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Plane DLA is not self-similar; is it a fractal that
becomes increasingly compact as it grows?
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Using two new methods of geometric analysis, this paper establishes that DLA clusters are
definitely not self-similar. Compared to small clusters, the morphology of large clusters (of
sizes up to 30 million particles) can be characterized, both visually and quantitatively, as being
far more “‘compact” or less “lancunar”. Qualitatively, the number of “arms” increases during
growth. The evidence does not exclude that the cluster remains fractal, and that its fractal
dimension remains constant; however, new pitfalls in the estimation of D are revealed. The
gradual change in the morphology of DLA opens the possibility that therc is continuity
between the standard morphology observed for small to medium computer generated DLA
clusters and the compact morphology observed in many actual physical phenomena.

1. Introduction

This paper is an announcement and abstract of recent results from the Yale
group that will be reported in detail elsewhere [1.2]. Being written for
specialists, the text dispenses with lengthy preliminaries and is largely a
commentary on its figures.

We introduce new methods for the analysis of shape and use these methods
to perform direct investigations of the geometric structure of the diffusion
limited aggregates (DLA) in the plane [3]. In a first approximation, these
aggregates are self-similar fractals [4, 5]. But, applying our tools to off-lattice
clusters of up to 30 million particles, we found direct geometric evidence that a
more refined model is needed. Two alternative geometric scenarios are ad-
vanced and suggested for further investigation: (A) There is a massive transient
from one level of “compactness” to a higher level, followed by unchanging
compactness. (B) There is a non-terminating drift towards increasing compact-
ness. Qualitatively, compactness increases when the number of branches is
perceived to increase. Paradoxically, it is possible (as seen in section 4 and the
“Note added in proof”) for compactness to increase while the cluster remains a
fractal and has an unchanging dimension.
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We are well aware that many diverse analytic departures from self-similarity
have been reported in the literature; we believe that either of our scenario
accounts for these departures; our arguments are described in ref. [2].

Our investigations concern the geometry of the “dead” parts of the cluster,
namely, parts that are extraordinarily unlikely to grow further. In that part of
the cluster, the fjords have nearly parallel effective walls (they are not at all
“fan-shaped”, i.e., their width does not increase linearly). This finding was first
reported in ref. [6] for medium-sized clusters and is strongly supported in ref.
[2] for clusters of up to 30 million particles. It follows that the lowest values of
the harmonic measure are extremely low, and our results have a direct bearing
on their f(«) distribution. Moreover, it has been demonstrated previously [6]
that non-growing portions are scattered throughout the clusters, even near the
tips of young branches. Therefore, we expect our results to be pertinent to the
study of growth.

2. e-neighborhoods analysis of DLA. The filling ratio increases as the cluster
grows

Our first test uses a new method that we call e-neighborhoods analysis. The
results are exhibited in figs. 1, 2 and 3, each containing six subfigures, and
concern the dead central part (near the origin) of a single 14.8 million particle
cluster, to be denoted by Q. The dead central part is defined conservatively as
contained within a circle C_,, whose radius R, is equal to 3/4 of the radius of
gyration of Q. In our cluster, the dead central portion contains 5 million
particles. Let us mention immediately that we obtained identical results by
investigating in the same way a large number of other clusters, some containing
30 million particles, and by examining the changes in the dead central part of
the cluster as it grew.

Reduced truncated clusters. To prepare for e-neighborhoods analysis, we
select a radius R, < R_... then define A by A*=R_. /R, and draw for
each k the circle C, of radius R, = R, A" In figs. 1 to 3, Ry=R,;, =78,
R,, =R, =3746 and A = 1.175. The kth truncated cluster Q, is defined as the
portion of Q that is contained within C, (i.e., the intersection of Q and the
interior of C,.) Next, each C, is reduced by a ratio of 1/wR;}, hence becomes
the circle C of unit area; Q, is reduced in the same ratio lfﬁRi, and becomes
a shape to be denoted by Qk. Note that, if k <24, the truncated cluster Q, has
stopped growing long before our cluster reaches its total size Q: thus, Q, was
the dead central part of our cluster at an earlier instant of time.

The notion of an e-neighborhood. Given a set S, its e-neighborhood £{S} is
defined (see ref. [7]) as the set of points that are within a distance of & of a
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Fig. 1. Analysis of DLA clusters based on the rate of growth of the areas of the e-neighborhoods
of truncated and reduced DLA clusters. See the text for explanation. Here the value of ¢ is small,
very far from saturation for the largest value of k.

point in S. To form &{S}, draw a circle of radius & around each point of S;
these circles overlap extensively and £{S} is their union (sum).

The filling ratio; explanation of how figs. 1, 2 and 3 are drawn. Each figure
corresponds to one of three values of £: small, medium and large. For each &,
we evaluated —for the 25 values of k from 0 to 24 —the area of the e-
neighborhood s{ék}. Since the arca of C is 1, those areas are automatically



98 B.B. Mandelbrot | Plane DLA is not self-similar
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Fig. 2. Analysis of DLA clusters based on the rate of growth of the areas of the £-neighborhoods
of truncated and reduced DLA clusters. See the text for explanation. Here ¢ is “‘medium-sized™.

renormalized to lie between 0 and 1; they can be called filling ratios. Their
values are plotted by bold lines in figs. 1f, 2f and 3f. The thin lines represent
the renormalized areas of the 24 sets £{Q, —Q,_,}, each of which is the
reduced intersection of Q with the annulus bounded by successive circles C,
and C, _,. Thus, the bold lines refer to integrated data, and the thin lines refer
to differential data.

To provide additional evidence of more graphic character, five values k =0,
4, 9, 16 and 24 were singled out (for reasons to be explained in the next
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Fig. 3. Analysis of DLA clusters based on the rate of growth of the areas of the - -neighborhoods
of truncated and reduced DLA clusters. See the text for explanation. Here & is large, close to
saturation for the largest value of k.

paragraph) and the corresponding £{S,} were plotted as figs. 1a to le, 2a to 2e
and 3a to 3e, respectively.

Inspection of figs. 1, 2 and 3. If Q had been a Sierpinski gasket, s{(ﬁ)A}
would have fluctuated without any systematic trend. Similarly, if Q had been
self-similar (in scales above the particle size), the sets a{Q } and e{QA
Qk,l} would have been statistically identical (except for corrections due to
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particle size). In particular, the curves in figs. 1f, 2f and 3f would have been
horizontal, except for up and down statistical fluctuations.

In fact, figs. 1f, 2f and 3f show that these various areas increase with &; as
expected, there is less noise in the integrated data. And figs. 1a to le, 2a to 2e
and 3a to 3c show that the e-neighborhoods s{@ « fill the circle C increasingly
tightly. The growth of the filling ratio with & is slower than linear, and very
roughly proportional to log k ~log log R. This explains why the five values of &
that we selected for our illustrations arc not spaced uniformly.

Mathematical formalization of the preceding findings, using the notion of
lacunarity. To express the above findings mathematically, the proper fractal
notion is lacunarity. The theory of lacunarity was sketched in ref. [7], and
extensive recent developments have quantified it by introducing actual numeri-
cal rates. When a cluster Q is perceived as becoming increasingly “compact”,
various measures of its lacunarity are found to decrease. However, this notion
is too delicate to be meaningfully discussed here; for details the reader must be
referred to ref. [1].

Two geometric scenarios for the preceding findings: “‘unexpectedly massive
transient” and *‘limitless drift”. Our findings can be interpreted in cither of the
following two ways. (A) They may reveal an unexpectedly massive (that is,
long) transient from one level of lacunarity to a lower level that holds for all
cluster sizes above a certain finite threshold. (B) They may manifest a
non-terminating drift toward vanishing asymptotic lacunarity.

While examining earlier versions of figs. 1f, 2f or 3f, we have been constantly
alert for indications that the plots of the filling ratios had reached a maximum
value, implying a transient that has run it course. In some of our early tests,
the R, were the radii of gyration of successive partly grown stages of one
cluster; hence the right most portions of our plots of the filling ratios were
significantly noisier, and one could not exclude the possibility that had they
alrcady crossed over to a horizontal line within the sample that was being
examined. So far, however, the crossover has not been confirmed. Hence the
“transients” scenario was not yet observed to have run its course, and this
scenario remains unproven.

The alternative geometric scenario is that the drift toward increasing com-
pactness continues without end while the cluster remains fractal. Such a
scenario cannot be proven by finite size experiments. In addition, it does not
become meaningful, and does not cease to appear paradoxical, until the notion
of fractal has been generalized beyond the morphology of the familiar Sierpin-
ski gasket and of small or medium sized DLA. This indispensable generaliza-
tion is one of the main points of the theory of lacunarity [1]; it is better to
describe it separately, in section 4 (continuing in the “Note added in proof™).
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3. Orbital gaps analysis of DLA

The e-neighborhoods investigated in section 2 are two-dimensional, but a
geometric analysis of DLA can also be performed on related one-dimensional
shapes. We have analyzed DLA via orbital cross sections, namely, via the
rescaled cross sections of Q by circles C, centered at the origin. These are also
the rescaled cross sections of the sets Q « by the circle C in which they are
contained. As described, for example. in ref. [7] (p. 135), a “‘generic” linear
section of a fractal of dimension D is a fractal dust of dimension D — 1. For
DLA, a widely accepted value is D = 1.71 (it will be discussed in section 5).
Thus, we are led to the heuristic expectation that an orbital section of a DLA is
a dust of dimension 0.71 on a circle. We shall parameterize each orbital circle
by an angle 2mx, which rescales the circle into the interval [0,1].

Second new method: analysis of the cross sections of Q, by € using the
distribution of the gap lengths. Recall that a gap is defined as an (open) interval
whose endpoints belong to the set S but whose interior points do not. Denote
by I' the gap length, by y a possible value of this length and by Nr{l" >y} the
number of gaps of length >+. Within the scaling range of S, one expects that
Nr{I" >y} will be ruled by the following scaling relation, called the gap-
number rule: Nr{I' >y} ~vy “"Y/A,, where A is a gap prefactor ([7], p
78). Thus, scaling can be tested in experimental situations by checking whether
or not the graph of log Nr{I" >y} versus log y is straight; if it is, its slope
provides an estimate of D.

In the case of DLA, the rough gap-number data for the cluster examined in
section 2 are unfortunately very noisy. To eliminate noise, we always average
the data, either across several clusters of the same size, or across several
neighboring values of R within the same cluster. Fig. 4 was obtained by taking
30 clusters of 10 million particles each, and averaging the 30 quantities Nr for
each y.

The cutoffs. After noise reduction, the doubly logarithmic graph of
log Nr{I" >y} versus log v is expected to be a straight line of slope —0.71.
More precisely, one must expect a straight interval between two cutoffs.
Indeed, a gap in an orbital section is bounded by x = 1; hence an outer cutoff
equal to at most 1/5 (5 being the agreed number of “‘main branches” of a DLA
cluster). At the other end (choosing the particle’s size as the unit of length)
thee is an inner cutoff of about 1/2wR.

Inspection of fig. 4. The graphs relative to small R are not straight at all,
suggesting that the inner and outer cutoffs are too close to each other. (Had
this test been applied to the earlier DLA clusters, it would have failed to reveal
their being fractall) As R increases, a straight portion of slope very nearly
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Fig. 4. Analysis of DLA clusters, based on the distribution of orbital gap lengths y, as measured in
fractions of a whole circle. See the text for explanation. These are plots of log Nr{I" >y} versus
log v. Unfortunately, different units were used for the two coordinate axes, but the straight line
above the graphs is of slope 0.7.

—0.71 appears in the middle of the graph; it is the anticipated manifestation of
an incipient scaling range. As R continues to increase, this range becomes
wider. The overall distribution of the gaps splits into a ““tail”” for small values of
v and a “head” for large values of vy, separated by a scaling range. The overall
plot of log Nr{I" >y} versus log y is convex (“cap-convex”).

Compared to the values one would by extrapolating the scaling range, the
few largest gaps (starting with v, ) are extremely small, and in fig. 4 they
become smaller as the cluster grows. These values correspond to the few widest
tfjords, located between the major “arms” of the cluster. (This decrease in
fjord width has been observed by other authors, for example in ref. [8].)

A first approximation to fig. 4, and the completed transients scenario. To
pursue the discussion, it helps to denote by 1y, the (ill-defined) gap where
the scaling range crosses over into the head. Now we can return to the analysis
of fig. 4, and argue that, in a first approximation, the tail simply “unwraps”
monotonically towards a fixed straight line of slope —0.71. Let us show that
this first approximation would imply the scenario of a transient that has almost
ran its course.

If the tail unfolds on a fixed straight line, the distribution of small gaps
LUiross t€NAs to a limit, and the tail probability Pr{I" <y, . } must increase, up
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to the maximum represented by the fixed straight asymptote. This requires the
head probability Pr{I" >vy_ .} to decrease, and the head itself to “‘shrink”
away from the straight asymptote. That is, the largest gaps must decrease in
size, and may also increase in numbers. One can specify this first approxi-
mation further, as stating that the number and sizes of the widest gaps
eventually cease to change as the cluster grows further. That is, the broadest
fjords would begin by widening less than linearly with distance, but would
eventually resume a linear (fan-shaped) morphology.

A second approximation to fig. 4, and its relation to the scenario of limitless
drift toward an increasingly compact limit. Our second scenario would manifest
itself by a limitless shrinking of the distribution’s head. Now let us announce an
important and unexpected observation that will be justified in section 5. During
growth, the value of D need not change, if — while the head shrinks with no
limit — the straight (scaling range) portion in fig. 4 drifts up but keeps an
invariant slope. Such a drift would express a limitless decrease in the prefactor
Ag. This phenomenon is as it should be, because ref. [1] shows that A is a
numerical measure of lacunarity.

If the straight scaling portion moves up as it lengthens, plots corresponding
to different k& will cross increasingly far to the left (and vy, would decrease).
This leads us to consider the envelope of all the plots (i.e., the locus of points
accessible from the top without crossing any plot). The limitless drift scenario
predicts that the plots’ envelope will, in its middle portion, become concave
(“cup-convex™), in contrast to the individual plots, which are convex (cap-
convex).

Perceived concavity in part of fig. 4. We do indeed perceive such a concavity
in fig. 4, as well as in every other figure we have constructed on the same
principles. To test our perceptions, we went on to replot fig. 4 to enhance
concavity, and its presence was indeed confirmed.

We do not dispute that this concavity is slight. The evidence it provides is of
borderline quality. It is no better than the evidence in section 2 in deciding
between the scenarios of a transient that has not yet ran its course and the
scenario of limitless drift.

4. Example of limitless increase of compactness (decrease in lacunarity) with
no charge of dimension

Pick D to satisfy 1 << D < 2. We know that on the interval [0,1] a Cantor dust
with this D is obtained by using generators made of N equal intervals of length
r=N""" These intervals can be spread uniformly over [0,1], thus yielding an
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infinity of distinct Cantor dusts %, with the same dimension D. (Further
Cantor dusts of dimension D are obtained by other procedures.)

The length of the e-neighborhood of €, corresponds to the filling ratio of
section 2. It is easy to see (and is shown in detail in ref. [1]) that one has

length of [¢{€,}] = &' ""/A.,

and that A, (called the filling rate of lacunarity) satisfies A.— 0 as N— .

Why are those special Cantor dusts relevant to DLA? Simply because DLA
has a hierarchical structure (a tree structure); therefore the cross sections of
DLA by a line are also fractals with a hierarchical structure — like the Cantor
dusts. An increasing N in the preceding example corresponds to a tree with
increasingly heavy branching structure. Therefore, increasing filling ratios
(section 2) and an increasingly heavy branching structure are different symp-
toms of the phenomenon of deceasing lacunarity.

Note that, as N—, our Cantor dust comes increasingly close to being
translationally invariant; but it never reaches this limit. It “looks™ increasingly
like an interval; but it never becomes an interval. Nevertheless, if N is large, no
one would think of evaluating its fractal dimension.

Similarly, it seems taken for granted that the morphology of compact growth
is of dimension 2. This belief would explain why, to our knowledge, this
dimension is not being measured. The new fact that a dimension <2 is
compatible with very low lacunarity, immediately suggests that the experimen-
talists should actually check D in various examples of compact growth.

Let us end this section with a question. Suppose it is confirmed that the
lacunarity of DLA decreases without bound, or that there is a massive
transient that has not yet ran its course. If so, is it right to call DLA a fractal?
Long ago (after some vacillations) we concluded against a dogmatic definition
of the concept of fractal, and the present study confirms that it is best to use
loose definitions that make it easy to generalize when need arises. It has just
become useful to call a set S fractal, if it is inhomogeneous except that the
fractal dimension (defined locally) is the same throughout (see the ‘“Note
added in proof™).

5. The mass—radius relation and the estimation of D

So far, we have not mentioned the relation M(R) = A,,R” for the number of
particles, M(R), in a circle of radius R. This is the best-known and best-
established property of fractals, and the basis for the standard estimate of D in
the case of DLA. Naturally, we drew the diagram of log M(R) versus log R,
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and found it to be so nearly straight in every sample that it is not worth
reproducing. Its slope for N up to N =3 x 10 takes the value D ~1.71 [3-5]
inferred from the clusters that we view as very small.

A first reaction is that the straightness of log M(R) simply confirms well-
established facts. But the results reported in our figures suggest an altogether
different and more complicated view. Indeed, the prefactor A,, in the relation
M(R)= A,,R" is not a numerical constant (like the prefactor for the area in a
circle, which is ). Instead, A, is a characteristic of a fractal, to be added to D.
In addition, the theory of lacunarity [1] shows that —like A, and A, - the
prefactor A, is a numerical rate that measures lacunarity. Therefore, it too
should be expected to decrease as a DLA cluster grows and becomes increas-
ingly compact.

Assume that the cluster has an underlying true fractal dimension D,,,., and
consider the standard plot of log M versus log R. Occasional changes in the
prefactor would have yielded straight segments of slope D, ., lying increasing-
ly low as R increases. But if A,, changes gradually, there is only one way for
log M(R) to be represented by a straight line: one must have A,, ~ R ", from
which it can be shown to follow (see ref. [2]) that the slope of log M(R) is
D =D, ,.—AD. Therefore, when D is estimated from the mass—radius rela-
tion without correcting for the bias AD, the estimate should be viewed as
merely a lower bound.

There is a long tradition in physics that welcomes relations (of the form)
Ay~ R %7, In the present instance, this tradition should welcome our scenario
of limitless drift. Alternatively, if the decrease of A,, stops after a massive
transient, one would, in general, expect a bend in the graph of log M(R) versus
log R. It is obvious that this prediction can be tested experimentally and
deserves much further study.

6. Conclusion

Once again, this is an advance report on ongoing research. An irritating
feature of past work on DLA has been that different methods of measurement
yicld slightly contradictory estimates of D. We are presently seeking accurate
cstimates of D by our methods, searching whether the previously observed
discrepancies are explained by either of our two scenarios, and seeking new
criteria to discriminate between those scenarios. A tool needed in this context
will be a careful comparison of the distinct measurement of lacunarity provided
by the rates A, A5 and A,,. Some useful results are given in ref. [1], but little
is known.
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Note added in proof

While correcting the proofs, we noted that two points at least might lead to
objections that are easily preempted.

Meaning of the scenario of “‘non-terminating (limitless) drift.”” Take a
sequence of increasingly large clusters downsized to a fixed size. In our second
scenario, the clusters’ central portion would converge to a filled-in part of the
plane. This limit could be of dimension 2, hence not fractal. But all approxi-
mations — however close, but short of the limit — would be fractal. The study of
multifractals (in the form I proposed in 1974) has always been rife with
instances of limits that differ qualitatively from all their approximations. (This
is emphasized in my paper in the Kolmogorov volume of: Proc. R. Soc.
(London) A 434 (1991) 79-88.) Now analogous effects may be showing up in
the study of fractals themselves.

One cannot explain this paper’s observations by familiar transients found in
developing self-similar models. In order to test the results reported in our
figures, we have repeated the same experiments on the exactly self-similar
“M.-V. toy model” of DLA, as described in B.B. Mandelbrot and T. Vicsek, J.
Phys. A 22 (1989) L377-L383. The initiator is the interval [0, 1]. The generator
is straightened letter A, made of 3 sticks of length 1/2, two of them linear
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continuations of each other. The kth step of the construction replaces each of
3%~ sticks of length 27“~" by 3 sticks of length 27" forming a reduced-scale A.
The construction proceeds by interpolation; but in fact the kth interpolation
stage is meant to illustrate a reduced kth cluster; therefore it is immediately
suited to the tests in this paper.

As k increases, this reduced scale cluster fills in, becomes increasingly
“bushy.” Hence the area of its e-neighborhood increases to a limit correspond-
ing to the fully developed tree. Could it be that the effect described in figs. 1,
2, and 3 simply reflects the growth of the £-neighborhood during the “natural™
filling-in of a strictly self-similar structure? For the M.-V. toy model, the answer
is, “No”. Filling ratios begin by growing, but their growth stops after a short
and clearly terminated transient.

The gap distribution in the M.-V. toy model was plotted as in fig. 4. Again,
there is no trace of the effects fig. 4 reveals in the case of DLA.

The programs used for the above tests were written by L.N. Siegel.
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