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Abstract. — The behavior of very large clusters of diffusion-limited aggregation (DLA) was
investigated to help discriminate between the two geometric scenarios recently described by
Mandelbrot: finite transient and infinite drift. Using 50 DLA clusters of 1 million particles, we
follow the increase during growth of the maximum radius of the clusters and of various relative
moments. One can distinguish two regions: an inactive completely grown core and an active
growing region. In the growing region, scale factors were defined the moments of the atoms
distances from the original «seed». They do not cross-over to the behavior characteristic of
self-similarity for finite sizes and support the novel «drift» scenario that postulate an infinite
continuing «transient». The moment’s «misbehavior» may help understand the disagreement
between previous estimates of the clusters’ fractal dimension.

In the last ten years a considerable effort has been devoted to the analysis of
fractal-growth phenomena [1]. The reason of this interest is that a large number of non-
equilibrium aggregation phenomena like dendritic solidification, polymerization, electric
breakdown and many others may be described by means of simple models showing a variety
of fascinating characteristics. The first model of fractal growth based on a well-defined
process is diffusion-limited aggregation (DLA) [2]. For the sake of completeness, let us recall
that in DLA growth an «atom» executes Brownian motion until it hits, and becomes attached -
to, the curve that bounds a given «target» or «seed». Another atom is then launched towards
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the enlarged seed, and the whole process repeats. Witten and Sander [2] believed that DLA
clusters are self-similar [3], i.e. that their complication is about the same at all scales of
observation sufficiently larger than the scale of the atoms. However, departures from
self-similarity were soon observed (see[1,4]). Eventually, a widespread belief arose that the
early DLA clusters should be viewed as «prefractal» approximations; this implies that there
exists a finite cross-over to a self-similar range. The cross-over to this range was beyond the
sample sizes obtained until very recently, but now it can be investigated. However,
asymptotic self-similarity of every characteristic of DLA is not the only possible scenario. As
an alternative ref. [5] has argued that it is conceivable, at least theoretically, that as samples
_ grow some properties of DLA drift continually. This scenario implies that departures from
simple self-similarity will be observed for any finite size of DLA clusters, even if very large.
Moreover, it is still unclear if more than one exponent is needed to characterize the scaling
properties of the resulting asymptotic structure.

To gain a deeper understanding of these problems, the Yale group has undertaken a
systematic study [6,7] on the properties of very large clusters of off-lattice diffusion-limited
aggregation (DLA). This article investigates distributions that we call «radial density
profiles»; its tools are traditional, namely moments analysis, instead of the new approach
based on e-neighborhoods [5]. The study is based on 50 clusters of 1 M particles grown under
meticulous control to avoid biases due to approximations in the algorithm [8]. The present
conclusion is that our mental picture must allow different numerical characteristics of DLA to
have different cross-over to self-similarity. Thus, one should not be surprised if for given
cluster size different viewpoints disagree, some suggesting self-similarity while others do
not. In particular, DLA clusters show two very different regions: a fully grown cluster core
that can be considered «frozen» and an outer «active» region where the dynamical features of
the model play a major role[9]. We view these dynamical aspects as responsible for the
infinite «drift» deviating from the simple self-similarity observed for some of the properties
we can study. The overall conclusion is that the results reported in earlier studies are often
affected or even dominated by transients.

Given a cluster of N particles, let F(R, N) be the number of particles at a distance < Rk
from the seed, plotted as a function of R. A cluster shell is the collection of particles that have
become part of the cluster when cluster size ranged between N — AN and N. The radial
cluster shell profile is

AF(R, N, AN)=F(R, N) - F(R, N — AN). (1)

For AN = N, the cluster shell fills the cluster. For small AN, the cluster shell profile is a
form of the finite difference of F(R, N). The function F(R, N) is a cumulative distribution
relative to distances < R. Often, it is better to deal with a density-like function. For that,
one divides log R into uniform bins and plots the number of atoms (in each bin).

Letting R, be the distance from the seed to the k-th particle (in order of absorption into
the cluster), the moment-based scale factors of the cluster shell will be dfined as

q|1/e
] . (2)

In all cases, the ¢ < 0 values of o, are without interest. In fact, it is obvious that oy =1,
and it is easy to show that ¢ < 0 yields 5, ~ N 1/9 hecause 7, is dominated by the inner cut-off
due to the atoms’ positive size. On the contrary, when ¢ > 0 and N >>1, the atom’s size no
longer matters. For ¢ = 0, o, can be used to measure the thickness of the cluster’s growing
region, a notion pioneered in [9]. As ¢ — », 7,(NV) converges to R,...(N), the largest distance
from the seed to a particle in a cluster. It is important to notice that shell analysis is focussed

1 5’: 1 ﬁ’:
N,AN)=| — R, - — R,
Gq( ) {iAN k=N-AiN+1 g AN n=N-aN+1
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Fig. 1. — Analysis of DLA clusters based on the annular-moment behavior. The various moments are
normalized with respect to the first one and averaged over 50 one-million-particle clusters.

particularly on the active region of the DLA cluster, i.e. where new particles become part of
the aggregate.

If the cluster had been statistically self-similar, it would have been characterized by a
single well-defined D, and quantities ¢,(N, AN) would have been proportional (for large N)
to N'/2 and to each other. The first inference from our data is a very familiar one. We find, as

previous authors observed again and again, for o, (N) = (1/N) >, R, that ¢, (N) ~ N2,
K=

where D = 1.71. Nevertheless, o,(N) shows a substantial amount of sample fluctuation, even
after averaging data for 50 clusters of 1 Mp each. In order to study the behavior of the higher
moments, we write them in terms of o;(N) by using a proportional factor A,(N)

aqg(N) =, (N)A,(N), and R = lim a1 (N)2A,(N), (3)

Where, for given N, the factors A, necessarily increase with ¢. By studying A,(N), it is,
therefore, possible to analyze the moments’ behavior. A necessary but not sufficient condi-
tion for the clusters being self-similar is that each A,(N) tends to a limit as N — .

To test whether or not A,(N) — limit, we evaluated these quantities for logarithmically
spaced values of N and plotted them in logarithmic doubly coordinates (see fig. 1).

The expression a5 (N) is closely akin to the width & of the active zone where new particles
stick. Plischke and Raéz[9] introduced the division of DLA clusters in «frozen» and active
region and found that £ scales with N as £ ~ N, with v = 0.484 = (1.71) . Subsequent larger-
scale simulations [10] indicated that v increases for larger clusters and seems to approach 1/D
asymptotically. Recently Ossadnik [11] investigated clusters up to 200000 particles and
claimed consistency with a scaling form with logarithmic corrections. However the true
asymptotic scaling behavior of the width of the active region is still unclear. We also find that
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Fig. 2. — a) Magnified plots of the moments behavior for ¢ = 20, ¢ = 50 and g — ». b) Local-slope
analysis of the moments behavior. Apart from an initial region (small-size effect), the local slope is
appreciably and definitively lower than zero.

A2 (N) begins by a near linearly decrease on logarithmic coordinates. Hence, one can fit
A2 (N) by N%, therefore fit ¢, (N) by N>z, with v, = v; — Av < 1/D. Extended to infinity, this
implies A5(N) < 1 for large enough N, which is impossible. In fact, our data show that Av
depends on N, and the «local» v, (N) decreases as N grows. Our data on X, (N) do not exclude
that A, (N) — limit > 1 after a long but finite transient, but they do not exclude, either, that
Ao (N) continues to decrease very slowly in a non-trivial way. In the last case, the growing
region is progressively smaller and its approach to the asymptotic limit is not governed by a
finite cross-over.
Our most striking conclusion is that 2,(N) continually decrease for every value of ¢ > 2,
including ¢ — oo. In fig. 2, it easy to note the curvature of the A, (N) behavior up to the limit
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size of our samples. In order to visualize this effect, we perform a local-slope analysis of
Ao (N) (fig. 2b)). The local slope is definitively different from zero even for N = 108, and does
only approach this value for very large size clusters. The crossover from fast to slow decrease
depends on q. For large g, A,(N) continues to decrease rapidly, even in the range where it
might have been argued that A,(N) has settled down. Thus, A, continues to decrease
non-trivially up to the size of our simulations. Moreover, we have tested the possibility of a
logarithmic behavior of the A,(N) curves. An accurate analysis shows that this behavior

seems consistent up to N = 10*, but not for larger clusters. Therefore, these results support
the idea of an «infinite drift» scenario which shows persistent deviations from self-similarity
for arbitrary large finite-size samples. This scenario could account for several corrections to
scaling which are non-trivially related and reflect the dynamical aspects of the problem.

Additional information is yielded by the radial cluster shell profiles. For instance, an
important feature of DLA clusters is confirmed by the analysis of the function F(R, N) R ~'/?
for several values of N. It is observed that each of the contributing graphs begins by a piece
that is indistinguishable from the preceding contributing graph. In other words, among the
atoms that joined the cluster between the (N — AN)-th and the N-th, very few reach the
central portion. This confirms the fact that the central portion can be viewed, in effect, as
having stopped growing. In addition, by inspecting the distribution AF(R, N, AN) it is also
possible to discuss several geometric features of very large clusters. These results will be
discussed elsewhere.

From the previous analysis of very large DLA clusters we can draw the following picture.
DLA is mainly a non-equilibrium phenomenon in which the dynamical aspects play a major
role. These dynamical aspects are present from the early stages of the growth process up to
the very large sizes considered in our simulations, and are responsible for the infinite-«drift»
scenario suggested by the analysis in ref.[5] and in this paper. In fact, DLA shows two
different cluster regions. The first is a fully grown core that will not be further modified by
growth. The second region is the active zone of the cluster where the growth processes are
still occurring. This region is clearly far from asymptotic and contains the dynamical
properties of the DLA model. OQur moment analysis is focussed on this second region and
supports the novel «scenario» [5] in which the dynamical transient continues forever,
showing infinite persistent deviations from the simple self-similarity. In fact, we found that
the moment-based scale factors of the cluster shell show corrections to a simple self-similar
scaling up to N ~ 10°. These corrections decrease very slowly in a non-trivial way (no
observed finite cross-over), and allow a scenario in which, for every finite-size samples, it is
possible to observe departures from the simple self-similarity.

The situation we have described is completely different with respect to the usual
equilibrium problems, such as percolation or Ising clusters, where there is no distinction
between cluster’s regions. The inner region of the DLA clusters is completely «frozen», and
it may be expected to be «self-similar». However, this «old» part of the cluster had been
young, and preserves a memory of the dynamical process by which it has been generated. As
pointed out in ref. [5] this can be reflected in a power law behavior in the prefactor that
measures the mass lacunarity and that supports the scenario of limitless drift. In this case the
fractal dimension estimated from the mass-radius relation is biased by a correction term that
could explain the disagreement, both from numerical simulations[1] and theoretical
approach [12], between the various estimates of the fractal dimension D.

* % %

The programs to generate large DLAs develop earlier programs contributed by L. WooG.
The assistance of L. N. SIEGEL at IBM is gratefully acknowledged. The investigations
carried out at Yale University were supported by the Office of Naval Research under grant
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