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Abstract. In this paper, the classical Lévy flights are generalized, their jumps
being replaced by more involved “pulses.” This generates a wide family of self-
affine random functions. Their versatility makes them useful in modeling. Their
structure throws new conceptual light on the difficult issue of global statistical
dependence, especially in the case of processes with infinite variance.
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A Lévy flight or Lévy stable molion (SLM) is well-known to be the sum of an
infinity of step-Tunctions of widely varying sizes. This paper introduces a generalized
construction: the jumps are replaced by suitable afline reductions or dilations of
“templates” represented by kernel funcitons I{ more general than a step. The result
can be described as being an affine convolution. A template whose kernel is constant
except on a (bounded) interval will be called pulse, and the resulting sums will be
called fractal sums of pulses (F'SP). A series of papers that started with [1], [2], [3]
and [6] will describe the theory of self-affine FSP and (going beyond [4]) some of
their concrete applications.

This paper concerns semi-random sclf-afline FSP consiructed as follows. A
pulse's height and location follow the same distribution as in a Lévy flight: the
probability of the point {), ¢} being found in an elementary rectangle of the (A, 1)
address plane is o« A7®"1dAdt. In a Lévy flight the exponent § is constrained to
satisfy 0 < § < 2. A major immediate difference is that in an FSP, the constraints
are either § > 0 or § > 1, depending on the case. The pulse’s width W (the length
of the smallest interval in which the pulse varies) satisfies W = o A%, where ¢ > 0
is a scale constant, implying that Pr{W > w} o w™!. The resulting FSP is called
semi-random because A and W are functionally related (in fully random FSP, A
and W are statistically independent). This paper is meant to show the great variety
of distinct behaviors that can be found in an 'SP, as we vary 6 and three properties
of the kernels:

a) Discontinuous versus very smoothly continuous;

b) Canceling (vanishing outside the interval in which they vary) versus non-
canceling.

c) Atoms versus bursts. This is a useful but elusive distinction. When the pulse
is made of a rise and fall followed later by another rise and fall, it can be decomposed
into a burst of two indecomposable or atomic pulses.

The resulting templates are exemplified in Table I: cylinders (one discontinuous
rise followed after the time W by one discontinuous fall), and multiple steps, cones
(uniform rate rise followed by uniform rate fall), and uniform rate rises. Other
templates are discussed in forthcoming papers.

Levy Flights and Related Phenomena in Physics (Nice, 1994).
Edited by Michael F. Shlesinger, George Zaslawsky, & Uriel Frisch.
(Lecture Notes in Physics: 450.) New York: Springer, 110-123.
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In the standard study of attraction of a random function X (¢) to a limit such as
Brownian motion, an early step is an afline rescaling of the form 7% X (T'p). Being
constructed to be self-affine, all FSP are invariant under this rescaling with the ex-
ponent H = 1/§. That is, using the physicisis’ language, each I'SP defines its own
“class of universality” with respect to a suitable affinity. But we shall introduce
an alternative rescaling, to be called “lateral,” and show that each semi-random
IF'SP has an interesting “lateral attractor.” The lateral attractor may be a Lévy
flight (SLM), which might have been vaguely expected, because the construction
starts with the Lévy measure. But the lateral attractor may also be a {ractional
Brownian motion (FBM), which is a surprise, and establishes deep new links be-
tween two independent theories that are known to have striking formal parallelism.
The attractor may also be neither SLM nor FBM.

The increments of the FSP are globally dependent, but those of their SLM
limits are independent. Thus, the F'SP bring altogether new conceptual light on
the probabilistic notion of global dependence and the related notion that a process
is attracted by another process. Indeed, depending on the shape of K, global
dependence is expressed in either of two ways: a) by a special exponent H familiar
in such known contexts as FBM, or b) by a prefactor rather than a special exponent.

Separate papers investigate: A) semi-random FSP using additional classes of
kernels and second differences of FSP; B) semi-random FFSP with W = ¢A?, where
@ # §; they are not self-afline. Related papers investigate: C) Fully random FSP
in which W is statistically independent of A with the measure oc w™?~'dw, where
0 < @ < 1; they are shown in [3] to be self-affine with H = (1 — §)/8; D) fractal
sums of micropulses (FSM) which generate (FBM); see [1,2].

1. INTRODUCTION

The “normal” model of natural fluctuations is the Wiener Brownian motion
process (WBM). By this standard, however, many natural fluctuations exhibit clear-
cut “anomalies” which may be due to large discontinuities (“Noah Effect”) and/or
non-negligible global statistical dependence (“Joseph Effect”). I have long argued
that the geometric features of surprisingly many of these anomalous aspects of
nature are fractal. For example, for many large “Noah” discontinuities the tail
probability distribution is “hyperbolic.” That is, if it is large, a discontinuity U
thal exceeds the value u has a probability of the hyperbolic form Pr(U > u) ~
u~¢, with § a positive constant. Second example: for large lags s, many globally
correlated “Joseph” fluctuations have a correlation function of the form C(s) ~
2H(2H — 1)s?H-2 with 1/2 < H < 1. [5] shows that one can model various
instances of the Noah effect by the classical process of SLM, and various instances
of the Joseph effect by the process of FBM.

SLM and I'BM, however, are far from exhausting the anomalies found in nature;
in particular, neither gives a satisfactory model of the shape of clouds, and many
phenomena exhibit both the Noah and the Joseph effects and fail to be represented
by either SLM or FBM. Hence, fractal modeling of nature demands “bridges,”
namely random functions (r.f.’s) that combine the infinite variance feature that is
characteristic of SLM and the global dependence feature that is characteristic of
FBM. One obvious bridge, fractional Lévy motion, is interesting mathematically,
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but has found no concrete use.

Furthermore, the mathematical theories of SLM and FBM exhibit striking paral-
lels as well as discrepancies. One major discrepancy is in the allowable value of the
exponent H which is defined by the condition that the distribution of =¥ F'(Tp)
is independent of T. For SLM, 1/2 < H < oo, while for FBM, 0 < H < 1. This
mismatch is a challenge. Being unexpected, the parallels are sometimes described
as miraculous, but they have deep roots worth exploring.

2. DEFINITIONS

2.1 Stationarity and self-affinity
The function F(t)is said to have stalionary increments if the translated function

F(to + 1) — F(to)

has the same distributions for all values of #5. A function I7(%) is said to be
self-affine of exponent H > 0 when the rescaled function

M F(to + pt=)F (1)

has the same distributions for all values of {5 and p > 0. Some authors denote
self-affinity by the improper term, self-similarity.

2.2 Pulse templates, pulses, affine convolutions, and fractal sums of
pulses

The graph of K(1), a one-dimension function of a one-dimensional variable, will
be called generator), or (pulse template), if K(t) is constant outside an interval; we
shall set the shortest such interval to be of length 1.

A pulse is a translated affine transform K (ﬁ“-) of K(t), where A, , 1, and w,
are called the pulse’s height, position, and width.
A sum of pulses is a function of the form

Fl) =¥ K (t ;:) :

Figure 1 is an example of a sum of these pulses. When F(t) is a self-affine
function, it will be called a fractal sum of pulses, 'SP.

An affine convolution of the sequence {A,,1,} by the kernel K(-) is obtained
when the pulse heights and widths are linked by a relation w, = ¢A%, where ¢ > 0

and § > 0 are prescribed. Thus, the semi-random FSP are affine convolutions of
sequences {Ap, tn, Wy }.

2.3 The Lévy measure for the probability distribution of pulse height
and position

The simplest pulse template is a step function redefined so that w, = 1 for all
n. The distribution of {A,,t,} that insures self-affinity in that case was discovered
by Paul Lévy and is classical. The same distribution continues to be required in all
F'SP. Let the plane of coordinates ¢ and A be called address plane. Take a rectangle
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[A, A+ d)] x [, +dt] in the address plane, such that [A, A + dA] does not contain
A = 0. Given an exponent § > 0 and two scale factors ¢! and C", the Lévy measure
is

C'ATPTldAt i A> 0, and CV]ATTNdA i A <.

Giving €' and C" is, of course, equivalent to giving the overall scale ¢! + " and
the skewness factor O /(C" + C'").

To define an FSP, the probability of finding an address point (A, t) in the ele-
mentary rectangle is set equal to the Lévy measure. The number of address points
in a domain D in the address space is taken to be a Poisson random variable whose
expectation is the integral of the Lévy measure over D. The total number of pulses
1s countably infinite.

2.4. Semi-random pulse templates

The simplest pulses are the step functions used by Paul Lévy to generate the
SLM. The pulses examined in this paper and illustrated in Table 1 are semi-random:
A is random with the Lévy measure, but the height A fully determines the width
W. To insure that the FSP is sell-afline, one must take

W =oA®, where o > 0.
The resulting probability distribution of W is, independently of 6,
Pr{W > w} cw™t.

The units in which A and W are measured are arbitrary and unrelated. 1 those
units are identical, either ¢/ 4+ (" or ¢ can be normalized to 1 by changing the unit.
However, up to scale, the distribution of an FSP is determined by (C'" + C")¢ and
the skewness C'/(C' + C"). In the sequel, an important role is played by lateral
limit theorems that are expressed most conveniently by fixing C' +C" and allowing
o — 0o, The consequences of ¢ — oo are obvious when the pulses are “cylindrical:”
a rise followed, after a span of At = w, by a fall of equal absolute value and opposite
sign. Clearly, the contribution to F(¢+ T) — F'(¢) from a pulse such that w > T is
not a pulse but an unattached rise or fall. Therefore, as ¢ — oo, each cylindrical
pulse reduces to a rise or a fall, and the fact that a pulse has a bounded support
becomes less and less significant.

R B

FIGURE 1: Schematic sum of pulses
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3. SELF-AFFINITY AND THE EXPONENT H = 1/§; EXISTENCE
OF GLOBAL DEPENDENCE

3.1. The self-affinity property of all FSP

For many combinations of a pulse shape and a value of §, the semi-random
FSP construction yields a well-defined random process, and 6 is called admissible
for these pulses. For other values of §, the construction diverges and § is called
excluded. When the construction converges, it is easy to see that the resulting
FSP are self-affine. All semi-random cases yield H = 1/4, just like in the Lévy
case when the pulses are step functions. In one case to be described elsewhere,
the construction of F(t + 17) — I(t) diverges, but that of the second difference
[F(t+T)- F(1)] - [F(t) — I'(t — T')] converges and is self-afline.

3.2. First corollary of self-affinity: each FSP defines a special domain
of attraction, hence the standard limit problem concerning random pro-
cesses is degenerate

In the study of random functions, the standard next issue is whether or not there
exists an exponent H such that, setting F(0) =0,

weak Tlim T-EF(pT)

is a non-degenerate function of p, called the “attractor” of F. The most familiar
attractions are WBM and SLM in the case of independence and FBM in the case
of dependence. Now suppose that F(?) is a semi-random FSP. For it, the standard
limit problem does not arise, since T_HF(()T) independent of T" in distribution,
each FSP defines its own domain of attraction of exponent I = 1/8.

Standard domains of attraction to an FSP. Given a self-affine attractor X (1), the
next challenge is to describe its demain of attraction, defined as the collection of
r.{’s G(t) for which the rescaling (or renormalizing) function A(1") can be selected
so as to insure that

weak  lim AHTYG(pT) = X (2).

My study of the domain of atiraction of a semi-random FSP has limited itself thus
far to r.1.’s that are themselves sums of pulses, but involve a density other than
Lévy's or a relation other than w = ¢A%. I have not yet examined templates that
depend on height.

Clearly, weak limy .o, T~ F(pT') is unchanged if the distribution of pulse heights
is changed over a bounded interval, {for example if pulse height is restricted to
A>e>0.

For the next obvious change, SLM suggests replacing the constants ¢! and C"
in the Lévy density by functions C'(A) and C''(A) that vary slowly for A — oo,
And FBM suggests replacing the relation w = ¢A% by w = o(A\)A%, where ()
is also slowly varying. These changes lead to a nonself-affine generalized I'SP.
The questions is whether or not, as T — oo, there exists a rescaling A(T) that
makes A™}T)G(T') converge weakly to a self-afline FSP. I have been content with
verifying (see Section 7.6) that a suflicient condition is that C'(A)o(A) — 1; in that
case, Tl/'sA(T) is the inverse function of T' = ¢(A)A%, implying that A(T) is slowly
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varying. The condition C'(A)o(A) — 1 is demanding, resulting in a narrow domain
of attraction, a notion discussed in Section 3.4.

3.3. Second corollary of self-affinity: the global dependence property of
all FSP

A corollary of Section 3.2 is that if I is a semi-random FSP, then T~H F'(pT) fails
to converge to a standard attractor relative to asymptotically independent incre-
ments, namely, either WBM or SLM. This implies that all semi-random 'SP must
{ail to satisfy the usual criteria that express that dependence between increments
is local.

In fact, they are uniformly globally dependent. For example, define for each ¢
the following two functions

e the rescaled finite past T-Y5[F(1) — F(t — Tp))
¢ and the rescaled finite future TYS[F(t 4+ Tp) — F(1)].

Because of pulses that contribute to both past and {future, these random func-
tions of p are not statistically independent. Because of self-affinity, their joint
distributions are independent of 7. This means that strong mixing is contradicted

uniformly for all T

3.4. Thoughts on the role of limit theorems suggested by the degeneracy
of the standard limit problem in the case of FSP

To comment on the role of limit theorems in the light of Section 3.3, let us
compare the “atiractands” with their attractor. One wants the process of going
to the limit to destroy the most idiosyncratic features of the attractand, while
preserving features that have a degree of “universality.” This is why the most
important attractors continue to be: the nonrandom attractor for the laws of large
numbers, the Gaussian 1.v. for the central limit theorems, and WBM for the
functional central limit theorems. These attractors’ domains of attraction are very
broad, being largely characterized by the absence of global independence and of
significant probabilities for large values. By contrast, when a basin of attraction is
narrow, the attractor ylelds specific information about the attractands. Thus, there
is a sharp contrast between broad universality with little information and narrow
universality with extensive information.

Down to specifics: for SLM, the dependence can be anything, as long as it is
local, but the tails must be long and strictly constrained; for FBM, the tails can be
anything, as long as they are short, but the dependence must be global and strictly
constrained. Similarly, the sufficient condition C'(A)e(A) — 1in Section 3.2 defines
for each FSP a (partial) domain of attraction that is tightly constrained, with the
same exponent, for the tails and the global dependence.

The resulting variety of forms creates a use for additional limit problems that
would put order by destroying some of the I'SP’s overabundant specifications. That
is, the finding in Section 3.3 must spur the search for alternative limit problems,
for which the domains of attraction are broader, therefore reveal more “universal”
properties of the I'SP. Section 4 will advance one possibility.
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4. THE CONCEPT OF LATERAL LIMIT PROBLEM AND THE EX-
PONENT o; UNISCALING (a = § = 1/H) AND
PLURISCALING (a = min[2,5] # 1/H) LATERAL ATTRACTORS

4.1. Background of the new “lateral” limit problem

Neither the random walk nor the Poisson process of finite density is self-affine,
but both are attracted in the usual way to the Wiener-Brownian motion B(t),
which is self-afine with H = 1/2. That is, writing F(0) = 0, it is true in both
cases that T~Y2F(pT) depends on T' for T' < oo, but not in the limit T — oo;
since the replacement of 7" by p1' transforms discrete time and I into real variables,
rescaling time before taking a limit is necessary in the case of a random walk. But
in the Poisson case one can rephrase the standard passage to the Jimit into a form
that avoids rescaling time. One imagines IV independent and identically distributed
Poisson processes F), (1), then one forms

_ N
Fy()= Y Fa(t),

=1
and one finds that,
weak limity oo N~V Fn (1) = B(t), with 1/H = a = 2.

This rephrasing of the passage to the limit is not important in the Poisson case,
but it has the virtue that it continues to make sense in the case of FSP. The theory
of the addition of independent identically distributed random variables tells us that,
for fixed 1, one must have 0 < o < 2 and the limit is a stable rv: Gaussian for
a = 2, and Lévy stable for 0 < o < 2. Table I lists the values of o for a selection
of pulse shapes, and Section 7 gives an example of derivation.

4.2, The lateral limit problem as applied to FSP; the term “lateral”

Let us now observe that forming Iy (¢) for a semi-random FSP, and then letting
N — oo is equivalent to viewing I7(¢) as a function of both ¢ and C' 4 C'". Then
we keep /(" fixed and let €' — co and €' — co. One can think of the axis of
C'" 4+ C" as orthogonal to the axis of ¢, hence the term lateral

For example, replacing €' by Cf + C% and C" by C{ + CY can be interpreted as
follows. The pulses corresponding to C] and ¢}’ can be called red and said to add
up to Fi(t), and the pulses corresponding to € and C% can be called blue and said
to add up to Fy(t); all pulses together yield 13(2,75) = Fi(t) + F5(¢). In order to
represent F(IN,t) graphically on a page, one must rescale it by the factor N1/,

4.3. An important corollary of the results in Table I: global dependence
can be either “uniscaling” (H = 1/a) or “pluriscaling” (H # 1/a)

Table I uses o to denote the usual exponent of stability. A first glance shows
familiar r.{.’s among the lateral limits. The SLM has independent increments and
satisfies 0 < @ < 2 and H = 1/a. The FBM, except for H = 1/2, has globally
dependent Gaussian increments, so that o = 2, but satisfies H # 1/a = 1/2.
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For many years, my studies of global dependence concentrated on these two
examples (broadened by fractional Lévy motion) and on the R/S statistic. This
concentration made me think that global dependence can be tested and measured
by a single exponent H. Given «, I thought that global dependence could be defined
by I # 1/a and measured by H — 1/e. It is a pleasure to note that I was prudent
enough not to write of (in)dependence but rather of (R/S)-(in)dependence, but I
confess that discrepancies were expected to belong to “mathematical pathology.” 1
was thoroughly mistaken.

TABLET
Pulse 0<d<l 1<d<2 2<d
Bo=0 Bo=0
FBM:
[_I H I-l a=2;v=2>
SLM
a=v=94
Excluded:
Divergence for
low As is non
renormalizable
Bo=Bi Bo=PBi=0
V=oo v=3
FBM:
o=2
Excluded:
_/—— Divergence for
low As is non
V=00 renormalizable
Excluded SLM FBM:
|\ oa=38 a=2;v=2_3
12<H<1 H<12

FIGURE 2

T Tt

FIGURE 3
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5. ADDRESS DIAGRAMS AND THE MECHANISM OF NON-LINEAR
GLOBAL DEPENDENCE IN FSP

5.1. Address function and diagram; characteristic function of F

Once again, each semi-random pulse is represented by a point in the address
space {f, A}. Therefore, when a pulse template includes one or more time-intervals,
one can define an address function and an address diagram, as seen momentarily.
Examples are provided by this paper’s illustrations.

When there is one time interval it will be denoted by [0, T]. The address function
of [0,T], denoted by ¢(t, A ] 0,T), will be the contribution of the pulse represented
by {t,A} to F(T'), where we set F(0) = 0, and — as may be the case - to other
increments of F' as well.

Since {t,A} has a Poisson distribution, and the contributions of the address
points to I are additive, the logarithmic characteristic function of I is simply the
integral

$E) = C(C",C") [(r A0 — p-5-1ay
carried over the address space. Here,
C(C',C")y=C" for A >0 and C(C',C")=C" for A <0.

When pulses are constant outside an interval, it follows that ¢ = 0 over a
large excluded part of the address space. The analytic form of ¢ may depend on
(A, 1), making it convenient to integrate ¥/(£) separately over a number of distinct
domains. The boundaries of these domains will be said to {orm an address diagram,
as exemplified in the case of cylinders by Figure 2.

5.2. Joint address diagrams and the nature of dependence in an FSP;
its strongly non-linear character

The interdependence between the AF corresponding to two intervals [0, 7] and
[t,t+ T], with t > T, is investigated by superposing their individual address dia-
grams. The result can be confusing, therefore it is important to look closely at the
simplest case, when the pulse reduces to two steps, either cancelling (up then down
or down then up) or noncancelling (up and up or down and down). We assume
0 < & <1 to postpone the need to face convergence problems.

For both of these pulses ¢(¢, A | 0,T) and ¢(t,A | t,t + 1) are either = A or = 0.
Therefore, the domain of integration of ¢ splits into three parts: The first affects
only [0,T] and defines a r.v. Arr. The second affects both [0,T] and [t, ¢+ T] and
defines a r.v. Ap. The third affects only [t, 4+ T] and defines a r.v. Agg.

That is,

Ap=F(T)-F(0)=ArL + Ao
AR:F(tﬁ-Ti}—F(i)::tﬂo-{-ARR.

Once again, A, Ao and Arpg are independent and the symbol & means + when
the pulse is noncancelling and — when the pulse is cancelling.
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The origin and the nature of the resulting dependence between Az and Aggr
are clearest when ? is several times larger than T (Figure 2), and easiest to follow
if ¢ = " and their common value C' is made to increase from 0.

The theory of Lévy stable variables suggests that, except for small C, the order
of magnitude A(C) of the largest contribution to Apy and Agg, hence to Ay, and
Ap, satisfies C[MC)]* =1, i.e., A(C) ~ CV/5.

The underlying argument does not apply for small C, i.e., below the cross-over
at C ~ T'. For smaller O, Ay and Ag are both dominated by A ~ £7%/%. To the
contrary, the addend Ao comes exclusively from tail values of A, and is small. The
dependence is therelore small, except when ¢ = T', when we deal with neighboring
intervals.

When C is very large, one finds that Ap; o CV% and Argp o« CY¢, while
Ao o< CV/2. Again, the dependence of Ap and Ag is small.

We are left with the midrange where C' oc . There, both Ay and Agr are of
the order of magnitude of the largest contributing A. Once again, the dependence
between Ay and Ag can be either of the order of 1 or small, according to whether
or not it is the case that the same largest A contributes to both Ay, and Ag, through
its contribution to Ag. Strong dependence has a probability of the order of 1, say
1/3.

As C — oo, the midrange t ~ (' also — oo, which shows that Ap and Ag
become independent and do so in non-uniform fashion.

6. DISCUSSION OF TABLE I: EFFECTS OF PULSE SHAPE ON THE
ADMISSIBLE §, AND ON THE LATERAL ATTRACTOR

Changing the pulse shape greatly aflects an FSP. First, it affects the domain of
admissible §s. Next, it affects the attractor of F'(t) and in particular the dependence
of & on §. Several examples are summarized in Table 1.

The left column of Table I illustrates a selection of pulse templates. Other
templates are examined in follow-up papers. A striking immediate observalion is
that a discontinuous FSP can have continuous lateral attractors, and continuous
FSP can have discontinuous lateral attractors.

The right column states that § > 2 is excluded when the pulse is non-cancelling
but is admissible when the pulse is cancelling. In the latter case, the lateral attractor
is FBM. In any event, i{ < 1/2 is incompatible with SLM.

The column second from the right shows that 1 < § < 2 is admissible for
all pulse templates and all values of §, and that it yields varied and interesting
results. Combining proven facts with inferences based on compelling heuristics,
one is tempted to infer the following.

¢ For continuous pulses having left and right derivatives bounded away from 0
and oo, the lateral attractor is FBM.

¢ For discontinuous or mixed pulses, the lateral attractor is SLM.

The column shows that the dependence of the limit on the template is far more
complicated for 0 < 6§ < 1 than for 1 < § < 2. When the pulse template is
discontinuous, a formal extrapolation to 0 < § < 1 of the results relative to SLM
with 1 < § < 2 is both meaningful and correct. When the pulse is continuous,
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the extrapolation to 0 < § < 1 of the results relative to FBM with 1 < § < 2 is
meaningless, in fact, the construction diverges. As shown in a follow-up paper, one
finds meaningful results by considering the second difference

AAF = [F(t +T) - F(t)] - [F(t) = F(t - T)].

The case 1 < § < 2; sensitive dependence of the lateral attractor on the pulse
templates; o bridge between FBM and SLM. Table I indicates that the attractor
is FBM in the case of a smooth conical pulse, but it is SLM if the pulse has
a discontinuity, however small, which occurs, for example, when the pulse is a
stepped cone, namely a staircase made of many steps up followed by many steps
down. “Intuition” suggests that, for finite C, these two pulse forms could not make
much of a difference. This is confirmed by a comparative examination of the address
diagrams. The diagram corresponding to the stepped cones approximates that of
the smooth cone, except for large A's. As the number of steps increase, so does the
quality of the approximation, and it also spreads up to increasingly large A’s.

7. PROOFS OF THE CLAIMS IN TABLEI FOR THE CYLINDRICAL
PULSES

The parameter o is set to 1 in this Section. The address points with A > 0 and
with A < 0 contribute to two independent parts of F'(T). The calculations leading
to their characteristic functions are the same except for different values C' and C".
We restrict ourselves to the case A > 0 and C' = 1.

7.1. The Lc.f. of F(T)

From Figure 1 it is clear that the address points that contribute to F(T') fall
into two domains described as left and right and denoted by Dr, and Pg. The strip
(A A+ d)), where A > 0, makes the following contribution to the l.c.f.

Te® = ) & =D 0 5009
B - D 2 i Na T

Integrating over A and transforming to the rescaled variables z = AT~1/% and y =
ETM? yields

_/]w[(eiyx - 1)+ (ﬂ—'—y" - 1)].1‘*'5”(19: +./0 [(ei"'m - 1)+ (e—‘.yr‘ = 1)]3:_1117..17.

This expression converges for all § > 0 and is the Lc.l. of a rescaled r.v. independent
of T.. Therefore, the rescaled increment T4 F(T) has a distribution independent
of T. This is a property of self-affinity with i{ = 1/6. We know the mechanisms
of self-affinity: in FBM, it is caused by global dependence without long-tailedness,
in SLM it is caused by long-tailedness without global dependence, and in ISP it
is caused by both long-tailedness and global dependence, acting together with the



121

same value of . The next issue is to separate the long-tailedness and dependence
aspects.

7.2. The attractor in the case § < 2. Lateral attraction to syminetric
Lévy stable increments with o = §
Given N independent r.v.’s I, (T) with the above distribution, the behavior of
N

AFy = ZFE(T) depends sharply on the value of §. When § < 2, the lcdf. of
n=1
N-YSAFy can be written in the form

00
T/ (e'f“ e Q)u"‘s"ldu
(T/N)/¢
1/

+N/ [N o GERANTE oiaels,
0

When N — oo, the first term converges to the well-known l.c.f. of a symmetric Lévy
stable r.v. with the stability parameter @ = § and the scale parameter proportional
to T1/¢. The second term is of order N'=?/¢  therefore converges to zero. Hence,
for fixed T, F(T) belongs to the symmetric é-stable domain of attraction.

7.3. The dependence structure of F(T') in the case § < 2. Lateral attrac-
tion to a Lévy stable r.f.’s with o = § and independent increments

We proceed to the multidimensional structure of the FSP. We show that the
multidimensional distributions of the FSP are attracted to that of a symmetric
SLM. To prove it we need to find the limit in distribution of a linear combination

k N
ZﬁiNH‘UE ZFn(Tl)s
n=1

=1

where F,(T;),i = 1,2,...,k, are nonoverlapping increments of an FSP copy Fy,
over (possibly different) time spans 7;. The limit should be the corresponding linear
combination of independent §-stable variables with scale parameters proportional
=Y cq o v v i e
to the respective 7. /°. Here, we consider increments over two disjoint time spans
Ty and T3, i.e., k = 2. The general case is not mathematically more involved but
requires an overload of notation. Qur assertion follows from the same reasoning as
in the one-dimensional case, if we show that the expression

N/ [(eF€r—ENTYE ) (AN Ty gmieadAN T gy3=6-1 gy
D

converges to zero, where D is the dotted region depicted in Figure 3. But this
expression is again of order N172/%  which establishes the result.
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7.4. The attractor in the case § > 2. Lateral attraction to Gaussian
increments

This case is very different, since the variance EF?(T) is finite, therefore the
rescaled sum N’/Z[FN — Eﬁ}\v] is asymptotically Gaussian, i.e. stable with o = 2.

7.5. The dependence structure of F(T) in the case § > 2. Lateral attrac-
tion to a fractional Brownian r.f.>s with If = 1/6§ < 1/2

Examination of the characteristic function of a linear combination of nonoverlap-
ping increments of the I'SP shows that it has the second derivative at 0, i.e. every
linear combination has the second moment, and multidimensional distributions of
the 'SP are attracted to multidimensional Gaussian distributions. Note that this
Gaussian process in the limit must have stationary increments and be self-afline
with the constant H{ = 1/§ since these properties are preserved under convolution
and convergence in distribution. It is well-known that FBM with H = 1/§ is the
unique Gaussian process satis{lying these requirements.

7.6. Some semi-random FSP belonging to the domain of standard at-
traction of a semi-random self-affine FSP

We replace the constants C’ and o with the slowly varying (at co) functions ()
and o()) such that the function w = o(A)A® is monotonically increasing. Writing
the inverse function of w()) as A = w!/® L(w) yields the identity

L(w) = a‘l/é(iull'sL(w)),

which is an implicit equation for L(w) and will be used momentarily without having
to be solved.
When A > 0, the strip (X, A + d)\) makes the Tollowing contribution to the lc.f.

T[> = 1)+ (e~ = DIy(AA51dx i A>TV,
e(A)A[(e%* = 1)+ (74 = DDA~ i X < TVEL(T).

Integrating over A and transforming to the rescaled variables & = AT~Y4L=1(T)
and y = ETYOL(T) yields

/ TLE — 1) 4 (@ = Ve My o TV LTL(T)} de
£ /l( S 1)+ (7 — e e TS Lo [T L(T)}do.

The integral over (1, co) converges for all § > 0. Assumiung that the functions y and
o are such that also the second integral is finite (e.g. v and ¢ are both bounded
in the neighborhood of zero), the above expression gives the Le.f. of a rescaled r.v.
T4 L-1(T)F,

This l.c.f. may depend on T. If so, the following question arises: under what
conditions on y(A) and ¢(A), and hence on L(A), does this l.c.l. converge to that
prevailing in the FSP case y(A)o(A) = C'¢? (We know that the product C'o
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determines the type of an FSP.) Because of the identity that links o(A) and L(w)
the two factors written between braces are identical (asymptotically, when T' — oo);
therefore the two halves of the l.c.f. yield the same condition on convergence. It is

Alim ¥(Ne(A) = C'o.

In other words, the functions 1/9(A) and o(A) must vary slowly with A and asymp-
totically proportionally to each other.

The question concerning whether or not these conditions are also necessary has
not been addressed yet.

Acknowledgments. In 1977-78, I studied semi-random FSP with a one-dimensional
t and a multi-dimensional F: early simulations for the second row of Table I were
performed by M.R. Laff, and I conjectured (then J. Hawkes proved, that the closure
of the set of values of I"(t) remains of Hausdorft-Besicovitch dimension D = §. In the
mid-1980s, I studied an application of semi-random FSP with a multi-dimensional
t and one-dimensional I7: early simulations performed by S. Lovejoy are reported
in [4]. I also made conjectures concerning the random I'SP; in due time, they were
proved in [1] and [3]. This paper was discussed at length with R. Cioczek-Georges.
Diagrams were drawn by H. KKaufman.
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