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We show that DLA follows a surprising new scaling rule. It expresses that the screened region, in
which the harmonic measure is tiny, increases more than proportionately as the cluster grows, This
scaling rule also gives indirect evidence that the harmonic measure of lattice DLA follows a hyper-
bolic probability distribution of exponent equal to 1. This distribution predicts that sample mo-
ments behave erratically, hence explains why the common restricted multifractal formalism fails to
apply to DLA.

The simplicity of the growth rules in DLA, diffusion limited fractal aggregation
[ 1], and their basic role in understanding the fractal aspects of many physical phe-
nomena [2-6], have motivated extensive quantitative studies. However a full under-
standing of the resulting complex structures is still lacking. One reason, in our opin-
ion, lies in the incompleteness of the description. This letter describes two new scaling
properties of the harmonic measure, g, of plane DLA. The need for two distinct scal-
ings implies that the notion of self-similarity splits into several distinct sub-notions.
Our more significant new scaling property of u is unusual, and indicates that DLA
satisfies an “extended form™ of self-similarity, but not the form that is ordinarily pos-
tulated. We compare small DLA clusters and sized down and coarse-grained clusters,
and find them to differ from each other in a systematic and unexpected way. In rough
terms, the “screened” region, in which the harmonic measure is tiny, increases far
more than proportionately as the cluster grows.

Plane DLA is generated by allowing an “atom’ to perform Brownian motion until
it hits an initial “seed”. At that instant, the seed is modified by embedding this atom,
and a fresh Brownian atom is launched against the enlarged target. By a classic result
of Kakutani [ 7], the distribution of the hitting points is the “harmonic measure”. In
the dielectric breakdown model (DBM) [8] the growth rules are based explicitly on
this measure. Overwhelming evidence from computer simulations [2-6] shows that
the arrival of very many atoms transforms the seed into a cluster with about the same
degree of complication at all scales of observation.

That 1s, DLA is nearly self-similar, but departures from simple self-similarity are
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questionable. Quantifying their statistical nature has proven to be a dauting task. It
was hoped for a time that the harmonic measure can be represented within a restricted
form of the notion of multifractal (Frisch and Parisi [9] and Halsey et al. [10]).
This would have implied that u is self-similar in a strong sense. With local irregulari-
ties of u being characterized by the classical Holder exponent «, the structure of strong
self-similarity is characterized either by a function 7(g) defined for —coc<g< + oo,
or by a function /' (@), whose graph is shaped like an asymmetric form of the symbol
M. Unfortunately, except perhaps for the sites with the highest growth probability,
the results of this multifractal analysis of DLA have been mutually contradictory or
otherwise unacceptable. Together with many other authors, we interpret these diffi-
culties as strong evidence that the power-law scaling relations that characterize the
restricted multifractals fail to apply to DLA [11-15]. These observed “anomalies”
are intimately related to the behaviour of small harmonic measures.

However, as we have recently shown [16] by explicit examples, the failure of 7(g)
to exist for all ¢ does not necessarily imply that a measure is not self-similar. The
measures in ref. [16] fit in the context of the more general theory of multiplicative
multifractals [17,18], yet the right-hand side of the f («) is altogether absent, so that
such a u can be called a “left-sided multifractal”. This letter’s principal point, how-
ever, goes beyond the evaluation of /' («). We argue that a one sided f(«) fails to
describe adequately the distribution of a left-sided measure w. In addition to the scal-
ing relation that is needed to define f(«), additional scaling relations are necessary
for the characterization of other, significant aspects of .

The present letter attacks the problem of the distribution of the harmonic measure
L using a direct probabilistic method [18,17]. A first reason 1s that the attempts to fit
the harmonic measure on DLA within the restricted multifractal formalism seem to
fail because of the high statistical scatter characteristic of small 4. One consequence
is that small ¢’s cannot be trusted. Thus, the exponential decay of the minimum prob-
ability (as postulated in ref. [13]) would be hard, either to confirm by direct meth-
ods, or to confront with other alternatives. Another consequence is that statistical
techniques such as the partition function become unreliable at best.

Our numerical work was done for both circular and cylindrical DLA. Our figures
concern circular geometry, but cylindrical geometry gives similar results. We grew 10
clusters of N= 50000 particles using a random walker algorithm #'. The potential was
computed by solving the discrete Laplace equation iteratively on the square lattice
underlying the growth, with boundary conditions 0 on the cluster and | on a circle
with radius equal 2 the overall size of the clusters, The harmonic measure u at a site
on the boundary of the cluster is theoretically proportional to the gradient of the po-
tential, but we approximate it by the potential at the nearest neighbors of the cluster,
and then normalize it [8]. The value of x4 was evaluated for every point of every

*! We used an algorithm by Y. Hayakawa, which grows the more common site version of DLA.
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cluster. This was done at the successive stages of growth N=781, 3125, 12500, 50000,
i.e., for N,=4%N,, with No=781 and k=0, 1, 2, 3. At each stage k, we estimated the
probability density p,(«) of the Holder exponent a=log u/log Ny, by determining
the sample frequency of & for each cluster with this value of k and then averaging over
the 10 clusters.

If the harmonic measure on DLA had been a restricted multifractal, one would
expect [18,16] the quantities Cy(«) = (1/log N)log py(e) to converge to the better
known quantity f («)/Dy— 1 as N—co. The plots of Cy(«) would therefore provide
an approximation of f(«). (These rescaling rules are usually expressed in terms of
the size L of the cluster, but L ~ N'/”.) Also note that the actual convergence to /(&)
may be extremely slow and the approximation of f(«) by Cy(«) may be poor.
Nevertheless, fig. 1 shows a high level of bunching for low «. But the right sides show
no sign of converging as N —»oo. The difficulties encountered by Legendre estimation
of f'(e), which starts with t(g), appear to originate solely with these tails.

Fig. 2 shows the same data replotted in a different fashion (highly nonstandard in
physics), which we call positive Cauchy rescaling. The abscissa is taken to be log u/
log N—log log N, and the ordinate is taken to be log py () itself, without any renor-
malization. Now, it is the right sides of the resulting graphs that collapse into one.

The seemingly peculiar rescaling used to obtain fig. 2 was neither picked by chance,
nor by trial and error, but was inspired by a limit theorem that is little known in
physics, in which the limit 1s called the asymmetric or positive Cauchy law. This theo-
rem enters via the theory of multiplicative multifractals [ 18]. Before we restate the
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Fig. 1. Cramér rescaling of the densities of the distributions of a’s, as estimated from 10 clusters of
masses N=T781, 3125, 12500, 50000. The ordinate is Cy(a)=(1/ln N)In py(a) and the abscissa is
a=—In u/In N, For a restricted multifractal, the limit of Cy (&) for N—oc would be f(a) — 1. Here, to
the contrary, the right tails of the distributions fail to converge.
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Fig. 2. The same estimated densities as in fig. 1, but with positive Cauchy rescaling. Here the left sides
fail 1o converge, but the right sides do converge.
main ideas of that theory, let us acknowledge that in the case of DLA, the successive
stages we shall describe are conjectural.

Consider a regular grid of base 2 on the unit interval [0, 1] and denote by I(j,, 5,
... B¢) the interval [¢, t+¢€], where e=2"%and t=0, ,, f». .... B (in binary represen-
tation), with f§; equal to 0 or 1. The structure of a multiplicative multifractal is deter-
mined by a random variable M, whose expectation satisfies EM =} (to insure conser-
vation ) and other conditions [ 17]. The first stage of the multiplicative cascade begins
with mass equal to 1 on [0, 1] and redistributes it by giving to the subinterval I1(5,)
the mass M(f3,). The second stage gives to the interval I1(f,, f,) the mass M(f,) X
M(f,. B,). After k stages, the interval I(f,, f.. ..., f) contains the mass

U €)=M(B) M(By. o) . M(B\, Br, o Bo) -

Each realization of the cascade (i.e., each seed in the “random”™ generator) yields a
different “sample™. The rules of the multiplication are statistically the same at each
step of fine-graining, in the sense that, given 7, the multipliers M (8, ), M(f), etc., are
independent and identically distributed (1.1.d.). Therefore the measures resulting from
these infinite cascades are staristically self-similar and they are multifractals in the
more general sense [17,16,18].

For convenience, we now introduce the random variable V= —log.M, whose prob-
ability density, p(v), is obtained from that of M, and we write

Hy=logu(e)/log e (1)

i

(VB +V(B B)+o+ V(Bis s B) 1=
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This H is a random variable whose sample value, denoted by «, is simply the Holder
exponent (“‘singularity strength’). Here, it is simply the sample average of k i.i.d.
random variables V|, ..., ¥, with probability density p(v), a topic extensively studied
in probability theory [19].

By construction the above multiplicative cascades yield statistically self-similar
measures. Hence one may hope that the probability densities p,(c) of Hy, corre-
sponding to successive prefractal levels , can be renormalized (or collapsed) in such
a way that a suitably renormalized version of the density p, converges to a limit other
than 0 or co. If a limit exists, it can be used to characterize the fractal properties of
the multifractal measure.

First suppose that the first and second moments of the distribution p(v) exist. This
seems almost obvious, but turns out to be a special case. Then two familiar rules of
probability theory are valid: the law of large numbers and the De Moivre-Laplace
central limit theorem [19,20] tell us that the sample average >.17,/k converges to the
population (ensemble) expectation EV and that the distribution of > ( V,,—EV)/\/k
converges to the Gaussian of variance E (V'?) — (EV)?. However, a description of mul-
tiplicative multifractals requires far more detailed knowledge. The appropriate lim-
iting distribution is given by the little known rule from Harald Cramer's theorem on
large deviations [18,17]. It asserts that the probability density p,(«) of H, is such
that Ci(@)=(1/k)log, pr(a) converges to a limit C(«). In the case that C(a) is
neither 0 nor oo, this function provides a characterization of the fractal properties of
the measure. In the case of restricted multifractals [16], the function f(«) [9,10] is
equalto f(a)=Dy+ C(ex) [18,17], with Dy=1 on the interval.

This terminates our exposition on the basics in ref. [17]. However, as ref. [16]
points out, all the above rules may either fail, or yield trivial results. As a preliminary
illustration that will prove significant, let us suppose that the random variables I, are
Cauchy distributed, that is, have the “Lorentzian” probability density p,(v)=
1/[m(14+#*)] [17]. Probabilists arc familiar with the following easily verified fact:
in the Cauchy case, >V, /k has precisely the same distribution as each of its addends
V.. ie. p.(a)=p,(a).On the other hand EV=co0 and E( V' ?) = oo, so that the expres-
sions that enter into the law of large numbers and the Gaussian central limit are both
meaningless. As to C.(a)=(1/k)log p.(«), it takes the form C(a)=—(1/k) X
log[n(1+«”)]. Therefore, C(a)=lim,_, C(a@)=0, hence f(a)=D, In other
words, not only do the usual (Gaussian) scaling properties fail altogether, but the
Cramér rescaling yields a degenerate result. Whenever such is the case, one hopes to
find a new renormalization scheme that would yield an alternative to the functions
C(a) or f(«). It may even occur (like in a left-sided fractal measure [16] and -
according to our results — for DLA) that, in order to characterize more completely the
fractal properties of 1, one must consider more than one normalization. For DLA, the
Crameérian f(«) normalization produces a collapse for low «’s (see fig. 1), while the
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positive Cauchy rescaling produces a collapse for high «’s, shown in fig. 2.

For Cauchy distributed Vs, the fact that the distribution of H, is independent of k
is in itself an unexpected alternative scaling property. It implies that plots of the den-
sities p,(«), corresponding to different levels of coarse graining, automatically col-
lapse back on to a Cauchy distribution. This is a very strong property, because it is
known to identify the Cauchy distribution uniquely, among all possible limits of sums
of 1.1.d. random variables.

In our context, however, the quantities ¥, cannot be Cauchy distributed, because
M <1 implies V= —log M>0. But suppose that Pr(V>uv)~v~!, like in the Cauchy
case. If so, the variable V' is in the domain of attraction of the positive Cauchy law
[19], which can be shown to be intricately related to the case A=1 of the multifractals
we have examined earlier [ 16]. The main implication is that the densities of /), can
be collapsed by subtracting a quantity proportional to log k [19]. In our clusters,
k=log N, therefore we recover the rescaling « — log log N which 1s used in fig. 1. Con-
versely, if a distribution is known to be a limit under the rescaling procedure leading
to fig. 1, that distribution is perfectly determined. Furthermore, one can show that
the tail of f(«) for a—oco behaves like in the Z=1 case in ref. [16]. That is,
S(a)~Dy—cexp(—c'a), with cand ¢’ being some positive constants.

Individual errors in a sample of a Cauchy random variable are of the same order of
magnitude as the average error over many samples. The same 1s also nearly the case
for the positive Cauchy. This is why sample moments for the harmonic measure on
DLA behave erratically, and thus why the method of moments fail in estimating /().

It is known that exp(—L?) is an absolute lower bound for the behaviour of the
smallest growth probability in lattice DLA [21,15]. Assume, as the above findings
suggest, that H, is in the domain of attraction of the positive Cauchy. Then
Pr(H,>a)~a~", The largest value o, (N) in a sample of N such random variables
is expected to satisfy PrH,> an. (N) =2 1/N, L6, G (N)=N. In a cluster of N
sites, one thus expects the smallest probability to behave like exp(—L7), D being the
fractal dimension of the cluster. This behaviour was assumed for DLA in ref. [13].

When moments are helpless to describe a distribution, statisticians work with
“quantiles”. The tail quantile £2, of order r [20] of H, (with 0<r<1) is defined by
Pr(H,> Q,) =r. In the positive Cauchy case, all 22, behave like log k. Therefore, imag-
in¢ that the observed u’s have been ““censored” systematically, by erasing the lower
values up to a proportion r. Then the censored minimum pi,,;,(r) would satisfy
log[pmin(r)] ~ —log L log log L. If censorship is unsystematic, one expects * fy,” 10
fall somewhere between the quantile’s decay and that of the absolute minimum.

The above limiting distribution has been obtained by varying cluster size. One can
also study the limiting behavior of the density of the probabilitics obtained by coarse-
graining the harmonic measure on a single given large cluster. We have coarse grained
10 clusters of mass N=12500 and size L~ N/, with square boxes of sizes 2* with
k=0, 1, 2, ..., and have determined the densities p,(a). Fig. 3 shows the results of
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Fig. 3. Cramér rescaling for the densities of the distributions of the «’s as estimated after coarse-graining
the harmonic measure on 10 clusters of mass N=12 500 and radius = 180, with square boxes of sizes 2,
k=1.2,3.5 The Cramér rescaling plots Cy(a) = (1/k)log, pi(e) versus a= — (1/k)In, u.

Cramer rescaling of p,(«) for k=1, 2, 3 and 5. The collapse is very good for k=1, 2,
3, while a positive Cauchy rescaling (which need not be shown here) would yield no
collapse at all. Furthermore, comparing the density p, with the density j, of clusters
of size 2-*L, one finds that the p, has a much longer right-tail than j,. Thus, the
screened regions in which the a’s of the harmonic measure are huge seem to increase
more than proportionately as the cluster grows.

We conclude that the harmonic measure on DLA can be described as self-similar,
both from the point of view of growth and from the point of view of coarse-graining.
However, two notions of self-similarity must be involved. Under coarse-graining, one
may be content with the standard notion, which underlies the restricted multifractals.
But to study growth one needs an alternative rescaling rule, and an extended notion
of self-similarity.

Of course, our experimental discovery that DLA satisfies an extension of self-simi-
larity is not contingent on the theoretical argument that led us to test for positive
Cauchy rescaling. However, this letter raises but does not answer a challenging ques-
tion concerning the applicability to DLA of the theory of random multiplicative pro-
cesses. Since, as already noted, the cascade postulated by this theory is still conjec-
tural, why does this theory prove so effective? The same question also arises in the
context of turbulence, where restricted multifractals are also insufficient.

This text reproduces IBM research report RC-16595 of August 1990, with minor
editorial corrections. The same experiment has now been redone with off-off lattice
DLA. The resulting graphs are practically indistinguishable from those included in
this paper.
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