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Abstract. — The temporal development of patterns in diffusion-limited aggregation (DLA)
growth in cylinder geometry is accompanied by various fluctuating quantities. We give
experimental evidence that the fluctuations of the highest growth probability and those of the
thickness of the interface and of the distance between the highest site and the average height of
deposition, have spectra proportional to 1/f7. There are two or perhaps three crossovers in the
exponent, corresponding to the size of the atoms, the thickness of the interface and the width of
the eylinder. Fluctuations of very low frequency are not 1/f*. Thus, the basic Gaussian white
noise propelling the Brownian motion of the atoms, interacting with the geometry it creates, is
transformed into various 1/f* noises.

Diffusion-limited aggregation[1] is a special example of a quantized stochastic nonlinear
dynamical process, which spontaneously creates fractal [2,3] structures. In this growth
process, an atom performs Brownian motion until it hits an initial «<seed» (or nucleation point)
fixed at the center of the Euclidean plane. At that instant, the seed is modified by embedding
this atom, and a fresh Brownian atom is launched against the enlarged target ... and so on. If
the aggregate (A) is a perfect conductor kept at a fixed electrostatic potential difference with
an electrode (E) at «infinity», the probability of hitting a certain region of the aggregate
boundary is well known to be proportional to the electrostatic charge of that region [4-6]. This
charge is proportional to the electric field, which is the gradient of the potential [4, 7] obtained
by solving the Laplace equation V¢ =0 in the region between (A) and (E), with boundary
conditions, say, ¢(A) =0 and &(B) = 1. This gradient is called <harmonic measure».

The process is nonlinear and stochastic, because the harmonic measure, a) is determined
by the shape of the boundary, and, b) governs in a stochastic manner the discrete change of
the boundary in time. The basic quantum of change is the addition of an atom. The source of
the stochasticity is Gaussian white noise propelling the Brownian atoms. The influence of
noise on the chaotic behavior of deterministic nonlinear dynamical systems, and in particular
its role in establishing new types of transitions and/or order, has received much attention
(see, e.g., ref. [8,9]). The key role of noise in establishing the order found in DLA patterns
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becomes evident when comparing these patterns with those that arise from a deterministic
nonlinear coupling between the harmonic measure and the boundary dynamics (see, e.g.,
ref. [10] and [11]).

The DLA growth process can start from an arbitrarily shaped seed. In the cylinder
geometry [3, 12, 13], growth starts from the bottom side, L atoms long, of an infinitely
elongated rectangle, whose long sides are identified to form a cylinder. A picture of a cluster
on a cylinder (L = 64) is shown lying on one of its long sides at the bottom of fig. 1. As more
Brownian atoms are added, the correlation length increases and by the time the average
height is of the order L, a steady state[12,13] sets in, and continues indefinitely. In this
steady state, many properties of DLA, such as the maximum growth probability, fluctuate
around well-defined average values. Therefore, we expect each of these characteristics of
DLA to be a stationary random process.
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Fig. 1. — A cluster consisting of 8220 atoms of size 1/64. Growth starts at T, = — 1, but both growth
time and absolute time start at 0, which marks the onset of the steady state. The time series 1) and 2)
of the interface thickness % are, respectively, for L = 64 and 32. The series 3) of H and 4) of =z, are
both for L = 32. The number of growth time steps for L = 64 and L = 32 are, respectively, 7459 and
2296. The vertical scale is explained in the text.

This letter reports and discusses quantitative numerical evidence, and shows that these
processes exhibit long-range time correlations and are characterized by 1/f* power spectra.
Geometric fluctuations with 1/f2 and 1/f were reported in ref. [14] for diffusion fronts, and
the occurrence of a 1/f? power spectrum in circular DLA, associated with «spatio-temporal
fluctuations of subclusters» were discussed in ref. [15]. There are very many other examples
of phenomena with spectra that follow this law, often with 8=1[16-19]. The search for a
universal explanation for the recurrence of this spectrum in seemingly unrelated systems
has not been successful, and a different explanation may be necessary for each system. We
abstain altogether from attempting an analytical explanation of our observations in DLA.

We define growth time t =0, 1, 2, ... as the number of atoms in a DLA cluster. At each
time ¢ there is a distribution of growth probabilities {u}}7 on the cluster’s N,(t) nearest-
neighbor sites. The maximum probability will be denoted by um.(?), and its corresponding
Holder by ap(t) = — Inp.,(6)/In L. The site carrying this maximum is referred to as the
cluster’s tip, and its height is denoted by An.(t). We define k; as the height of the j-th
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nearest-neighbor site, N(L) as the number of time steps in the series, and average height as
Ny

(h)(t)= 3 w;h;. Since we are interested in steady-state properties, we set =0 when
Jj=1

the cluster height reaches L (see fig. 1). We have studied the following time series:

1) the Holder series
{znin(®}iz1 = {2min(0), omin(1), &min(2), ... };

2) the distance H(t), at growth time ¢, between the average height of deposition of the
Brownian atoms and the tip, namely

{HOYP = {Amax(®) — (R)D}D;

3) the interface thickness, i.e. &(t) =\ (k%) (t)— (h)2(t), which is also equal to the
variance of H

LEOID = {V{((hgan(®) = 1)2) = {Bmax(t) — B)2)}ND,

One glance at fig. 1 suffices to show that the two time series of £(f) are very similar in
appearance. The most striking fact is that the relative amount of energy in the high
frequencies decreases conspicuously from ap;,(t) to H(), and on to £(f). The reader familiar
with the visual appearance of 1/f noises will be tempted to evaluate the spectra of our
records. This will be done momentarily and will indeed prove to yield nearly straight plots.
All the time series discussed in this letter have been obtained from square lattice DLA. The
harmonic measure was estimated by iteratively solving the discrete Laplace equation [4] to
a relative precision 0.0001.

Let us, however, first elaborate on a notion of absolute space and time. The term absolute
time, Tae, Will denote the height of the tip h;.., as measured in units of the cylinder
circumference L. In these units, the atom size is 1/L and the cylinder circumference is 1, so
that one unit of absolute time corresponds to the highest cluster site moving over an
absolute distance about 1 (see fig. 1). These notions are natural to this process, since its
properties only depend on the ratio between the size of the atom and the cylinder circum-
ference. Using T, makes a priort knowledge of the rate of addition of atoms unnecessary.
When the size of the atoms is decreased (i.e. increasing L), higher-frequency spectral
properties of the various quantities are revealed. Whether, in doing so, the lower-frequency
aspects of these quantities remain unchanged depends on the degree of self-similarity of the
DLA process.

The time series plotted in fig. 1 have the same duration T, = 10, but different numbers of
growth time steps (i.e. atoms). The time series (1)) for L = 64 contains N(L = 64) = 7459 time
steps, while N(L = 32) = 2296 for the series 2), 3) and 4). Doubling L going from series 1) to 2)
increases the time resolution by a factor 27, where D =In, {N(L = 64)/N(L = 32)} = 1.7.
In drawing fig. 1 we subtract the averages (Z(L =64))=10.11, (&(L=32))=5.09,
(H(L=32)) =4.89 and (am,(L =82)) =0.73 from the respective time series 1) to 4), and
divided by their respective variances 1.31, 1.00, 0.99 and 0.04. To avoid overlap we added 4 to
the series &£(L =64), 8 to £&(L = 32), 18 to H(L = 32) and 12 to a,.(L = 32).

In the steady state, the height of the cluster, and thus absolute time, is in the average
proportional to growth time {, namely

y P S 1)



248 EUROPHYSICS LETTERS

In practice, we perform the spectra analysis on growth time series for which the addition of
one atom determines a time step. This introduces a lower cut-off to the absolute time, and
thus an upper cut-off to relevant frequencies. Therefore, it is important to know the relation
between t and the absolute time in more detail. Note that this relation is independent of the
rate of addition of the atoms, and also applies to physical experiments as long as atoms are
added one at the time.

The probability density I',(¢) of tip life times, which is proportional to the number of
instances in which the site with the largest growth probability survived ¢ time steps in the
steady state, was studied for L =32, 64 and L =128. Each data set was gathered for a
duration T,,=10. The number of time steps involved were, respectively, N(L = 32),
N(L =64) and N(L = 128) = 24407. The approximate straightness we observed in plots of
InI',(t) vs. t suggests that the distribution I';(f) follows an exponential of the form
I' (1) = Z exp [£] exp [— &f]. The tips have therefore a characteristic growth lifetime ~=1/Z
with a finite variance 1/{%, and thus move with a well-defined average velocity. For our
three cylinder circumferences we have estimated Z£(32)=0.1415, &(64)=~=0.0892 and
£(128) = 0.0534. These values are in reasonable agreement with the expected behaviour
(L) =1/Z(L) = ALP"!, where A is a prefactor. We therefore expect the texture of absolute
time, followed in growth time, to be smooth above the absolute time scale =(L)/L° ~ L™,
while the roughening below this length scale causes crossovers in the spectral densities at
frequency £2;(L)~ L.

Now we move on to the spectral densities P.(f) of the growth time series. These were
estimated by fast Fourier transform [20] on the doubled and mirrored form of the series
{{z®}5P, {2} -y}, With 2 =%, H or, ayy,. The plots of InP.(f) vs. Inf for £ =&, H, amn
and L =32, 64, 128 are shown in fig. 2. The circles mark the L =128 results. The
resemblance between the behavior of the spectra for different L suggests that the behavior
of the fluctuations above the atomic scale does not depend on that scale. The collective
behavior of a large number of small atoms somehow becomes integrated to yield the
behavior of larger atoms [21, 22].

Ln P(F)

Fig. 2. — The spectral densities for %, H and « for cylinder circumferences L = 32, 64, 128. The 128 data
is marked by circles. From left to right the vertical lines mark the crossover frequencies for L = 128.
They correspond to the cylinder width, the interface thickness and the size of an atom. The resulting
frequency windows O, I, II and III are discussed in the text.
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One can distinguish three frequency ranges, each yielding a different form of the
spectrum. The fluctuations in the time series considered are caused by the change in the
geometry due to the addition of atoms. In a geometrical sense the change is always the
same, namely, the addition of one atom. However, quantities like &, H and o, involve the
harmonic measure, hence one can expect larger changes when the arriving atom reshapes
the region near the tip than far away from it. To see that this may introduce another
crossover, let (H(L)) be the time-averaged height difference between the tip and the
average point of attachment of the Brownian atom. Now, although the interaction of the
potential field with the geometry is of infinite range, it can only manifest itself in the
fluctuations of the quantities, through the arrival of atoms. The fact that this arrival is
limited by Faraday screening causes the emergence of the length scale (H(L)). This
corresponds with an absolute time scale (H(L))/L ~1/Q,. Now, the quantity (H(L)) is
expected to be of the same order of magnitude as (£(L)). Indeed, we find numerically that in
growth units, (H(L =32, 64, 128)) =4.89, 9.40, 18.12 and (&(L =32, 64, 128)) = 5.1, 10.1,
20.0. This data also confirms that both quantities scale with L 3, 12], so that £, is a constant
frequency. One therefore expects that fluctuations in this «Faraday» range (II), between Q,
and 23(L), are correlated by the long-range Laplacian interaction. These correlations are
also present above 3(L), but are masked by the roughness of the absolute time.
Frequencies above ;(L) correspond to fluctuations that occur when the atoms attach below
the tip while the latter does not move. We call the frequencies = Q5(L) the subatomic range
(IID).

There are however also correlations arising from the memory carried by cluster
morphology. The concept of geometric memory is elucidated by the exemplary thought
experiment in which DLA growth starts from a line segment in the center of the circular
geometry. After the addition of enough atoms, the active zone where the majority of the
atoms attach does not anymore include this initial line. Nevertheless, the elliptic-shaped
envelope of this active zone still carries the geometric memory of the initial seed. This we
believe accounts for the correlations on length scales way above (H(L)), which are clearly
visible in fig. 1.

From the 4 leftmost data points in the subatomic range (III) of the L = 128 data, we
estimated P(f)~f~*, with

Bulamn) =1.8, BumH)=15, pBm@E) =2.1. (2)

In the Faraday range (II) where both sources of correlation are expected to be present, we
find numerically the following for L =32, 64, 128:

Bu(emn) =1.1£0.1, Buy(H)=15%0.1, Su¥)=2.3%0.1. 3)

Except for ayy,, there is no marked difference between the exponents 8 in the ranges II and
ITI. However, if one superposes the tails of the spectra in range III, one finds that they
behave very similarly for all three values of L. This suggests that, contrary to the range II,
the values of 8 in range III may be the same.

It seems clear that for finite L, there should be a finite lower cut-off frequency 2,(L) to
the range (I) between Q,(L) and Q,(L). In this range the only source of correlation is the
geometric memory. To estimate the value of Q,(L), we made a long (T, = 120) time series &'
for L =32. This is expected to suffice, since, as remarked earlier, the low-frequency
behavior of the spectra appear to be independent of L. We found the high-frequency parts of
&’ yo be very much the same as those for the series &(L = 32). The Ty, = 10 series are thus
clearly long enough to provide enough statistics for frequency ranges II and III. The low-
frequency part of the spectrum of &', which is the curve reaching far most to the left in fig. 2,
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suggests that the spectrum is flat for length scales above L. The same behavior was also
found for the long series of H and x,;,. We therefore took 2, =L in fig. 2. For the range [,
we remark that for «,,, the exponent 8 seems to decrease when going from range II to I,
while for & the opposite happens.

Correlations between the series in fig. 1 become clearly visible when comparing the
series 2), 3) and 4) in fig. 1. When a, is small, i.e. un,, is large, the tip lies highest above the
average height (k), and causes an increase in the standard deviation & of k. Small ., are
therefore expected to be accompanied by large £ (anti-correlation), while £ and H are
expected to be correlated. From the difference in the behavior of their respective spectral
densities, one can infer that these correlations are caused by a monlinear dependence
between the quantities, the exact nature of which is presently unclear.

This letter has discussed numerical evidence for the existence of 1/f? noises in steady-
state DLA. There seem to be four length scale domains, with different spectral density
exponents: O) above the cylinder circumference L, I) between L and the interface thickness
£, II) between & and the atomic size and III) below the atomic size. These noises are
spontaneously generated in the DLA fractal growth process which is driven by Gaussian
white noise.
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