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ABSTRACT

The author has recently shown that a multifractal measure due to Minkowski
has the characteristic that its f(x) distribution is left-sided, i.e., has no
descending right-side corresponding to a decreasing f(«); this creates many
very interesting complications. Denjoy had observed that this Minkowski
measure is the restriction to [0, 1] of the attractor measure for the dynamical
system on the line based on the maps x —1/2 +1/4(x —1/2), x = —x and
x — 2 — x. This paper points out that it follows from Denjoy's old observation
that the new “anomalies” due to the left-sidedness of f(«x) extend to the invariant
measures of certain dynamical systems.

This short paper is primarily meant to describe an experience | lived
through, and to address a warning to the specialist in multifractals. There is a
widespread expectation that the f(«) distribution of every multifractal measure
u satisfies f > 0 and has a graph shaped like the mathematical symbol (). From
classical results from the 1930s and the 1940s (by Besicovitch, Eggleston et al.),
this expectation is fulfilled when u is the binomial measure, or near binomial.

But for many measures — some theoretical, other obtained from nature
— this expectation grossly fails to be fulfilled, in one way or another. This
creates a variety of so-called “anomalies.” Some anomalies are relative to
measures in real space; examples include the distributions of turbulent
dissipation (the notion of multifractal first arose in that context 5 ) and of the
harmonic measure around a DLA cluster. These anomalies are beginning to
be well recognized; in particular, the references show that | have contributed
several papers to their investigation.

| expect that many of the same anomalies will also be encountered for
multifractal measures encountered in dynamical systems. The goal of this
paper is to make the students of measures on attractors aware of the preceding
references. To do so, | shall discuss the Minkowski measure, y, which is most
attractive but extremely anomalous.
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When applied to this measure, my approach to multifractals (to be called
the method of distributions) will be seen to involve necessarily two distinct two
aspects of f(x). First, there is a theoretical “population” function f(x). For the
Minkowski u, this f(e) is not ()-shaped; instead, it is left-sided, i.e., monotone
increasing toward a maximum f(co) = 1 and without a right (decreasing) side.
But let the measure u be coarse-grained to intervals of length ¢, in order to
become observable. If so, the method of distributions defines an empirical
“sample” f,(z) for each ¢. Thic 7(«) is observable, and for the Minkowski u its
shape happens to be altogether different from that of f{a).

As ¢ — 0, one has f,(a) — f(x), which expresses that the theory behind the
method of distribution is logically consistent. But the convergence is
excruciatingly slow and extremely singular; very great care is needed to
extrapolate the shape of f(a) from that of the f,(x).

When thinking of attractor measures, there is good reason to think first
of those supported by strange attractors. But an extraordinary confusion
continues to characterize much of the literature on multifractals. This shows
that the topic is more delicate than many realize, and that it is best to tackle
each issue after every extraneous difficulty has been eliminated.

1. The Minkowski measure on the interval [0, 1]

The Minkowski measure p is simple to define and work with, but exhibits
very interesting and totally unexpected peculiarities. This u and the inverse
Minkowski measure 1 are, respectively, the differentials of two increasing
singular functions: M(x) and its inverse X(m).

It is easier to start by defining the inverse Minkowski function X(m),
which is constructed step by step, as follows. The first step sets X(0) =0 and
X(1/2) = 1/2. The second step interpolates: X(1/4) is taken to be the Fairey
mean of X(0) and X(1/2), where the Fairey mean of two irreducible ratios (a/c)
and (b/d) is defined as (a + b)/(c + d). More generally, the k-th step begins
with X(m) defined for m = p2-% where p is an even integer, and uses Fairey
means to interpolate to m = p2-*, where p is an odd integer. Finally, X(m) is
extended to the interval [1/2, 1] by writing X(1 — m) =1 — X(m). The resulting
function X(m) is continuous, it increases in every interval, and it is singular; that
is, it has no finite derivative at any point. It has an inverse function M(x) with
the same properties, illustrated by the “slippery staircase” in Figure 1.

The differentials u and u of the functions X(m) and M(x) are singular
measures. The two parts of Figure 2 illustrate the measure u, as evaluated for

~intervals of length 10-5.

Minkowski ( 12 | Vol 2, p. 50-51), had called M(x) the “?(x) function,”
which has few redeeming features. Little (if anything) was written about the
measure u until 1932, when Denjoy 1 observed that it has the following
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property. It is the restriction to [0, 17 of the attractor measure for the dynamical
system on the line based on the maps
1 1

X—+—+——— X—>—x and x—2 — x.
T2 T ax—12) 7 =

To transform such a collection of functions into a dynamical system, the
standard method is, of course, to choose the next operation at random. This
method was used in Plates 198 and 199 of my book 6 . and the current (and
recent) term for it is IFS: jterated function system.

Thanks to this interpretation, M(x) proves to have deep roots in number
theory (modular functions) and in Fuchsian or Kleinian groups. From this
paper's viewpoint, however, the main virtue of the above dynamical system lies
in its extraordinary simplicity. | surmise that any complication or difficulty
encountered in the study of its invariant measures will a fortiori appear in more
complex systems grounded in physics. Moreover, one must keep in mind that
the paper | wrote with Gutzwiller 3 had two motivations. | was concerned with
the above maps, but he was concerned with an important Hamiltonian system
in which x is the Liouville measure and m a second invariant measure yielding
equally interesting information about individual trajectories.
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Figure 1. Graph of the Minkowski function M(x) for 0 < x < 1/2, Contrary to the
well-known Cantor devil staircase (my book 6 plate 83), the graph of
M(x) has no actual steps, only near steps that led to its being called a
slippery staircase in 3
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Figure 2.

Plots of the Minkowski measure u in the form of the coarse-grained
Holder exponent and of its logarithm. Taking ¢ = 10-%, we evaluated
the increments AM = M[(k + 1)¢] — M[ke]. Figure 2a (top) plots the
coarse-grained Hoélder o =log AM/log ¢, and Figure 2b (bottom) plots
log «. The theory described later in the paper shows that the
fine-grained (local) Hoélder almost everywhere exceeds any prescribed
. In this figure, this property altogether fails to be reflected.
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2. The functions f(x) and f,(a) of the Minkowski measure
2.1. The theoretical function f(x)

For a derivation of the f(«) functions of the Minkowski measure x and of
the inverse Minkowski measure u, we must refer the reader elsewhere 2 A first
basic fact is that there is a theoretical f(x) for these measures: f(a) is the
Hausdorff dimension of the set of points x such that the Hélder exponent H(x)
takes the value «. In the case of y, the graph of f{«) has the following properties:

e fla) is defined for o« = omn=— 1/l0gsy? ~.7202 ... where v is the
golden mean ~ .6180 . . . . (obtained in 16 and - independently — in*)

o @, =2/ l0g;(1 + x)AM(x)] ' = 874 ... (obtained in 17)

o flu) = 1 as o — co. This property of f(x) has a strong bearing on the
nature of the set of points x where H(x) > «: this set is of measure 1.

2.2. The problem of inferring the shape of f(a) from data

After f(x) has been specified analytically, one cannot rest. One must
continue by asking whether or not this function can also be inferred when the
mechanism of our dynamical system is unknown and only some “empirical
data” are available. In this context, “data” may mean one of two things. It
may denote the “coarse” (or coarse-grained or quantized) form of the function
M(x), as computed effectively for values of x restricted to be multiples of some
quantum Ax = ¢ “Data” may also denote a long orbit of the above dynamical
system, that is, a long series of successive values of x; they too must be
recorded in coarse-grained format. For many physical quantities in real space,
coarse-graining is physically intrinsic; i.e., they are not defined on a continuous
scale, but only for intervals whose length is a multiple of some Ax = ¢ due to the
existence of atoms or quanta; in other physical quantities, there are intrinsic
limits to useful interpolation; for example, a turbulent fluid is locally smooth.
In the present case, coarse-graining is the result of the necessary finiteness of
actual computations and of observed orbits.

Given coarse data, there are at least two ways of seeking to extract or
estimate f(x).

2.3. The method of moments as applied to the Minkowski distribution

The better-known way 2, 4 deserves to be called the method of
moments. It starts with the coarse-grained measures u,(x) contained in
successive intervals of length ¢ and proceeds as follows: a) evaluate the
collection of moments embodied in the “partition function” defined by
(&, q) =X ui(x), b) estimate <(q) by fitting a straight line to the data of
log x(&, g) versus log ¢, and c) obtain f(a) as the Legendre transform of z(q).

When applied mechanically to the Minkowski u, the method of moments
either yields nothing or yields nonsense. More precisely, the more prudent
mechanical implementations of the method do not fit a slope 7(q) without also
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testing that the data are straight (this can be done by eye). But the Minkowski
data for ‘g < 0 are not straight at all. Therefore. the prudent conclusion is that
“there is no 7(g).” Since no such difficulty arises for g > 0, conclusions of this
sort are is often accompanied by the assertion that the data are "not quite”
multifractal. The less prudent mechanical implementations of the method of
moments simply forge ahead to fit 7(q). Depending on a combination of the rule
used to fit and of the details of how quantification is performed, those methods
may yield an estimated t(g) that is not convex. The resulting “Legendre
transform” is not a single-valued function, and f(x) is a mystery. In other
mechanical methods, the difficulty in estimating t(q) is faced by first
“stabilizing” the estimate in one way or another; such stabilization may yield
some sort of f(x), but one can hardly say what it means and what purpose it
serves.

A central feature of the method of moments should be mentioned at this
point. The limit process ¢ — 0 is invoked in estimating 7(g) from the data. But
the preasymptotic data corresponding to ¢ > 0 do not define an approximate
fi().

2.4. The method of distributions

A second way to estimate f(x) is the method of distributions, which is
used in all my papers listed as references. | have been using it since 1974 and
every new development motivates me to recommend it more strongly. The key
is simple. While the method of moments rushes to compute the moments of
u:(x) embodied in the partition function y(e, g), the method of distributions
considers, for every ¢, the full frequency distribution of the u.(x). These
distributions are embodied in graphs statisticians call histograms.

First, the range of observed «'s is subdivided into equal “bins.” and one
records the number of data in each bin. If the number of bins is too small,
information is lost, but if there are too many bins, many are empty. In the case
of the Minkowski u, there are many «'s a little above o, and few «'s strung
along up to very high values.

Denote by N, the number of data in bin b. When N, is large, N,/Ax serves to
estimate a probability density for . When N, = 1 and the neighboring bins are
empty, one estimates probabilities by averaging over a suitably large number
of neighboring bins; these probabilities are very small.

Having estimated the probability density p.(x), one forms

log p,(2)
log ¢

f(x) =

Thus, the method of distribution creates a sequence of functions f,(x). Because
f.(x) is the normalized logarithm of a measure, each f,(x) is nothing but a
histogram that was replotted in doubly logarithmic coordinates and was
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suitably weighted. These histograms should be evaluated for a series of values
of &. When the measure is multifractal, f(x) converges to a limit f(«). That is, the
function f(x) enters the theory as

floe) = lim,_, of. ().

A physicist’s typical reaction to histograms is, “Why bother? We all know
that the information contained in the histograms is also contained in the
moments; besides, moments organize information, and they are familiar and far
easier to handle than histograms.” Unfortunately, in the context of fractals and
multifractals this typical reaction won’t do.

In the study of fractals, the typical probability distributions are scaling
(hyperbolic), and some of their population moments are infinite. The
corresponding sample moments — sometimes even the sample average —
behave in totally erratic fashion; they bring out no useful information and can
be thoroughly misleading.

Now proceed to multifractals. When f(x) is truly [)-shaped, with f> 0,
moments raise no major issue, the method of moments works well, and the
method of distributions is a less efficient way to obtain f(x). But in all delicate
cases, the sample moments embodied in the partition function are treacherous.
The method of distributions is the only way to go.

2.5. The method of distributions as applied to the Minkowski measure

In 3 , Gutzwiller and | used histograms, and Figure 3 (which is copied
from Figure 2 of 3 ) reproduces the empirical f,(«) we obtained. To obtain this
graph, we coarse-grained x, then (in effect) we coarse-grained M. The
“quantum” of M was tiny, because it was simply the smallest M(x + &) — M(x)
our computer allowed in quadruple precision. Thus, the values of the computer
could not distinguish from 0 (10% of the whole) were not used.

The resulting data-based curve is utterly different from the theoretical
left-sided f(z). It begins with an unquestionably cap-convex left side — as
usual. The middle part satisfies f,(a) > 1, which cannot be true of f(«), but was
expected; this is one of the inevitable biases of the method of distributions, and
can be handled. Finally, there is cup-convex right side. This was totally
unexpected, because a theoretical f(x) is necessarily cap-convex throughout,

We gave up seeking a better test of this cup-convexity. We did not come
close to testing my further hunch, that the estimated f,(x) — if extended far
enough — would become < 0 for large enough «. We showed that for g < 0 the
moment x(g, &) was not a power law function of &. But, to our disappointment,
we did not succeed in evaluating f(x) analytically. We did conjecture the correct
actual form of f(), (but did not write it down) and were concerned by functions
f.(x) and f(«) that differ to such extreme degree.
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Recently, | have returned to this problem. Figure 4 was prepared using
a method that does not compute M(x) itself, but computes M(x ~ dx) — M(x)
directly. This can be done with arbitrary relative precision, therefore we can
reach huge values of x. Figure 4 gives resounding confirmations of the earlier
conjectures concerning the existence of a cup-convex right side in the empirical
fle) and of a negative tail.

This sharp mismatch between the theory and even the best experiments
spurred me to a rigorous derivation of the theoretical f(«) and of the predicted
f.(x). The shape of f(x) has already been mentioned. For f.(x), it suffices to say
that, for large &,

f(x) ~1— (aconstant) log «/loge.

Figure 4 verifies this dependence on the data.

1.0 {'\

Figure 3. An early plot of the estimated function f(a) for the Minkowski
measure. Reproduced from3
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2.6. Is f(a) a useful notion in the case of the Minkowski u?

Once again, our recent evaluations of f,(x) did not come close to
reproducing the true shape of the graph of f(x), despite the fact that they
involved precision that is totally beyond any conceivable physical
measurement. Even the early evaluations 3 were well beyond the reach of
physics.

Given the difficulties that have been described, should one conclude, in
the case of the Minkowski measure, that f(x) is a worthless notion? Certainly
this measure confirms that | have been arguing strenuously for a long time: that
f(z) is a delicate tool. Its proper context is distributions, that is, probability
theory. Moreover, it does not concern the best known and more “robust” parts
of that theory, namely, those related to the law of large numbers and the central
limit theorem. Instead, it concerns the probability theory of large deviations,
which is a delicate topic.
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Figure 4. A recent plot of the estimated functions f(«) for the Minkowski
measure restricted to the interval [1/10, 1/9]. We started with f,(a) — 1
as the vertical coordinate and — in order to straighten f(a) — we

chose log a as the horizontal coordinate. Then we collapsed the five
graphs that correspond to &= 10"% 10-% 10-7,10-% and 10-% This
figure strongly confirms the cup-convexity suspected in Figure 3. It
shows the occurrence of f< 0. Finally, the weighting rule shows that
1 —f(«) decreases as ¢ = 0.
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3. Remarks
3.1. On continuous models as approximations, and on “thermodynamics”

Why do physicists study limits that cannot be attained? Simply because
it is often easier to describe a limit than to describe a finite structure that can
be viewed as an approximation to this limit. In particular, this is why it is often
taken for granted in the study of multifractals that a collection of
“coarse-grained” approximations can be replaced by a continuous “fine” or
“fine-grained” description. The latter involves Hausdorff dimensions and
introduces the functions 7(g) and f(x) directly, not as limits.

For the Minkowski u, however, the actual transition from coarse to
fine-graining (as Ax — 0 and Am — 0) is extraordinarily slow and many aspects
of the limit differ qualitatively from the corresponding aspects of even close
approximations. Therefore, the role of limits demands further thoughts, which
| propose to describe elsewhere.

The continuous limit approximation has been described as ruled by a
“thermodynamical” description. Thus, the fact that the convergence is slow
and singular in the case of the Minkowski u reveals a fundamental practical
limitation of the thermodynamic description.

3.2. Parabolic versus hyperbolic systems

To pinpoint the essential ingredient of our special dynamical system, it
is important to see how its properties change if the system itself is modified.
If one wants f(x) to become [)-shaped, it suffices to replace the first of our three
maps by

T . N
2 x-1/2°

with p < 1/4. As p — 1/4, the right side of f(x) lengthens and is pushed away to
infinity, and the anomalies disappear asymptotically. Formally, the system
changes from being hyperbolic to parabolic. Hence, the anomalies we have
investigated are due to the system’s parabolic. In terms of the limit f(x), the
differences between parabolic and hyperbolic cases increase as p — 1/4. But
actual observations lie in a preasymptotic range; for a wide range of ¢, f,(«) will
be effectively the same for p close to 1/4 as it is for p = 1/4.

3.3. Multiplicativity

The multifractals known longest and best 5 are the multiplicative
measures. But the Minkowski measure u is not a multiplicative multifractal.
Nevertheless, several properties of u were first conjectured on the basis of an
approximation of u by a multiplicative multifractal 8 and later proved to be
correct.
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3.4. In lieu of conclusion

The apparent “strangeness” of the facts described in this paper must not
discourage the practically minded reader. Repeating once again a pattern that
is typical of fractal geometry, it turns out that what had seemed strange should
be welcomed and not viewed as strange at all.

4. Acknowledgements

The work that led to this paper began in 1987. Over the years, | had
invaluable discussions with M. C. Gutzwiller, C. J. G. Evertsz, T. Bedford and
Y. Peres. Figures 1, 2, and 4 were prepared by J. Klenk. Peres wrote his Ph.D.
thesis on the Minkowski measure. He had informed me that, while both
Gutzwiller and | had independently rediscovered u before we joined forces to
write about it in 1988, we had been anticipated by Minkowski and Denjoy.
However, the f(x) function of u was not discussed (however imperfectly) until
our joint paper.

5. References

1. A. Denjoy, Comptes Rendus (Paris) 194 (1932) 44-46. Journal des
Mathématiques Pures et Appliquées 62 (1938) 105-151. Reprinted in A.
Denjoy, Articles et Mémoires, 1955, 2, 925-971.

2. U. Frisch and G. Parisi, Turbulence and Predictability in Geophysical Fluid
Dynamics and Climate Dynamics, ed. M. Gil., (Amsterdam: North-Holland,
1985) pp 84-86.

3. M. C. Gutzwiller and B. B. Mandelbrot, Phys. Rev. Lett. 60 (1988) 673.

4. T.C. Halsey, M. H. Jensen, L. P. Kadanoff, |. Procaccia and B. |. Shraiman.
Phys. Rev. A 33 (1986) 1141-1151.

5. B. B. Mandelbrot, J. Fluid Mech. 62 (1974) 331-338. Also Comptes Rendus
(Paris) 278A (1974) 289-292 and 355-358.

6. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, New
York, 1982).

7. B. B. Mandelbrot, Pure and Applied Geophysics 131 (1989) 5-42. See also
in Fluctuations and Pattern Formation (Cargése, 1988), eds. H. E. Stanley
and N. Ostrowsky (Kluwer, Dordrecht and Boston, 1988) pp. 345-360.

8. B. B. Mandelbrot, Physica A 168 (1990) 95-111.



94

9. B. B. Mandelbrot, Physica A 163 (1990) 306-315. Developed in Fractals,
Physical Origin and Properties (Proceedings of the Erice meeting, 1988), ed.
L. Pietronero (Plenum, New York, 1989) 3-29.

10. B. B. Mandelbrot, Proc. Royal Soc. (London) A 434 (1991) 79-88.

11. B. B. Mandelbrot, Multifractals and 1/f Noise. 1963-1976. (Selecta, Vol. N
(Springer, New York, forthcoming).

12. B. B. Mandelbrot, forthcoming.
13. B. B. Mandelbrot and C. J. G. Evertsz. Physica A 177 (1991), 386-393.

14. B. B. Mandelbrot, C. J. G. Evertsz and Y. Hayakawa, Phys. Rev. A 42 (1990)
4528-4536.

15. Minkowski, H. 1911. Gesammelite Abhandlungen (Chelsea, New York,
reprint).

16. R. Salem, Trans. Am. Math. Soc. 53 (1943) 427-439. Reprinted in R. Salem
Oeuvres Mathématiques, pp. 282-294, (Hermann, Paris, 1967).

17. J. R. Kinney. Proc. Am. Math. Soc. 11 (1960) 788-794.



