1), and with parameter #. To obtain FBM with the scale
parameter H via micropulses, we shall find that it suffices that # > H. One obvious
complication comes from the fact that nonzero contributions to X(¢) — X (0) are no
longer solely due to pulses that start before time 0 and end in (0,/] or start in (0,¢]
and end after #. Pulses which cover the interval (0,¢] also contribute. In the limit, each
such micropulse contributes to a Gaussian random variable of variance (#/w)*'. Hence,
their total variance equals

0 T -
f (_) (w — t)const w? =2 dw = const ¢2/ / (w— yw=212H=2 4,
t w i

A necessary condition for this expression to be finite is # > H.

A companion paper, Cioczek-Georges and Mandelbrot (1995a), considers a differ-
ent micropulse construction also leading to FBM. While discontinuous (e.g. right-
triangular) micropulses again can only produce negatively correlated FBM’s, we show
that continuous micropulses allow for positively correlated FBM’s as well. The con-
tinuous pulses investigated in that companion paper are cones (i.e. isosceles triangles)
and their generalizations, and the quantity that is made to decrease to zero in the limit
is the base angle (not the height). The exponent in the density —P’(w) of the pulse
width is related to A by a different formula.
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3. One-dimensional FBM of one-dimensional time

Lévy showed long ago (cf. e.g. 1td (1969)) how to construct stable motions with
independent increments by adding an infinite number of jumps. In this construction,
the number of jumps occurring in an interval of time is governed by a Poisson random
measure with mean (intensity) uniform in time and hyperbolic in jump height. Unfortu-
nately, the number of small jumps increases when the index of stability o approaches 2
(the Gaussian case) and, for o = 2, no compensating constant can ensure convergence
of the series of jump heights. Therefore, one needs a different technique when building
FBM or other Gaussian processes. As in the Central Limit Theorem (CLT), one has to
add many infinitesimally small summands, in this case jumps with heights decreasing
to zero. Using a Poisson random measure, however, to determine the number of jumps
is still very much desired. Its intensity measure need not be finite and can be used
to specify random moments of pulse births (7) and pulse lifetimes, or widths (w), for
simple “up-and-down” pulses of size ¢ described above.

When ¢ > 0 we can introduce the familiar pulse address space £ = R x R,,
where R; = (0,00). Each pulse is represented by a point (r,w) in £, where t and w
correspond to time of birth and width (duration) of a pulse, respectively.

Consider a Poisson random measure N, defined on Borel sets of E, with the intensity
n, = EN; given by

dny(t,w) = Je7 2w drdw, (3.1)

where 0 < 0 < 1 and ¢ > 0 are fixed.

If {(zj,w;), j = 1,2,...} is an enumeration of points of the random measure N;,
then the process {X,(¢), t>0} described in the introduction can be formally defined
as follows:

X:(0) =0,
Xy =3 e0<t <t t—7g<w]l—2ellt; <0 —1; <w; <?t—1)
J j
(3.2)
But ¢ is constant, so we may write
Xi(t) = e[N(Sy ) — Ne(Sp )],
where
Sor={(rw) 0<z<tf t—1<w}
Sor={(zw) —c0o <t <0, —t<w<t—1}
Since
t oC
ny(Sq ;) = ne(Sy,) = / / %s“zw*f}*l drdw = 172071 - =t s
0 Jr—1
(3.3)

both NE(SJ: ;) and N(S; ) are finite a.s. and X,(¢) is well-defined for every 1=0.
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Let us calculate the finite dimensional distributions of {X,(¢), ¢ =0}, or equivalently
find the characteristic function of a linear combination Z:zlkag(Ik), =0, & €
R, £ = 1,2,...,n, n € N. First, however, recall that an integral [, gdN w.r.t.
a Poisson measure N satisfies (cf. e.g. Takacs, 1954; Westcott, 1976; or Resnick,
1987)

E exp (i/ng) —exp{/(e‘g — l)dn} 34
E E

and also notice that
STEN(A) = | D EI[Ak]dN.
x E k&

The last two facts and (3.3) imply

pep (it} =Fewp {i [ oS 601180, 1 - 1155, DN
k=1 E

k=1

— exp { / [exp(ie > & UIS3, 1 — 1Sy, ) — 1dn, (z, w>}
E k=1
— exp { /E [exp(ie ;; S0 Y (Froh )

;. iaiék(l[S{Lk} — I[85, DIse 2w de dw} :
k=1

Using |exp(ix) — 1 — ix|<x?/2 we can show that the above integrand is bounded
by an integrable function uniformly in &. Hence, applying the Lebesgue Dominated
Convergence Theorem we obtain the following limit

n

lim E exp {izékx;(rk)} = exp {; / (2 &IST, ] - 1185, DI2bw™" drdw}
£ E k=1

k=1

=CXp {_%szkéj '/E(I[SS‘_”‘] I[S(Iff]
5]

JrI[SO”[k]][Sojj])%w’g" dt dw}. (3.5)

The last equality is true since S; 5 and Sy , are disjoint for any choice of £ and j.
Now notice that, for # > ¢,

f 18T, WISy, 1+ 1185, U8, Dyw ™~ drdw
E

= %9—1(! - 9)71(41—6) _ (Ik _ tj)(l—(f} 4 tj(-}_g)),
and for t;, =t

js

/(r[s[{,k]l[sg@} + 1185, MSo, Diw™ T drdw =071 = 6) " ~°.
E

it
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The above limit is the characteristic function of a vector from a Gaussian process with
the covariance function as in (1.1). Consequently, we have proved

Theorem 3.1. The finite dimensional distributions of {X.(t), 1=0} converge, as
e — 0, to those of FBM with the scale parameter H = (1 — 0)/2 and variance
EBL(1)=0"'Q1 -0)"L

We can generalize the process given in (3.2) by replacing ¢ with ¢X, where X
is a random variable with finite second moment. More precisely, define X,(0) = 0
and

X)) =2eXI0 <1 <t t—7 <w]—2eXI[t; <0, -1, <w; <t—1]

J J
for t > 0, where {X;, j =1,2,...} is a sequence of independent identically distributed
(i.i.d) random variables, independent from the measure N,, such that EX? < oco. The
process is well defined since both series converge a.s. Now, the process {X/(¢), 1 =0}
is the superposition of pulses of various heights, including negative ones. Moreover,

the heights of different pulses are independent from one another and from the moments
of pulse birth and the pulse widths.

Theorem 3.2. The finite dimensional distributions of {X!(t), t=0} converge, as
¢ — 0, to those of FBM with the scale parameter H = (1 — 0)/2 and variance
EBL(1)=6"'(1 — 8)"1EX2

Proof. We are going to use reasoning similar to that which led to Theorem 3.1. Again,
it is useful to represent X/(¢) as an integral w.r.t. N,, i.e.,

X ()= s/ X(t,w)dN,(t,w) — ¢ X(t,w)dN.(t,w),
S

S
where {X(z,w)} are independent from N, and i.i.d., with the distribution ¥ equal to

that of X. Instead of (3.4) we use the following more general formula allowing for
random integrands

E exp (i[G(S)dN(S)) = exp {f(E exp{iG(s)} — I)dn(s)}. (3.6)
JE E

Note that

Eexp {ikfj] szXE'(tk)}
= Eexp {i iék(l[&fu] —I[S, , DeX (1, w) dN(z, W)}
E k=1

= exp {f(E exp {iic}(][&'&f“] —1[8, , DeX(x, w)} — l)dnu(r,w)}
E k=1 '
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—exp{f /'[exp(iifk(l[Saf“] — 1Sy, Dex) — 1
EJr k=1

—iY &U[Sy,] — I1S;,, DexIF(dx)je 2w~ !dzdw}
k=1

Since EX? < oo, we obtain the limit as in (3.5) with the exponent multiplied by
EX*. O

Remark 1. We could also think about the process {X/(¢), =0} as an integral ¢}, st,
xdN](x,7,w)—¢ [, - xdN/(x,7,w) w.r.t. a Poisson measure N, defined on RxRx Ry
with the intensity ngorlgiven by dnj(x,t,w) = 1e7?w™?"!F(dx)dtrdw. Then the last
equality in the proof above is a consequence of (3.4) rather than (3.6).

Remark 2. Taking ¢ = 1/\/n we get

xX;
lim ZT‘;’I([[O <71 < h, 1 —1 < Wj] —I[Tj < 0, -1 < w; < I—Tj])iBH(f),

n—o0 77
J

where £ denotes equality of finite-dimensional distributions. This is a more CLT-like
statement, analogous to the known result:

EX; NOX, — EXy a
lim II0 < 7; < {]= lim ——— =B (1),
HOZ- v A A
where Ny, 5 is a Poisson measure on R with dEN|, 5 = ndz, or just a Poisson process
{N(t), t=0} with the constant rate n, and {B(¢), =0} is Brownian motion.

2

4, One-dimensional FBM of multidimensional time

The multidimensional FBM defined as a Gaussian vector process with independent
one-dimensional FBM coordinates can be obtained using the results of the previous
Section. Below we give a generalization of the construction presented in Section 3
to a multidimensional fractional Brownian field, i.e. a one-dimensional Gaussian pro-
cess parameterized by multidimensional time. It will be more convenient, however, to
start with a slightly different, but equivalent, pulse address space. Let us consider the
following change of variables ¢:

z=1+w/2, r=w/2.

Then {X/(¢), >0} has the same finite-dimensional distributions as the process {Y;(¢),
t=0} defined by

V(1) = ¢ / D T f X(r)dM(z,r),
S Sy



10 R. Cioczek-Georges et al. | Stochastic Processes and their Applications 60 (1995) 1-18

where M, = N, o ¢! is a Poisson random measure on R x R, with the intensity m
satisfying

dmy(z,r) =272 dr dz,

{X(z,r)} are ii.d. random variables, independent from M,, with the distribution F as
before, and finally,

Sor={r)ir>t-z 0<z—r<t}={@r) 2=t <, |2| >r},

Sé:; ={(z,r): —z<r<t—z,z—r<0}={(zr) lz—t¢ >r |z| <r}.
(To check that this type of change of variables holds, see Proposition 3.7 in Resnick
(1987).) Point (z,r) of the new address space has the obvious interpretation as the
center and the radius of a pulse.

Now it is easy to extend the definition of the process {Y.(¢), t=0} to the mul-

tidimensional parameter case. A pulse is a cylinder in R**! space. It is completely
described by the radius r, the center (z) of its circular base, and its height eX(z,r).

To get Y,(t) one adds the pulses which contain # but not 0 in their base, and subtract
those with 0 but not ¢ in their base. Formally,

Y.ﬂ(o) = 0:

Yn(t):a/ XNz —t| < r|z|| > rldMi(z,r)
JRIXR,

—s/ X(z,HI|lz—t|| = r 2| < r]de(z,r),
RY xR,

where M? is a Poisson measure on RY x R, with intensity
dmf:(z,r) = %aﬁzr*”*d dz dr,
and {X(z,7)} are i.i.d., independent from M¢?, with finite second moment EX?. (We

dropped the constant 277 as this normalization is meaningless in higher dimensions.)
Define the constant C by

€= [ (2= (1.0, O~ = | =3[z = (1,0,.... O] < el

Theorem 4.1. The finite dimensional distributions of {Y,(t), t € R} converge, as
e — 0, to those of multidimensional FBM with the scale parameter H = (1 — 0)/2
and variance EB4(1) = C(d — 1 + 0)"'EX2.
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Proof. Following the proofs of Theorems 3.1 and 3.2 we get that (cf. (3.5))
lim Eexp{i ) G Yalti)}
£ k=1

EX?
= eXP{*T;@cf}' Ulllz=&ll <7 llz=4l| <= [z > 7]
2

R x Ry

Mz =l > 7 lz=4] >r |zl <rDir ¥ dzdr}. (4.1)

Note that the integral in (4.1) can be further written as

[ L (Ullz —all < nllzll > A+ Tz — gl < izl > ]
RY xR,

=I[||lz — %]l
Iz — &l

<r llz=4|| =r |z|| >r]

>
Hlz = tell > rllzll < r1+1lllz =4l > 7 2l < 7]

2

<

rolz =gl <n llzll > 7]

—Illz — &l
—I[l|z — ||

=gl < r, Jlell < 7]

, Nz =]l > 7, |zl < rDir " dzdr
=1 [ dlle-ul <r el > )
Ré xR,
Hillz =&l > 7 ||zl < /DL t?dzdr
+gj" Ullz -4l < 7, 2| > 7]
e xRy
Hllz = 4| > 7, |zl < rDir?dzdr
—%[ Ullz —tll <7, 2=l > 7]
JREXR,
Hillz — &l > 7, |lz— ]| < rDir 9 dzdr.

Appropriate changes of variables (in z) show that each of the three terms above is
equal to an integral

/ Izt <~ lz|| > r]%r’efd dzdr,
R xR,

with t = t;, t; or t; —t;, and this integral, in turn, equals

-0
%;E%IERK gl el gl < e

However, the value of the integral over R? does not depend on ¢ and equals the
constant C defined before the statement of the theorem. Hence, we have shown that
the integral in (4.1) is indeed the covariance function of the asserted multidimensional
FBM. [
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5. FBM of one-dimensional time as a sum of micropulses of a more general shape

Let £ = R x Ry continue to be the pulse address space defined in Section 3 with
(t,w) € E having the same interpretation as moment of pulse birth and pulse width,
respectively. From now on, however, the pulse is no longer a rectangle described by
the indicator of an interval. Instead, the shape is determined by a bounded function f
with the support in [0, 1]. The amplitude at time ¢ of a pulse triggered at time 7 and
with width w equals

(57,

where ¢ > 0 and X is a random variable such that £X? < ooc.

As before, let the occurrence of pulses be determined by a Poisson random measure
N., with the intensity given by (3.1) for ¢ > 0 and 0 < & < 1, and {X(t,w)}
be independent from N, and i.i.d., with the distribution F equal to that of X. Put
X:(0) =0 and, for t > 0,

X = g/ﬁ:X(r,w) {f(t;r) . f(;f)} dN,(z, w). (5.1)

The variable X,(¢), for ¢ > 0, again represents the difference in the sum of pulses
existing at time ¢ and at time 0. The question is when it is well-defined, i.e., when
the integral in (5.1) converges a.s. Note that the region of integration in (5.1) may be
much larger than S({ .U Sy, This is due to the fact that pulses originating at T < 0
and vanishing after ¢ (i.e. 74+ w > {) may have nonzero contributions to X,(¢) in
contrast to simple rectangular pulses for which this contribution was zero. In fact, if
X.(1) exists then it can be written

)?g(z):.aﬁ+ X(r,w)f(t_TT) dN,(z, w)

w

L:fsm X(r,w)_f'( I) AN (7, w)

w5 | K {f(f;f) f(::)] A (5.2)

where
Soc={(t,w): —co<t <0, t—17<w}

One can see that the first two integrals in (5.2) converge a.s. since we assume that f
is bounded and (3.3) holds. It is the integral over Sy, which requires special care. We
need to ensure that this integral is finite a.s. First, however, we give general conditions
for the existence of X,(1).
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Proposition 5.1. (a) If f is a function with the support in [0, 1] satisfying
[T -1
LAS)-1)
E w w

then X,(t) in (5.2) is well-defined.
(b) If [ is a function with the support in [0,1] satisfying

w % ldrdw < oo, (5.3)

_/E [f(th) —f(f)rw_a_l drdw < oo, (5.4)
then the series
:iUE/E"X(T’W) [f(‘v—v‘r)_f(f)] dN,(t,w), (5.3)

where Eg = R x (0,1] and E, = R x (2"~1,2"], n=1,2,..., converges a.s., i.e. X(t)
is defined in the sense of conditional a.s. convergence.

Proof. Part (a) follows from the general theory of Poisson integrals (cf. Resnick, 1987,
p. 127) and the fact that EX < co. To prove (b) first notice that in (5.5) the random
variables

V= s/)& X(1,w) [f(%) - f(f)} dN,(7, w),
n=0,1,... are well-defined since
LI

< ( / I(S, U Sy, USp,ow™ ! drdw
Ey
1

L&D
_f(%t)]z w01 drdw)2 < 00

and 0 < 1. Moreover,

/E,, [f(I_TT) = f(%)] w01 drdw = 0. (5.6)

It is enough to show only convergence in distribution since the terms ¥, in (5.5) are
independent. Using (3.6), the logarithm of the characteristic function of V), at £ € R
equals, by (5.6)

J (oo (5 )]} -

igtx [f(T) - f(—:;)] )F(dx)%ezwﬂl drdw, (5.7)

w1 dr dw
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for each n =0, 1,..., and their sum over n can be bounded by

et [ [1(550) -7 (3] wo-tavan

Hence, indeed, the series in (5.5) converges in distribution (the logarithm of its char-
acteristic function is equal to the expression in (5.7) with E, replaced by E). O

The next Proposition provides examples of functions that fulfill assumptions of
Proposition 5.1, i.e. it specifies some classes of functions for which X,(¢) is well-
defined.

Proposition 5.2. Let [ be a bounded function with the support in [0, 1] and satisfying
either of the two conditions:
(1) f is Holder continuous in [0,1] with an exponent o > 0, ie.

|f) — F(P <M |x — y*

for some positive M and any x,y € [0,1];
(ii) f is a step function, ie. there exist a; € R, i =1,2,...,k € N, such that

Pl = <P
=1

where 0 =) <81 < -+ < s = L.
Then (i) with a > 1—0 or (ii) imply (5.3) and (i) with o > (1—0)/2 implies (5.4).

Proof. The relations (5.3) and (5.4) hold trivially under condition (i) with respective
. To show (5.3) under (ii) let us focus only on the integral over Sp, and integrate
wrt. T (t —w < t < 0) first and then wrt. w (f < w < o0). Notice that the
divergence of the integral may be caused only by high values of w. On the other hand,
when w is large enough, such that ¢ < min;(s; — s;—; )w, the integrand (for fixed w) is
nonzero in at most k intervals of the length ¢. Hence, for 4 = (min;(s; —s;_1))™'t,

[ -(3)

o
< f kt max |a; — a;_y| w9 ldw < oo,
A 3

w1 drdw

which establishes (5.3). O

In the statement of the main result we will need the following constant C(f):

C(f);:/s+ f%%)w*‘?*]drdw

Jr/s_ fz(%r)w_ﬂ"ldrdw

0.1




R. Cioczek-Georges et al. | Stochastic Processes and their Applications 60 (1995) 1-18 15

Clearly, C(f) < oo not only under the assumption of Proposition 5.1(b), but also for
any bounded f satisfying (5.3). In particular, the finiteness of the third integral follows
from the fact that bounded integrable functions are also square-integrable.

Theorem 5.1. The finite dimensional distributions of { X,(t), t=0}, for f bounded
and satisfying (5.3) or f satisfying (5.4), converge, as ¢ — 0, to those of FBM with
the scale parameter H = (1 — 0)/2 and variance EB%(1) = C(f)EX?/2.

Proof. Note that (5.6) holds also with E, replaced by £ in the case when (5.3) is
satisfied. To prove it, use the Fubini Theorem, integrate w.r.t. ¢ first and use a change
of variables. Hence, as in the proof of Theorems 3.1 and 3.2 we can show that when
¢ — 0, the characteristic function of > _ & X.(#;) approaches that of > 1 Er X (2}
where (X (#),X(#2),...,X(#%)) is a Gaussian vector with covariance

Cov(X (4), X (£)) = %EXZfE [f(tk;T) f(:vr)] [f(tj; ) - f(:vt)}

w1 dzdw

=-o0 [ [(457) - H(E5)] e aean
L) )] e

t

/E'[f(.f;f) _f(;)rw‘ﬂ"drdw}.

Translation by ¢; in the first integral and scaling in both 7 and w in all three integrals
show that

Cov(X (1), X (t;)) = —3EX*[|tr — ]'™% = {0 — 1701C( /).

This proves that the limiting process is FBM. [

Example. Consider as a pulse shape f the graph of a typical sample path of FBM
with the scale parameter # > (1 — 0)/2. More precisely, take a rescaled part of the
graph with starting and ending points at 0 (e.g. a part between time 0 and time of a
return to 0). Such a “typical” (in the a.s. sense) graph is Holder continuous with any
o < #, hence, also with some o > (1 — 0)/2. Note, however, that this templet always
produces the final FBM with smaller scale parameter, i.e. with less regular sample
paths. Thus, the scale parameter of the final FBM is affected only by the exponent of
the pulse width, not the smoothness of the pulse shape.

We can continue the example and the above discussion about variously shaped ran-
dom micropulses by considering the pulse shape (not only its height) to be random.
A pulse triggered at a starting point 7 and lasting for time w can itself be a random
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process. In our case, we assume it is a rescaled and shifted FBM with the self-affinity
parameter #, i.e. the pulse amplitude at time ¢, T <t < T+ w, is

t—rt
8,(—).
eBy( —
Then the process { X/(¢), >0} is defined as a superposition of the changes between
times 0 and ¢ of such shifted and rescaled independent copies of FBM:

fo =2 (50) -5(3)), 68

J

where
Xi(s) =B ;(s)I[0 <5 < 1]

and {(z;,w;), j = 1,2,...} is an enumeration of points of the random measure N,. The
above series converges in L? and as. if # > (1 — 0)/2, since

(e (n(5) -5(2)
)1 (22)) o]

~E[E((x(5
c[58(5(52) -5(52)) ltom)]

] t—1 0 o0
el / f (—t)w 2 dwdr + 1 / / 1w 0= qyde
—_—0 Ly — o —T
! (oo}
%/0 / (t — o)w 210 Tdwds
Ji—1

= C[ZI_O < 0Q, (5.9)

+

where

I 1 11
,1 2. —2q—0—1
2 f /_ () deH2n+92n+9—1+2n+91—9)'

We used the independence of {X(-), j =1,2,...} and the following formulae implied
by the FBM variance:

. t_
( ) forO<——E<landl< T,
w w

r—1 -1 t =T =T
Var(Xj( ~ )—X_,-(;))— ( ) for0<7<1and0<7<l

t— 2y - I —
( I) for—T < 0and0 < sl < 1.
L\ w w w
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Again, the process {A;r’ (¢), t=0} can be formally written as an integral with respect
to Poisson measure N,

ey = .«,/E (X(’_TT) —X(%)) dN,(z, w),

and the convergence of this integral is understood as the convergence of the series (5.8).
Note that Xs’(t) has finite variance if and only if # > (1 —0)/2, 0 < 0 < 1, and
then its variance is given by (5.9). The characteristic function of a linear combination
Sh_ & X!(t) equals (cf. (3.6))

exp{]g (Eexp{isk:lék (X(tk‘;f) _X(%T))} — 1)%8_2W_0_1drdw}
—=k { fE (CXp{ - E;%éjékCOU(X({j; T) —X(%)’

X(tk\; ) -x(5)) 1) x de i aeaw), (5.10)

and some elementary (though tedious) calculations show that the limiting (when & — 0)
Gaussian process has the FBM covariance structure with H = (1 — 0)/2 and variance
equal to C;¢'~’. (On the other hand, the same conclusion can be drawn without cal-
culating the covariance: since we notice that the limiting process is Gaussian with
stationary increments and variance C¢'~?, it must be FBM.) Hence:

Theorem 5.2. The finite dimensional distributions of { X!(t), t=0} defined in (5.8),
where the random pulse shape is determined by an FBM with the scale parameter
n > (1 — 0)2, converge, as ¢ — 0, to those of FBM with the scale parameter
H = (1 — 0)/2 and variance given by (5.9).

It is clear (from (5.10)) that B, in the definition of )f'L.’ (¢) can be replaced by a more
general process, e.g. any zero-mean process with stationary increments and covariance
function identical to that of FBM with a scale parameter n > (1 — 0)/2. The same
conclusion can be drawn as in the Example above. Increasing # increases smoothness
of the sample paths of the templet {X(s), s € R} (for example, {B,(s)I[0 < s < 1]}),
but it does not influence the self-affinity constant of the final FBM. However, finiteness
of the second moment of )("’L.’(t) in the above construction requires # > (1 — 0)/2. In
particular, this implies that we may always use the ordinary Brownian motion for which

n= 3.
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