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Abstract. The partly random fractal sums of pulses (PFSP) are a family of random
functions that depend on a kernel function K and at least two positive parameters C'
and ¢. Given K, the construction of F(t;C, &) consists in adding N affine versions of
a pulse as follows. The pulse height A and its width W are random variables related
by w//\‘s = a constant. The width is distributed according to the Poisson measure
Cw ™ dwdt in the "address plane” of coordinates w and t. For finite C, the increments
of F(t;C,48) fail to be strongly mixing therefore they exhibit global dependence. In-
deed some PFSP resemble the icon of global dependence, which is fractional Brownian
motion (FBM) with H # 1/2. When the presence of strong mixing must be tested em-
pirically, many tests rely on the comparison of two exponents of diffusion: that of a r.f.
X(t) and of a “shuffled” r.f. X (t) whose increments for At = 1 (say) are independent
and follow the same distribution as X (t). In FBM, the diffusion exponent is H for the
process itself and % for its shuffled variant. Therefore, H # 1/2 is a token of global
dependence. For the Lévy stable motion (LSM) to the contrary, the diffusion exponent
is the same as for the independent process with the same marginal distribution. The
PFSP are not so clear-cut. The dependence is always global. But consider those tests
of globality versus locality that, like R/S testing, are founded on the exponent of dif-
fusion. Those tests will classify the dependence in many PFSP as local. Therefore, the
PFSP are challenging borderline cases, while the conceptual fact is important, more
important is the concrete fact that their rich properties and the absence of arbitrary
grids make them excellent candidates for modeling phenomena that combine global
dependence with long distribution tails. Furthermore, related structures that are dis-
cussed elsewhere, namely, the multifractal measures obtained as products of pulses, are
grid-free and provide a great improvement over the now-classical multifractal measures
generated by multiplicative cascades in a grid.

Keywords. Fractal sums of pulses. Global statistical dependence. Infinite
variance. Lateral attractors. Lévy flights (generalized). Pulses.
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1 INTRODUCTION

1.1 “Normal” and “anomalous” fluctuations, the Noah and Joseph
effects and the distinction between the local and the global
form of statistical dependence

The “normal” model of natural fluctuations is the Wiener Brownian motion
process (WBM). By this standard, however, many natural fluctuations exhibit
clear-cut “anomalies”. Some are due to large discontinuities (“Noah Effect”),
others to non-negligible global statistical dependence (“Joseph Effect”). I have
long argued - especially in [7] and [9] - that the geometric features of surpris-
ingly many of these anomalous aspects of nature are fractal. For example, for
many large “Noah” discontinuities, the tail probability distribution follows a
power-law. That is, for large u, a discontinuity U that exceeds the value v has
a probability of the form Pr(U > u) ~ u™%, with « a positive constant. Second
example: for large lags s, many globally correlated “Joseph” fluctuations have
a correlation function of the power-law form C(s) ~ 2H(2H — 1)s?# -2 with
1/2 < H < 1. [7] shows that one can model various instances of the Noah effect
by the classical process of SLM, and various instances of the Joseph effect by
the process of FBM.

In the classical cases of WBM, FBM and SLM, the distinction between local
and global dependence is straightforward. The increment of WBM and LSM are
independent, hence locally (short-run) dependent. But if H # %, the increments
of FBM are globally (long-run) dependent. This contrast makes the task of
laying down a boundary between local and global that can be implemented by
a statistical test.

SLM and FBM, however, are far from exhausting the anomalies found in
nature. In particular, many phenomena exhibit both the Noah and the Joseph
effects and fail to be represented by either SLM or FBM. Hence, fractal modeling
of nature demands “bridges,” namely, r.f.’s that combine the infinite variance
feature that is characteristic of SLM and the global dependence feature that is
characteristic of FBM. Such is the case of a new family of random functions
described in this paper and called “partly random sums of pulses” or PFSP. A
very different and more classical bridge, is fractional Lévy motion. It is interesting
mathematically, but not versatile and has found no concrete use.

Two general issues come up.

Firstly, when the tail exponent « satisfies o < 2, the exponents of PFSP
satisfy & = 1/H. This identity strongly links the tail and the correlation. As
a result, while the PFSP are globally dependent, their dependence seems from
certain viewpoints to be only local.

Furthermore, the mathematical theories of SLM and FBM are known to
exhibit striking formal parallels as well as often-noted discrepancies. One major
discrepancy is in the allowable range of the exponent H which is defined by the
self-affinity condition that the distribution of T=# F(Tp) is independent of T.
For SLM, 1/2 < H < oo, while for FBM, 0 < H < 1. This mismatch poses a
conceptual challenge. Being unexpected, the formal parallels between SLM and
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FBM are sometimes described as miraculous. But in fact they have deep roots
worth exploring. Some such roots are brought forward by the PFSP.

1.2 Inspiration for the partly random fractal sums of pulses (PFSP)

The PFSP focus on a property of Lévy flight or Lévy stable motion, modify it,
achieve a major generalization. SLM is well-known to be the sum of an infinity of
step-functions whose sizes follow a power-law distribution. This paper preserves
this classical distribution of sizes but replaces the step-functions by suitable
affine reductions or dilations of more general “templates”, obtained as graphs of
a kernel function K. The result can be described as being an affine convolution.
A template whose kernel function only varies on a (bounded) interval will be
called pulse.

1.3 Sketch of the construction of the PFSP

A PFSP built with only positive pulses, involves a single parameter C. It will be
denoted as F(¢;C,d) and constructed as follows. A pulse’s height and location
are ruled by the same distribution as in a Lévy flight: the probability of the
point {A, ¢} being found in an elementary rectangle of the (A, t) address plane is
CA~%~1d)\dt. This probability is carried over from the original paper on cutouts
or tremas on the line, [6].

Recall that in a Lévy flight, the exponent d is constrained to satisfy 0 < § < 2.
Many applications view this limitation as unduly restrictive. A major immediate
novelty is that in an PFSP, the constraints are far weaker: either 6 > 0 or § > 1,
depending on the kernel function K. The pulse’s width W (the length of the
smallest interval in which the pulse varies) satisfies W = ¢|A°|, where 0 > O is a
scale constant, implying that Pr{W > w} oc w™!. The reason why the resulting
F(t,C,0) is called semi-random is because A and W are functionally related. In
fully random PFSP, as discussed in [4], A and W are statistically independent.

When the pulses can be either positive or negative, there are two parameters
C" and C" and the PFSP will be denoted as either F(t : C',C",§) or as F(t; C, )
where C represents the combination of two posoitive real numbers C’ and C"'.

1.4 The roles of § as tail exponent and H = 1/4 as self-affinity
exponent

The key property of the PFSP is that for many kernels the same exponent ¢
plays a fundamental role for both longtailedness and global dependence.

A first role of § is that, over any time increment At, the increment of F'
follows a power-low probability distribution of exponent é.

A second role of d is that, by design, all PFSP are self-affine, namely, invariant
under an affine rescaling of the form 7~ X (Tp) with the exponent H = 1/6.
(In physicists’ language, each PFSP defines its own “class of universality” with
respect to a suitable affinity).
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As a result, there is no counterpart to the standard study of attraction of a
random function X (¢) to a limit such as Wiener or fractional Brownian motion
or Lévy motion.

1.5 When § < 2, the link between the tail and self-affinity
exponents complicates the testing for global dependence

Assume 6 < 2, write X = F(t+1,¢,6) — F(t,c,4), and “shuffle” the X to obtain
a sequence of independent r.v. X with the same distribution as X. That sum is
attracted by the LSM. Therefore, both the original X and the shuffled X have
the same self-affinity exponent H = 1/4. Tests like R/S which are based on the
comparison of those exponents will declare the X to be (R/S) independent. But
we know that they are globally dependent.

1.6 Lateral rescaling and lateral attractors

It is important to introduce an alternative “lateral” rescaling, and show that
each semi-random PFSP has an interesting “lateral attractor.” This attractor
is sometimes a Lévy flight (SLM), a conclusion that might have been vaguely
expected, because the construction starts with the Lévy measure. But there
exists another possibility, the lateral attractor may be a fractional Brownian
motion (FBM), which is a surprise. This is readily implemented when § > 2.
The possibilities of merging FBM and SLM into a broader common universe is
enlightening. It establishes the existence of deep links - already mentioned and
described as desirable - between two independent theories that are known to
be very different yet strikingly parallel. Furthermore, the attractor may also be
neither SLM nor FBM.

For finite C, the increments of the F(¢;C,4§) are globally dependent, but
when the lateral limit is SLM, they become independent. Thus, the PFSP bring
altogether new conceptual light on the probabilistic notion of global dependence
and the related notion that a process is attracted by another process. Indeed,
depending on the K, global dependence is expressed in either of two ways: a)
by a special exponent H familiar in such known contexts as FBM, or b) by a
prefactor rather than a special exponent.

1.7 Summary

This paper is far from exhaustion but shows the great variety of distinct behav-
iors that can be found in an PFSP, as we vary ¢ and three properties of the
kernels:

a) Discontinuous versus very smoothly continuous;

b) Canceling (i.e., vanishing outside the interval in which they vary) versus
non-canceling.

¢) Atoms versus bursts. This is a useful but elusive distinction. When the
pulse is made of a rise and fall followed later by another rise and fall, it can be
decomposed into a burst of two indecomposable or atomic pulses.
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The resulting templates are exemplified in Table I: cylinders (one discontin-
uous rise followed after the time W by one discontinuous fall), multiple steps,
cones (uniform rate rise followed by uniform rate fall), and uniform rate rises.
Other templates are discussed in forthcoming papers.

1.8 Related papers

They investigate: A) additional classes of PFSP with kernels for which conver-
gence demands second differences;

B) semi-random PFSP with W = o A%, where 8 # §; they are not self-affine.

C) PFSP that are fully random in the sense that W is statistically indepen-
dent of A with the measure oc w™%!dw, where 0 < @ < 1; they are shown in [4]
to be self-affine with H = (1 — §)/6;

D) fractal sums of micropulses (FSM) which generate (FBM); see (2,3];

E) multifractal products of pulses [1]; and

F) concrete applications [5].

2 DEFINITIONS

2.1 Stationarity and self-affinity

The function F(t) is said to have stationary increments if the translated function
F(to +1t) — F(to)

has the same distributions for all values of t. A function F(t; C, ) is said to be
self-affine of exponent H > 0 when the rescaled function

p~H[F(to + pt; C,8) — F(to; C, 6)]

has the same distributions for all values of ¢ty and p > 0. Some authors denote
self-affinity by the term, self-similarity, which I proposed long ago but abandoned
because it is inappropriate.

2.2 Pulse templates, pulses, affine convolutions, and fractal sums of
pulses

The graph of K (t), a one-dimension function of a one-dimensional variable, will
be called generator, or pulse template, if K(t) is constant outside an interval; we
shall set the shortest such interval to be of length 1.

A pulse is a translated affine transform K (i) of K(t), where A, t,, and

Wn
w,, are called the pulse’s height, position, and width.
A sum of pulses is a function of the form

Ft) =S MK (t ;:‘”) .
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Fig. 1. Example of a fractal sum of pulses.

Figure 1 is an example of a sum of these pulses. When F(t) is a self-affine
function, it will be called a fractal sum of pulses, FSP.

An affine convolution of the sequence {\,,t,} by the kernel K(-) is obtained
when the pulse heights and widths are linked by a relation w, = oA%, where
o > 0 and § > 0 are prescribed. Thus, the PFSP are affine convolutions of
sequences {An, tn, Wy }-

2.3 The Lévy measure for the probability distribution of pulse
height and position

The simplest template is a step function for all n. The distribution of {\n,#,}
that insures self-affinity in that case was discovered by Paul Lévy and is classical.
The same distribution continues to be required in all FSP. Let the plane of
coordinates ¢ and A be called address plane. Take a rectangle [A, A+dA] x [t, t+dt]
in the address plane, such that [A, A + d\] does not contain A = 0. Given an
exponent § > 0 and two scale factors C' and C"”, the Lévy measure is

C'A1dXdt, if XA > 0, and C”|A|70~1dAdt, if A < 0.

Giving C’ and C" is, of course, equivalent to giving the overall scale C’' + C”
and the skewness factor C'/(C' + C").

To define an FSP, the probability of finding an address point (X,t) in the
elementary rectangle is set equal to the Lévy measure. The number of address
points in a domain D in the address space is taken to be a Poisson random
variable whose expectation is the integral of the Lévy measure over D. The total
number of pulses is countably infinite.

2.4 Semi-random pulses and the probability distribution of pulse
widths and position

The simplest pulses are the step functions used by Paul Lévy to generate the
SLM. The pulses examined in this paper and illustrated in Table 1 and generalize
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the step functions. The height A is random with the Lévy measure, but |A] fully
determines the width W. The resulting processes are called semi-random and
denoted as PFSP. To insure that the PFSP is self-affine, one must take

W = o|A|%, where o > 0.
The resulting joint measures of width and position are
C'w™'dAdw and C"w™'dAdw.
They are independent of 4. So is the probability distribution of W, namely,
Pr{W > w} o w™.

The units in which A and W are measured are arbitrary and unrelated. If
those units are identical, either C’ +C" or ¢ can be normalized to 1 by changing
the unit. However, up to scale, the distribution of an PFSP is determined by
(C"+ C")o and the skewness factor C'/(C” + C”). In the sequel, an important
role is played by lateral limit theorems that are expressed most conveniently by
fixing C' + C" and allowing ¢ — oo. The consequences of ¢ — oo are obvious
when the pulses are “cylindrical:” made of a rise followed, after a span of At = w,
by a fall of equal absolute value and opposite sign. Clearly, the contribution to
F(t+T;C,8) — F(t;C,0) from a pulse such that w > T is not a pulse but a
solitary rise or fall. Therefore, as ¢ — co, each cylindrical pulse reduces to a rise
or a fall, and the fact that a pulse has a bounded support becomes less and less
significant.

3 SELF-AFFINITY AND THE EXPONENT H = 1/4;
EXISTENCE OF GLOBAL DEPENDENCE

3.1 The self-affinity property of all PFSP

An admissible combination of a pulse shape and a value of § is a combination such
that the semi-random PFSP construction yields a well-defined random process
F(t;C,4). For other values of §, the construction diverges and 4 is called ezcluded.
When the construction converges, it is easy to see that the resulting PFSP are
self-affine with H# = 1/4. This formula is familiar from the Lévy case when
the pulses are step functions but with a striking novelty: 6 > 2 provokes an
irreducible divergence for SLM. But for PFSP, there is no divergence, that is, §
is unrestricted.

In one case to be described elsewhere, the construction of F(t + T;C,4d) —
F(t;C, d) diverges, but that of the second difference [F(t+T;C,8)—F(t; C,6)] —
[F(t;C,8) — F(t — T;C,d)] converges and is self-affine.
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3.2 First corollary of self-affinity: Each PFSP defines a special
domain of attraction, hence the standard limit problem
concerning random processes becomes degenerate

In the study of random functions, the standard next issue is whether or not there
exists an exponent H such that, setting F(0;C,§) = 0,

weak  lim PEREA D)

is a non-degenerate function of p, called the “attractor” of F. The most familiar
attractions are WBM and SLM in the case of independence and FBM in the
case of dependence.

When F(t) is a PFSP, the standard limit problem does not arise, since in
distribution T—# F(pT; C, 6) is independent of T'. That is, each PFSP defines its
own domain of attraction of exponent H = 1/4.

Standard domains of attraction to an PEFSP. Given a self-affine attractor
X(t), the next challenge is to describe its domain of attraction. This is the
collection of 1.f.’s G(t) for which the rescaling (or renormalizing) function A(T)
can be selected so as to insure that

weak Tli_{r;CA—l(T)G(pT) = X(t).
Thus far, my study of the domain of attraction of PFSP has limited itself to
r.f.’s that are themselves sums of pulses, but involve a density other than Lévy’s
or a relation other than w = a\°.

Clearly, weak limy_.o, T~H F(pT;C,d) is unchanged if the distribution of
pulse heights is changed over a bounded interval, for example if pulse height is
restricted to A > £ > 0.

For the next obvious change, the example of SLM suggests replacing the
constants C' and C" in the Lévy density by functions C'()\) and C"()\) that
vary slowly for A — oco. And FBM suggests replacing the relation w = o)?
by w = o(A)A, where o()) is also slowly varying. These changes lead to a
nonself-affine generalized PFSP. The questions is whether or not, as T" — oo,
there exists a rescaling A(T') that makes A~!(T")G(T') converge weakly to a self-
affine PFSP. I have been content with verifying (see Section 7.6) that a sufficient
condition is that C’(\)a(\) — 1; in that case, T*/% A(T') is the inverse function of
T = o(A) A%, implying that A(T) is slowly varying. The condition C"(A)o(\) — 1
is demanding, resulting in a narrow domain of attraction, a notion discussed in
Section 3.4.

3.3 Second corollary of self-affinity: all PFSP are globally dependent

A corollary of Section 3.2 is that if F' is a PFSP, then T~ F(pT) fails to con-
verge to a standard attractor relative to asymptotically independent increments,
namely, either WBM or SLM. This implies that all semi-random PFSP must fail
to satisfy the usual criteria that express that dependence between increments is
local.
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In fact, they are uniformly globally dependent. For example, define for each
t the following two functions

e the rescaled finite past T7*/9[F(t) — F(t — Tp; C,d)]
e and the rescaled finite future 7-V/4[F(¢t + Tp; C, ) — F(t; C, )]

Some pulses contribute to both past and future, hence these random func-
tions of p are not statistically independent. Because of self-affinity, their joint
distributions are independent of 7". This means that strong mixing is contra-
dicted uniformly for all T

3.4 Thoughts on the role of limit theorems, given that, in the case
of PFSP, the standard limit problem is degenerate

In the light of Section 3.3, let us compare the “attractands” with their attrac-
tor. The process of going to the limit to destroy idiosyncratic features of the
attractand while preserving “universal” features is expected. This is the case for
the most important attractors namely, the nonrandom attractor for the laws of
large numbers, the Gaussian r.v. for the central limit theorems, and WBM for
the functional central limit theorems. These attractors’ domains of attraction
are very broad, being largely characterized by the absence of global indepen-
dence and of significant probabilities for large values. By contrast, when a basin
of attraction is narrow, the attractor yields specific information about the at-
tractands. Thus, there is a sharp contrast between broad universality with little
information and narrow universality with extensive information.

Down to specifics. For SLM, assuming that the attractands are broadly de-
pendent, their tails must be long and strictly constrained. For FBM, assuming
that the tails are short, the dependence must be global and strictly constrained.
Similarly, the sufficient condition C’'{A)o(A) — 1 in Section 3.2 defines for each
PFSP a (partial) domain of attraction that is tightly constrained. The novelty
is that with the tails and the global dependence must involve the same exponent.

The resulting variety of forms creates a use for additional limit problems that
would put order by destroying some of the PFSP’s overabundant specifications.
That is, the finding in Section 3.3 must spur the search for alternative limit
problems, for which the domains of attraction are broader, therefore reveal more
“universal” properties of the PFSP. Section 4 will advance one possibility.

4 THE CONCEPT OF “LATERAL LIMIT PROBLEM?”
AND THE EXPONENT «; FOR PFSP, THE
LATERAL ATTRACTOR CAN BE EITHER
UNISCALING (a = = 1/H) OR PLURISCALING
(¢ = min[2,4] # 1/H)

4.1 Background of the new “lateral” limit problem

Neither the random walk nor the Poisson process of finite density is self-affine,
but both are attracted in the usual way to the Wiener-Brownian motion B(t),
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which is self-affine with H = 1/2. That is, writing F(0) = 0, it is true in
both cases that T—1/2F(pT) depends on T for T < oo, but not in the limit
T — co. Since the replacement of T by pT transforms discrete time and F' into
real variables, rescaling time before taking a limit is necessary in the case of a
random walk. But in the Poisson case the standard passage to the limit can be
rephrased to avoid rescaling time. One imagines N independent and identically
distributed Poisson processes Fj,(t), then one forms

N
Fy(t) = Fu(t),
n=1

and one finds that,
weaklimity_, oo N~/*Fy(t) = B(t), with 1/H = a = 2.

This rephrasing of the passage to the limit is not important in the Poisson
case, but it has the virtue that it continues to make sense in the case of PFSP. The
theory of the addition of independent identically distributed random variables
tells us that, for fixed ¢, one must have 0 < a < 2 and the limit is a stable rv:
Gaussian for o = 2, and Lévy stable for 0 < o < 2. Table I lists the values of o
for a selection of pulse shapes, and Section 7 gives an example of derivation.

Pulsc 0<8<1 l1<8<2 2<8
0=0 Bo=0
FBM:
|—] ﬂ |-| a=2v=3§
SLM:
a=v=§
Excluded:
Divergence for
low As is non
renormalizable
Bo=Bi Bo=Bi=0
V=00 v=4
_N_ i
o=2f
Excluded:
__/_' Divergence for
low As is non
v=eo renomalizable
Excluded SLM FBM: :
a=8 a=2v=
Table 1 Ve 12<H<]1 H<12

4.2 The lateral limit problem as applied to PFSP; reason for the
term “lateral”

Let us now observe that forming Fyy (¢) for a semi-random PFSP, and then letting
N — oo is equivalent to viewing F(t) as a function of both ¢ and C" + C". Then
we keep C'/C" fixed and let C' + C” — oo and C” — co. One can think of the
axis of C' 4+ C" as orthogonal to the axis of ¢, hence the term lateral.
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For example, replacing C’ by C] + C4 and C” by C{ + C4 can be interpreted
as follows. The pulses corresponding to C7 and CY{ can be called red and said to
add up to Fr(t), and the pulses corresponding to C% and C¥ can be called blue
and said to add up to Fp(t); all pulses together yield F(2,t) = Fg(t) + Fz(t).
In order to represent F'(IN,t) graphically on a page, one must rescale it by the
factor N—1/,

4.3 An important corollary of the results in Table I: global
dependence can be “pluriscaling” (H # 1/a), like in the limit
case FBM; but it can also be “uniscaling” (H = 1/a), like in
the limit case LSM

Table I uses o to denote the usual exponent of stability. A first glance shows
familiar r.f.’s among the lateral limits. The SLM has independent increments
and satisfies 0 < o < 2 and H = 1/a. The FBM, except for H = 1/2, has
globally dependent Gaussian increments, so that « = 2, but satisfies H # 1/a.

In the nineteen sixties and for some time later, I carried out studies of global
dependence that are reproduced in [7]. They concentrated on these two examples
(broadened by fractional Lévy motion) and on the R/S statistic. Those examples
made me think that global dependence can be tested and measured by a single
exponent H. Given ¢, I thought that global dependence could be defined by H #
1/a and measured by H —1/c. It is a pleasure to note that I was prudent enough
not to write of independence and dependence but rather of (R/S)-independence
and (R/S)-dependence. But I confess having expected that any example beyond
this latter distinction would belong to “mathematical pathology.”

The PFSP show that I was thoroughly mistaken.

5 ADDRESS DIAGRAMS AND THE MECHANISM
OF NON-LINEAR GLOBAL DEPENDENCE IN
PFSP

5.1 Address function and diagram; characteristic function of F

Once again, each semi-random pulse is represented by a point in the address
space {t, A}. Therefore, when a pulse template includes one or more time-inter-
vals, one can define an address function and an address diagram, as seen mo-
mentarily. Examples are provided by this paper’s illustrations.

When there is one time interval it will be denoted by [0,T]. The address
function of [0, 7], denoted by ¢(t, A | 0,T), will be the contribution of the pulse
represented by {t, A} to F(T;C,d), where we set F(0;C,d) = 0, and — as may
be the case - to other increments of F' as well.

Since {t, A} has a Poisson distribution, and the contributions of the address
points to F are additive, the logarithmic characteristic function of F' is simply
the integral

Y(E) = C(C’,C”)](eiéw(t,A\O,T) _1)A-5-1a)
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carried over the address space. Here,
C(C',C"y=C’ for A >0 and C(C',C") =C" for X <0.

When pulses are constant outside an interval, it follows that ¢ = 0 over a
large excluded part of the address space. The analytic form of ¢ may depend
on (A, t), making it convenient to integrate v¢(£) separately over a number of
distinct domains. The boundaries of these domains will be said to form an address
diagram. The case when the pulses are cylinders is illustrated in Figure 2. The
address points in the dotted arrows have no effect.

0 /i T T+T ¢t

Fig. 3. Address diagram when pulses are cylinders.

5.2 Joint address diagrams and pictorial illustration of the reason
for interdependence between the AF corresponding to two
non-overlapping intervals; its strongly non-linear character.

The two intervals being [0, T] and [t,t+7"], with ¢t > T, is denoted by cross BUG.
It it is important to fully understand the simplest case when the pulse reduces
to two steps, either cancelling (up then down or down then up) or noncancelling
(up and up or down and down). The case 0 < § < 1 raises no convergence
problem.

For both of these pulses (¢,A | 0,7) and (¢, A | t,t +T") are either = A
or = 0. Therefore, dotted areas of Figure 3 have no effect and the domain
of integration of ¢ splits into three parts: The first is denoted by horizontal
hatching. It affects only [0, T] and defines a r.v. Arr. The second is denoted by
cross-hatching. It affects both [0,T) and [t,t + T”] and defines a r.v. Ap. The
third is denoted by vertical hatching. It affects only [¢,¢ + T and defines a r.v.
ARg.

That is,

Ap = F(T;C,5) — F(0;C,8) = Arp + Ao

A — B+ T KN 4. 8N — LA 0 A
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0 T 4

Fig. 4. Joint address diagrams and pictorial illustration of the reason for interdepen-
dence between the AF corresponding to two non-overlapping intervals.

Once again, Apr, Ao and Agrp are independent and the symbol + means +
when the pulse is noncancelling and — when the pulse is cancelling.

The origin and the nature of the resulting dependence between Ay and
Apgr are clearest when t is several times larger than T and easiest to follow if
C" = C" and their common value C' is made to increase from 0.

The theory of Lévy stable variables correctly suggests the following: except
for small C, the order of magnitude A(C) of the largest contribution to Ay and
ARRg, hence to Ay, and Ap, satisfies C[\(C)])® = 1, i.e., A(C) ~ CV/4,

For small C, below the cross-over at C ~ T, both Ay, and Agr continue to
be dominated by A ~ £T/¢, To the contrary, the addend Ao comes exclusively
from tail values of A, and is small. The dependence is therefore small, except
when ¢t = T, which corresponds to neighboring intervals.

When C is very large, Apr o« CY/% and Agp o« C/9, while Ap « C!/2.
Again, the dependence of Ay and Ag is small.

We are left with the midrange where C is of the order of ¢. There, both Ay
and Apg are of the order of magnitude of the largest contributing A. Once again,
the dependence between Ay and Ag of the order of 1 if the same largest A
contributes to Ag, hence both Ar and Agr. Otherwise the dependence between
Ap, and Ap is small. Strong dependence has a probability of the order of 1, say
1/3.

As C — o0, the midrange where t is of the order of C' also — oo, which shows
that Az, and Ag become independent and do so in non-uniform fashion.

6 DISCUSSION OF TABLE I: EFFECTS OF PULSE
SHAPE ON THE ADMISSIBLE 4§, AND ON THE
LATERAL ATTRACTOR

Changing the pulse shape greatly affects an PFSP. First, it affects the domain
of admissible §’s. Next, it affects the attractor of F(¢) and in particular the
dependence of & on 8. Several examples are summarized in Table L.
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The left column of Table I illustrates a selection of pulse templates. Other
templates are examined in follow-up papers. A striking immediate observation
is that a discontinuous PFSP can have continuous lateral attractors, and con-
tinuous PFSP can have discontinuous lateral attractors.

The right column states that & > 2 is excluded when the pulse is non-
cancelling but is admissible when the pulse is cancelling. In the latter case,
the lateral attractor is FBM. In any event, H < 1/2 is incompatible with SLM.

The column second from the right shows that 1 < § < 2 is admissible for
all pulse templates and all values of 4, and that it yields varied and interesting
results. Combining proven facts with inferences based on compelling heuristics,
one is tempted to infer the following.

o For continuous pulses having left and right derivatives bounded away from
0 and oo, the lateral attractor is FBM.

e For discontinuous or mixed pulses, the lateral attractor is SLM.

The column shows that the dependence of the limit on the template is far
more complicated for 0 < § < 1 than for 1 < § < 2. When the pulse template is
discontinuous, a formal extrapolation to 0 < § < 1 of the results relative to SLM
with 1 < § < 2 is both meaningful and correct. When the pulse is continuous,
the extrapolation to 0 < § < 1 of the results relative to FBM with 1 < 6 < 2 is
meaningless, in fact, the construction diverges. As shown in a follow-up paper,
one finds meaningful results by considering the second difference

AAF = [F(t + T;C,6) — F(t;C, 8)] — [F(t; C,8) — F(t — T; C,5)).

The case 1 < § < 2; sensitive dependence of the lateral attractor on the
pulse templates; a bridge between FBM and SLM. Table I indicates that the
attractor is FBM in the case of a smooth conical pulse, but it is SLM if the
pulse has a discontinuity, however small, which occurs, for example, when the
pulse is a stepped cone, namely a staircase made of many steps up followed
by many steps down. “Intuition” suggests that, for finite C, these two pulse
forms could not make much of a difference. This is confirmed by a comparative
examination of the address diagrams. The diagram corresponding to the stepped
cones approximates that of the smooth cone, except for large \’s. As the number
of steps increase, so does the quality of the approximation, and it also spreads
up to increasingly large A’s.

7 PROOFS OF THE CLAIMS IN TABLE I FOR THE
CYLINDRICAL PULSES

The parameter o is set to 1 in this Section. The address points with A > 0 and
with A < 0 contribute to two independent parts of F(T';C,d). The calculations
leading to their characteristic functions are the same except for different values
C’ and C". We restrict ourselves to the case A > 0 and C' = 1.
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7.1 The logarithms of the characteristic function (Lc.f.) of
F(T;C,6).

From Figure 1 it is clear that the address points that contribute to F(T;C,4)
fall into two domains described as left and right and denoted by Dy and Dp.
The strip (A, A+ dX), where A > 0, makes the following contribution to the l.c.f.

T[(e®* — 1) + (7% — D)X 1dN if A > T4,
M(e%* — 1)+ (e7¥* — DA~ MdA  if A< TS,

Integrating over A and transforming to the rescaled variables z = A\T~'/% and y =
£TY yields

/m[(eiym — 1) + (e — 1)Jo~0"1dz + fl[(eiw — 1) + (%% — 1)|zldz.
1 0

This expression converges for all § > 0 and is the L.c.f. of a rescaled r.v. indepen-
dent of 7. Therefore, the rescaled increment T/ F (T; C,6) has a distribution
independent of T'. This is a property of self-affinity with H = 1/§. We know the
mechanisms of self-affinity: in FBM, it is caused by global dependence without
long-tailedness, in SLM it is caused by long-tailedness without global depen-
dence, and in PFSP it is caused by both long-tailedness and global dependence,
acting together with the same value of H. The next issue is to separate the
long-tailedness and dependence aspects.

7.2 The attractor in the case § < 2. Lateral attraction to symmetric
Lévy stable increments with «« = 4.

Given N independent r.v.’s F, (T; C, §) with the above distribution, the behavior
N

of AFy = ZFR(T; C, ) depends sharply on the value of 6. When § < 2, the
n=1
l.c.f. of N=1/9 AFy can be written in the form

Tf (e¥¥ 4 e~ — 2)y 0" 1y
(T/N)H/8
T/

+N f (AN g o~ AN _gya-1gy,
0

When N — oo, the first term converges to the well-known l.c.f. of a symmetric
Lévy stable r.v. with the stability parameter a = J and the scale parameter
proportional to 7%/%. The second term is of order N'~2/4, therefore converges
to zero. Hence, for fixed T, F(T') belongs to the symmetric §-stable domain of
attraction.



16 Benoit B. Mandelbrot

7.3 The dependence structure of F(T;C,§) in the case § < 2.
Lateral attraction to a Lévy stable r.f.’s with a = § and
independent increments.

We proceed to the multidimensional structure of the PFSP. We show that the
multidimensional distributions of the PFSP are attracted to that of a symmetric
SLM. To prove it we need to find the limit in distribution of a linear combination

k N
S LNTYEN " RT3 C6),
i=1 n=1

where F,(T};C,48),7 = 1,2,...,k, are nonoverlapping increments of an PFSP
copy F,, over (possibly different) time spans 7;. The limit should be the corre-
sponding linear combination of independent é-stable variables with scale param-
eters proportional to the respective Tt-” @, Here, we consider increments over two
disjoint time spans 77 and Th, i.e., k = 2. The general case is not mathematically
more involved but requires an overload of notation. Our assertion follows from
the same reasoning as in the one-dimensional case, if we show that the expression

N_/ [(e1€r=8ANTYE _ gy (gE@ANTE o dANTHE gy 3 =d=1g44)
D

converges to zero, where D is the dotted region depicted in Figure 3. But this
expression is again of order N1=2/¢ which establishes the result.

7.4 The attractor in the case § > 2. Lateral attraction to Gaussian
increments.

This case is very different, since the variance EF?*(T;C,6) is finite, therefore
the rescaled sum N'/2[Fy — EFy] is asymptotically Gaussian, i.e. stable with
a=2.

7.5 The dependence structure of F(T'; C,4) in the case § > 2.
Lateral attraction to a fractional Brownian r.f.’s with
H=1/6 <1/2.

Examination of the characteristic function of a linear combination of nonover-
lapping increments of the PFSP shows that it has the second derivative at 0, i.e.
every linear combination has the second moment, and multidimensional distri-
butions of the PFSP are attracted to multidimensional Gaussian distributions.
Note that this Gaussian process in the limit must have stationary increments
and be self-affine with the constant H = 1/§ since these properties are preserved
under convolution and convergence in distribution. It is well-known that FBM
with H = 1/§ is the unique Gaussian process satisfying these requirements.
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7.6 Some semi-random PFSP belonging to the domain of standard
attraction of a semi-random self-affine PFSP.

We replace the constants C' and o with the slowly varying (at co) functions
4(A) and o()) such that the function w = ¢(A\)A® is monotonically increasing.
Writing the inverse function of w(A) as A = w'/®L(w) yields the identity

L(w) = o7 Y (w' P L(w)),

which is an implicit equation for L(w) and will be used momentarily without
having to be solved.

When A > 0, the strip (A, A + d\) makes the following contribution to the
le.f.

T[(e¥* — 1) + (7% —Dly(NA%1dA  if A > TYIL(T),
a(MA (42 —1) + (e=** = D]y(JA~1dA i A < TYIL(T).

Integrating over A and transforming to the rescaled variables z = AT~/¢
L~YT) and y = ETYSL(T) yields

[ -1+ (e - Dl T LD (D)
o (€% = 1)+ (€ — Do @ T LD fe TS L(T)

The integral over (1,00) converges for all § > 0. Assuming that the functions
~ and o are such that also the second integral is finite (e.g. v and o are both
bounded in the neighborhood of zero), the above expression gives the Lc.f. of a
rescaled r.v. T~V L~Y(T)F.

This l.c.f. may depend on T'. If so, the following question arises: under what
conditions on y(\) and ¢(A), and hence on L(A), does this Lc.f. converge to
that prevailing in the PFSP case y(A\)a(A\) = C'o? (We know that the product
C'o determines the type of an PFSP.) Because of the identity that links o(XA)
and L(w) the two factors written between braces are identical (asymptotically,
when T' — o0); therefore the two halves of the L.c.f. yield the same condition on
convergence. It is

lim v(M)o () = C'o.
A—00

In other words, the functions 1/4(A) and o(X) must vary slowly with A and
asymptotically proportionally to each other.

The question concerning whether or not these conditions are also necessary
has not been addressed yet.

Acknowledgments. In 1977-78, 1 studied semi-random PFSP with a one-
dimensional ¢ and a multi-dimensional F: early simulations for the second row of
Table I were performed by M.R. Laff, and I conjectured that the closure of the
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set of values of F(t) remains of Hausdorff-Besicovitch dimension D = §. Soon
later, J. Hawkes proved this conjecture. In the mid-1980s, I studied an applica-
tion of semi-random PFSP with a multi-dimensional ¢ and one-dimensional F:
early simulations performed by S. Lovejoy are reported in [5]. I also made conjec-
tures concerning the random PFSP; in due time, they were proved in [2] and [4].
Earlier versions of this paper was discussed at length with R. Cioczek-Georges
and M. Frame. Diagrams were drawn by H. Kaufman.
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