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The harmonic measure on off-lattice diffusion-limited (DL) aggregates is defined in detail. The formu-
lation requires the continuum Laplacian and the regularization of divergences in the density of the mea-
sure due to folds between atoms. An ultraviolet cutoff is needed for numerical simulations, but in this
off-off-lattice formulation, the cutoff can be varied at will. The cutoff’s effects on the distribution of the
Holders « is studied. We find that the right-hand tail of the distribution of « is very dependent on the
lower lattice cutoff. However, the cutoff does not effect the transformations that collapse the distribu-
tions corresponding to clusters of different sizes. The shapes of off-lattice DL aggregates giving rise to
extremely small minimal harmonic measures are illustrated. We discuss the notion of the smallest har-
monic measure in an ensemble of clusters, and also the scaling properties of the distribution of « on

small clusters.

PACS number(s): 64.60.Qb, 64.60.Ak

I. INTRODUCTION

On diffusion-limited (DL) aggregates [1], and for that
matter on the boundary of any two-dimensional domain,
the harmonic measure is affected by local geometry. In
particular, the smallest harmonic measures are related to
the shapes of the “fjords” by the Beurling equality [2-4].
From this equality, but also more directly from the scale
invariance of the Laplace equation, it follows that a
fjord’s Euclidean depth affects but does not determine
how small the harmonic measure is at its bottom. It is
also known that the number of fjords of given Euclidean
depth increases with decreasing depth [5]. However, the
measure in a small fjord depends strongly on details of
the construction of DL aggregates. In the case of lattice
diffusion-limited aggregation (DLA), the constraints due
to the lattice drastically limit the possible morphologies
of the clusters, especially on smaller scales. For example,
the lattice introduces a small-wavelength (ultraviolet)
cutoff in the potential field, whose effects have never been
studied properly. This paper shows that this cutoff has a
significant influence on the distribution of the harmonic
measure, and therefore, on the right-hand side of the
f(a) curve that corresponds to the negative moments
[6-11]. When the boundary of a domain is linearly self-
similar [12,13], the f(a) curve is known to provide a
quantitative description of the rules of self-similarity of
the harmonic measure. In DLA, the right-hand side of
the f (@) does not exist. But the failure of the f(a) to ex-
ist does not necessarily imply that the measure is not
geometrically self-similar [10]. Instead of f(«a), new limit
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distributions and their corresponding collapse rules may
be needed to describe the rules of self-similarity [11].

We have argued elsewhere that the observed sample
variability of the small probabilities and also the large
variability within individual clusters are due to fluctua-
tions in cluster geometry [2,4]. These fluctuations are
severely affected when the DL aggregate is grown on a
lattice. The cutoff most severely restricts the smaller
scale fluctuations, and thus most significantly affects the
smaller clusters. However, our findings suggest that the
effects of the cutoff do not decrease with cluster size.

Therefore a much more careful model of DLA is need-
ed if one wishes to study the effects of the lattice cutoff on
geometric fluctuations, and in particular, on the right-
hand tail of the distribution f (@). The model we use is a
combination of two well-known concepts: off-lattice
DLA [14] and the continuum Laplacian potential. We
will refer to this model as off-off-lattice DLA, to indicate
that the Brownian motion of the atoms proceeds off lat-
tice, and that the harmonic measure is derived from the
(off-lattice) continuum Laplacian.

II. OFF-OFF-LATTICE DLA

Consider off-lattice DLA in two Euclidean dimensions.
The center of a disk of diameter A, called an atom or par-
ticle, performs a Brownian motion until its perimeter in-
tersects the perimeter of one of the disks forming a clus-
ter. At that instant, the moving atom becomes part of
the cluster, and a new Brownian atom is released at a
randomly chosen point away from the cluster. An exam-
ple of an eight-particle cluster is shown in Fig. 1.
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FIG. 1. The black disks of diameter A are the atoms forming
the cluster. The seed atom is marked in white. A new Browni-
an atom will stick to this cluster when its center touches the
boundary of the gray A neighborhood. This set is the union of
disks of diameter 2A at the centers of the atoms in the cluster.
The harmonic measure is supported by the A perimeter, and in
this particular case, it attains its smallest density near the cross.
Since the opening A of the fjord connecting the cross to the out-
side can be arbitrarily small, the Laplacian potential should be
known with infinite spatial precision. See also Fig. 4.

Kakutani [15] established a relation between Brownian
motion and Laplacian potentials. He studied the proba-
bility of a Brownian point hitting any point in a subset of
the perimeter of an off-lattice DL aggregate in the Eu-
clidean plane, and showed that it equalled the harmonic
measure of that subset. The density of this measure is the
normalized Laplacian charge density on the perimeter of
the cluster; it is proportional to the gradient of the Lapla-
cian potential on the boundary, i.e., to the electric field.

Let us recall that, when the cluster is viewed as a col-
lection of atom centers, its A neighborhood (Fig. 1) is the
set formed by replacing these centers by disks of diameter
2A. The A perimeter is the external boundary of the A
neighborhood; that is, the boundary accessible from
infinity. Thus the probability of the perimeter of a
Brownian atom of diameter A intersecting the perimeter
of the cluster is given by the normalized harmonic mea-
sure on the A perimeter of the cluster.

In the square lattice Laplacian formulation of DLA
[16,17], the Laplace equation is solved on a lattice with a
spacing equal to the side of the square atoms (or bonds)
forming the cluster. Solving the Laplace on a much finer
lattice than the particle “‘diameter” would at best yield
more attractive graphics. The above definition of a con-
tinuum DL aggregate shows, however, that the atom size
does not (by any means) set an upper limit to the accura-
¢y to which the harmonic measure needs to be known.
Figure 1 shows that, ideally, the position of atom 8
should be known with infinite precision, because A can
take any value =0. The Laplacian potential should also
be known with infinite spatial accuracy; that is, the con-
tinuum Laplacian potential is needed. In practice (e.g., in
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the numerical simulations to be discussed below), a finite
precision in both these quantities results from, and
roughly equals, the lower cutoff o that must be imposed
on the Brownian step lengths. We shall refer to o as the
sticking distance or sticking precision, and measure it,
and all other distances, in units of atomic diameter A=1.

In contrast with on-lattice DLA, off-off-lattice DLA
has the following features: (1) the number of distinct N-
atom (N >2) configurations is infinite, (2) there is no lat-
tice anisotropy, (3) (as exemplified by the configuration in
Fig. 1) the smallest possible harmonic density in clusters
of approximately five or more atoms is 0*, and the max-
imum density Holder is « (see below), and (4) in on-
lattice DLA, only the larger scale features of the larger
fjords are more or less independent on the lattice. So, in
small on-lattice DLA, both the constraints on the possi-
ble cluster configurations which are due to the lattice,
and those more genuine ones, which are due to the small
number of atoms, are mixed. On off-off-lattice DLA, the
only finite size effects are due to the small number of
atoms: therefore we expect the asymptotic behavior to
transpire more rapidly.

A. Numerical simulation and regularization

Our numerical simulation of off-off-lattice DLA grows
off-lattice clusters using Brownian atoms that take off-
lattice steps of size o in units of atomic diameter A. An
atom sticks to the cluster when its center steps within a
distance =o of the A perimeter.

The cluster is then embedded in a square lattice with
lattice constant &; that is, the diameter of an atom is 1/8
lattice units. On this lattice, the Laplacian potential is es-
timated using an iterative numerical procedure. At the
point marked by a cross in Fig. 1 the harmonic measure
will be reliable, if and only if the sticking precision o is
smaller than the smallest neck width in the fjord. If the
lattice constant is larger than the sticking precision, that
is, 8> o, the harmonic measure at the bottom of a fjord
with neck widths smaller than ¢ is automatically exclud-
ed from the geometric support of the measure. Thus,
when 8> o, the accuracy of even the smallest positive
values of the measure is thus guaranteed. The majority
of our simulations use ¢ =0.01 and §=0.1.

Let the A perimeter y(t) of an off-lattice cluster be
parametrized by arclength, so that ¥(0)=y(/(N)), where
[(N) is the Euclidean length of this perimeter. In [13],
we have argued in detail that the study of the scaling
properties of the harmonic measure on growing fractal
boundaries should be based on the density Holder defined
by a(t)= —Indu(t), where dpu(t) is the harmonic density
at perimeter site y(f). However, at the folds in y(z), see
Fig. 1, the harmonic density is 0, so that @ = c. In order
to avoid the resulting anomalous contributions, we con-
sider the e-regularized density

-y
dule)= P

with i=1,...,l1(N). Large density Holders due to the
presence of folds disappear for € equal to, e.g., 0.1 times
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the circumference 27 of the A perimeter of a single parti-
cle. On the other hand, the genuine large a’s due to
screening by fjords of Euclidean depth larger than e will
remain.

Numerically, it does not make sense to take € <28,
since the Laplacian potential is only known for spatial
resolutions larger than 8. In these cases, the regulariza-
tion is provided by the finite cutoff 6 of the underlying
lattice. The “site probabilities” usually used in the study
of the growth probability distribution on DLA are a spe-
cial case, which may be referred to as lattice regulariza-
tion; in this case, the lattice constant, regularization con-
stant, and sticking distance are all equal to the particle
diameter: §=e=0=A.

III. GEOMETRIC FORM OF SAMPLES
WITH EXTREME HARMONIC DENSITIES

For a fixed lattice constant, the smallest harmonic den-
sity is found when a slit of width 26 is encountered in a
cluster whose length is approximately half the number of
its atoms. These configurations occur with very small
probability, and the ensemble sizes needed to sample
them increase rapidly with increasing number of atoms.
Figure 2 illustrates the three- to eight-atom
configurations which give rise to the smallest harmonic
density out of ensembles of 800 clusters. The Laplacian

FIG. 2. The configurations having the smallest harmonic
densities out of ensembles of three- through eight-atom clusters.
Each ensemble contains 800 clusters for which the Laplacian
was estimated using a square lattice with spacing §=0.2. In the
presence of such a lower cutoff on the spatial precision of the
Laplacian, the smallest density occurs in slit-like morphologies.
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potential was estimated with lattice constant §=0.2.
Even though the ensemble size is not large enough, it is
apparent that the smallest density is carried by a growing
slit. (The eight-atom cluster in Fig. 1 occurred in a larger
ensemble.)

However, it should be kept in mind that the notion of a
specific morphology, giving rise to the smallest harmonic
density, loses its meaning in the continuum limit of the
Laplacian for 6—0. This is because small densities can
be due to either elongated fjords, very narrow necks, or a
combination of the two.

Figure 3 juxtaposes the configurations of smallest har-
monic density corresponding to large ensembles of clus-
ters of different sizes N. The neighborhood with the
smallest density is marked with a cross. The smallest
neck in the fjords bearing these small densities is the
same in all the clusters, because the size of the grid used
to estimate the potential was 8=0.1 in all cases. Such a
grid does not allow the estimation of the potential for
necks smaller than 1% of the atomic diameter. This is il-
lustrated in Fig. 4 for a 32-atom configuration; all the
sites of the lattice used in the estimation of the harmonic
density around the A perimeter of the cluster have been
drawn. Clearly, this estimate of the density is completely
inadequate in the upper-right fjord. The contribution of
this cluster to the right-hand side of the distribution of a
would have been very different had & been somewhat
smaller.

Figures 3 and 4 also illustrate the enormous sample
variability of the smallest harmonic measures. In a run
of 26 000 clusters of 32 atoms, we found the values of the
smallest density to be scattered between 10 * and 10728,
The larger clusters in Fig. 3 may look like “typical”” DL-
aggregate clusters, but the distribution of their harmonic
measure is not “typical.”

IV. THE DISTRIBUTION OF THE HOLDERS «

Denote by P(a)da the probability that the density
Holder of a randomly picked point on the A perimeter of
one of the clusters in the ensemble lies between a and
a+da. In Fig. 5, InP(a) is plotted against In(a) for en-
sembles of eight-atom clusters with different values of the
ultraviolet lattice cutoff 8. The values of the lattice con-
stants are §=0.2, 0.1, 0.05, and 0.025, and the ensemble
sizes are 32600, 150300, 10350, and 240, respectively.
The dependence of the right-hand tail on 0 is perspicu-
ous. The straightness of these tails seems to suggest that
P(a)~a *. The estimated values of the slopes x are 8.0,
6.7, 6.2, and 5.5 for the respective values of . The fact
that e=2w /10 excludes the notion that the increase in x
is due to a better articulation of the folds. Neither do the
reported slopes and the behavior of the tails depend on
the ensemble sizes, except (of course) for the far-right
ends. This dependence on & seems to be due to the
above-illustrated fact that fjords with increasingly narrow
subatomic necks are sampled for decreasing 6.

To find a theoretical upper bound of this behavior of x,
we replace the ensembles of size n of N-particle clusters
by slits of width 0 and length L =N/2. Since the DLA
growth rules do not favor closed loops, the most extreme
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FIG. 3. Configurations bearing the smallest harmonic densities out of large ensembles of clusters with 8, 16, 32, 64, 128, and 256
atoms. The harmonic measure has been estimated with lattice spacing §=0.1. The ensemble sizes are 150 000, 42 200, 26 000, 10 000,
5000, and 1000, respectively. The orders of magnitude of the densities are 107'%, 1072, 10725, 1072¢, 107, and 107 %°.

distribution of @ that one could imagine would behave for
small 6 as Prob(® < 6)~0 (® is a random variable). The
harmonic measure at the bottom of such a slit is known
to be proportional to e "*L/®. It follows that a~L /6
which shows that the right-hand tail of the distribution of
a is  bounded from above by Prob(4dZa)
~a Lthatis, —x < —2.

The tail behavior of this bound is the same as that of
the Cauchy distribution. However, it should be noted
that there is no obvious relation between the upper bound
to the tail behavior of a for small clusters discussed here

FIG. 4. A 32-atom cluster out of the same ensemble as in
Fig. 3. But now we have those with the largest smallest densi-
ties, namely, a density of the order 107*. This illustrates the
large sample variability of the small densities. The figure also il-
lustrates the drastic nature of a lower cutoff on the spatial pre-
cision of the Laplacian potential. The spatial precision of 1% of
the atomic diameter is clearly insufficient to handle the upper-
right fjord with a narrow neck. See also Fig. 1.

and the results in [11]. This will be discussed further in
the next section.

One might have thought that the contribution of fjords
with narrow subatomic necks becomes negligible for
larger aggregates. But, in comparing the plots of the
probability density P(a) for §=0.1 and 0.2 in Fig. 6, we

o

Ine ?

FIG. 5. Plots of the logarithm of the probability density
P(a) vs the logarithm of the density Holder a= —Indpu for
eight-atom clusters with different values of the lattice constant
8. The density of the harmonic measure was regularized with
€=2m7/10. Starting from the bottom, the right-hand tails corre-
spond to §=0.2, 0.1, 0.05, and 0.025. The straightness of these
tails seems to indicate that P(a)~a * for eight-atom clusters
with x = 8.0, 6.7, 6.2, and 5.5.
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FIG. 6. Study of the effect of an increasing spatial resolution
of the Laplacian on the right-hand tail of the distribution of «,
for the harmonic measure on clusters of different sizes. From
left to right, the pairs of curves are for N=8, 64, and 128. For
clarity, we shifted the 64 and 128 pairs by 2 and 4, respectively,
to the right. The lower-right tail in each of the pairs is for lat-
tice constant 6=0.2 and the upper for §=0.1. We plotted
Cyla)=logyP(a) vs the normalized Holder a= —logydu in
order to compare the results for different cluster sizes.

find no numerical evidence for a decreasing contribution
by such fjords for increasing cluster sizes. The pairs of
curves in Fig. 6, considered from left to right, correspond
to N=38, 64, and 128. For the sake of clarity, the 64 and
128 pairs have been shifted to the right by 2 and 4, re-
spectively. From the left to the right tail, the numbers of
clusters in the ensembles are =~ 156000, 33000, 10000,
1600, 2000, and 400. In each pair, the lower curve refers
to §=0.2, and the top curve to §=0.1. A plot of
logyP(a) versus the normalized Hélder a= —logydu,
which one of us has shown to be a Crameér plot
[11,13,18], is known to give a collapse for the very sim-
plest restricted multifractals, and therefore allows a more
realistic comparison between results for different cluster
sizes. The dependence of the slopes of the right tails on §
does not seem to diminish with increasing cluster size.
This, combined with the fact that the smallest necks
(most sensitive to 8§) occur most frequently in the shorter
fjords and that—independently of the cluster size—these
fjords outnumber the larger ones, suggests that the part
of the distribution of a on the right-hand side of its max-
imum is very dependent on the ultraviolet cutoff § (here
we take o to be 0). The implications for the f(a) distri-
bution are discussed in the next section.

V. MULTIFRACTALITY
OF THE HARMONIC MEASURE

Our study of off-off-lattice DLA is primarily motivated
by our previous studies of the self-similarity properties of
the harmonic measure on DL-aggregate boundaries.
However, the clusters studied here are too small to draw
conclusions as to the asymptotic properties of the har-
monic measure’s self-similarity. In our previous study
[11] of the multifractality of the harmonic measure on
DL aggregates, we gave numerical evidence for the left-
sidedness of f(a). We showed that for 3125, 6250,
12500, and 50000 particle square-lattice clusters, the
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FIG. 7. A Cramer plot logyP(a) vs a= —logydu, where
N=8,16,32,64,128,256 are the numbers of particles in the clus-
ters. For a restricted multifractal, the different curves are
known to collapse to a single curve which is a linearly translated
f(a) curve. The left-hand sides of the curves show a tendency
to collapse for increasing cluster sizes. This is in complete
agreement with previous results [11]. The right-hand side is not
supposed to collapse, because f(a) is left sided.

left-hand side of the distribution of a collapses under the
Cramer rescaling rule, which is known to collapse the
whole distribution for restricted multifractal measures
such as the binomial. For DLA, however, the right-hand
side is not collapsed by this rule but by a different rule we
referred to as “Cauchy rescaling.”

For the small clusters discussed here, neither the
Cramer nor the Cauchy rescaling collapse the distribu-
tions. This is shown in Fig. 7 for the Cramer rescaling.
There is nevertheless a clear tendency for the left-hand
sides of the distributions to collapse. On the other hand,
a Cauchy plot of the same data (not shown) tends to col-
lapse the right-hand tails for the larger clusters (N <256).
Finite size effects could have been expected, and it comes
as no surprise that these collapses do not work for small
clusters.

The dependence of the right-hand tail of the distribu-
tion of a on the ultraviolet cutoff §, does not affect the
applicability of the collapse rules. Plotting the distribu-
tions in Fig. 7 for a different value of & results in a similar
behavior, even though the shapes of the right-hand tails
differ (see Fig. 6). In fact, we have simulations for many
different cluster sizes (N =3-150000), numbers of clus-
ters (n =1-100000), values of & (6=1-0.05), mostly off
off lattice, but also square lattice. When combined, they
very clearly show Cramer collapse for the left-hand sides,
and Cauchy collapse for the right-hand tails, indepen-
dently of & [19].

Clearly, the ultraviolet cutoff & is a necessity for nu-
merical simulations. It is, however, not part of the for-
mal definition of off-off-lattice DLA. The strong depen-
dence of the right-hand tail of the distribution of & on &
is artificial, and although we have a qualitative under-
standing of its origin, a more quantitative understanding
is presently lacking. What is encouraging though, is that
in establishing the self-similarity of the harmonic mea-
sure, one is not primarily interested in the exact shape of
the distribution, but in its scaling properties; that is, in
the collapse rule.
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V1. DECOMPOSITION OF LARGE CLUSTERS
INTO UNCORRELATED EIGHT-ATOM CLUSTERS
AND THE BEHAVIOR
OF THE SMALLEST HARMONIC DENSITIES

We now address the behavior of the smallest harmonic
density [2,4,9,10,20-23] in N-particle off-off-lattice DL
aggregates. The typical maximum Holder,
o (n)=max,a,,, which is the value one expects to
occur once in an ensemble of size n of eight-atom clus-
ters, is given by Prob(a>a,, (n))=1/n [9]. Assuming
the validity of equation P(a)~a *, we find
af, (n)~n'/*~V_ Therefore the a,,, is infinite, if taken
over an infinitely large ensemble of eight-atom clusters.

Let the “typical” behavior of a,,,, refer to the behavior
of the largest value @, ,,(N) of a, expected to occur at
least once in any N-particle cluster. A lower bound on
Cmax,iypl V) i8 easily obtained by assuming the N-particle
cluster to be an ensemble of ng=N/8~N uncorrelated
eight-particle clusters. Then, the smallest harmonic den-
sity is expected to be at least smaller than

dpu, < expl — e (ng)) ~exp(—cN /1),

where ¢ is a finite positive constant. This is a lower
bound, because the eight-particle clusters forming the N-
particle cluster are in fact strongly correlated; otherwise,
the large cluster could not possibly be a fractal. This
correlation manifests itself in the nesting of fjords within
fjords [13], which gives rise to multiple screening, and
consequently, lower probabilities.

This lower bound on the ‘“typical” behavior of
Qpax,yp( V) corresponds to a stretched exponential decay
for the smallest probability. It is also apparent that this
exponential decay has nothing to do with the existence of
some ‘‘typical” fjord shape. It appears in this crude
lower bound because of constraints imposed by the clus-
ter size N on the size of the ensemble of smaller clusters.
So, in an experiment with one sample of each cluster size,
one would expect to see the “typical” behavior. (It
should, however, be kept in mind that such an experi-
ment would be very unreliable, because of large sample
fluctuations. An example of these fluctuations was given
in Sec. III.) However, in the case of infinite ensemble
sizes (n = w0 ), it makes no sense to talk about the behav-
ior of a,,,(N) as a function of cluster size N, since the
infinite ensemble value of «,,,(N) is infinite for all ¥
larger than =38.

VII. SUMMARY AND CONCLUSIONS

Both very short and very deep fjords contribute to the
small growth probabilities in DLA. The geometry of the
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smaller fjords is severely limited, not only in lattice for-
mulations of DLA, but also in the case where off-lattice
grown DLA is forced on lattice for the sake of estimating
the Laplacian potential and the harmonic measure. In
order to study the effects of the lower cutoff imposed by
the lattice, we studied a more careful model of DLA
called off-off-lattice DLA, which is based on the continu-
um Laplacian.

The study of the self-similarity and multifractality of
the harmonic measure on clusters grown with this model
is based on the density of the harmonic measure, and re-
quires some form of regularization in order to get rid of
irrelevant divergences due to folds on the atomic scale.
Unfortunately, actual numerical simulations of this mod-
el require the introduction of an ultraviolet cutoff, name-
ly, the lattice constant 8. In practice, § is taken to be
smaller than or equal to the diameter of the atoms.

In the study of the scaling properties of the harmonic
measure, the principal quantity is the density dp of the
measure, and the normalized Holder a= —logydpu.
Since the density is, in principle, independent of the lat-
tice constant, it is, in theory, clear how one should com-
pare data obtained with different values of §, for the same
number of particles. However, for DLA, our results sug-
gest that the right-hand tail of the distribution of «
strongly depends on the spatial precision & of the Lapla-
cian. This by no means implies that the behavior for
different cluster sizes of the right-hand tail of the distri-
bution of a is ambiguous and ill defined. As we have
shown here, it is indeed true that the exact shape of the
tail depends on the value of the ultraviolet cutoff. For
that matter, one should avoid drawing conclusions from
the shape of the tail. Instead one should concentrate on
the scaling properties of the distribution; that is, the rules
that collapse the distributions on clusters of different
sizes. For those rules, the dependence of the right-hand
tail on & does not seem to matter much. As reported in
[19], the collapse rules seem to apply simultaneously to
data for different values of 8.
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