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Abstract. Diffusion-limited aggregates are among many important fractal shapes that
involve deep indentations usually called fjords. To estimate the harmonic measure at the
bottom of a fjord seems a prohibitive task, but we find that a new mathematical equality
due to Beurling, Carleson and Janes makes it easy, We find that the harmonic measure at
the bottom of a fjard, as a function of its Euclidean depth. can exhibit a wide range of
behaviours. We introduce an infinite family of model fjords, for which the equalitv takes
a very simple form. In this family the decay of the harmonic measure at their bottoms can
be, for example, power law, semi-exponential, stretched exponential and exponentially
stretched exponential. We show that self-affinitv or randomness can lead to faster than
power law decays of the minimal growth probability on boundaries.

1. Introduction

The harmonic measure on boundaries, in particular fractal [1] ones, is a subject of
great interest in both mathematics [2] and physics (e.g. see [3]). Interest in this subject
has further increased due to the discovery of the important role played by the harmonic
measure in the theoretical understanding of the fractal growth observed in a diversity
of natural phenomena [4-7]. In the basic models for diffusion-limited aggregation
(DLA) [4] and dielectric breakdown (en) [5], the growth of a cluster of atoms is
determined in a probabilistic manner by the harmonic measure. This measure is the
normalized charge density on the boundary of the growing cluster, which is assumed
to be a perfect conductor [5] kept at constant Laplacian potential. There is much
evidence [4, 5, 8-10] that the clusters grown with these models are fractals. The growth
probability distribution in these models therefore involves harmonic measures on a
fractal boundary.

Heuristic [11], then rigorous [2], arguments, show that the harmonic measure on
self-similar fractal boundaries has fractal properties. This in the sense that it is a
restricted multifractal [12-16], a prerequisite for which is that the measure of a nested
sequence of boxes centred at any point on the boundary decreases like a power law.
Early studies [17-20] of the growth probability distribution on bLA and pem reported
such a power law scaling.

Recent, more careful studies [21-28] of bLA and pen indicate that the behaviour
of the harmonic measure in these growth processes is more involved. It is now widely
believed that the small harmonic measures at the heavily screened bottoms of the deep
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fjords decay faster than power law as a function of the size of the cluster. This behaviour
is believed to be the cause of anomalies [21, 22] in the multifractal function [12-16]/(a)
and is known to lead to left-sided f(a) [15, 16, 28]. That faster than power law decavs
can occur in the harmonic measure on certain boundaries is known [22, 23, 25, 26].
Itis, however, not yet completely clear which structural forms are causing this apparent
faster than power law decay in DI A,

In [27] we pointed out that the lowest growth probabilities, i.e. the regions with
the smallest harmonic density, do not only occur in the deepest fjords of brLa, but, in
general, also occur surprisingly near the most active growth regions. We briefly men-
tioned there that our observations [27] concerning the smallest probabilities fitted very
nicely within recent mathematical advances by Carleson and Jones concerning
Laplacian potentials around fractal boundaries.

In this paper we discuss a very powerful general method to estimate the harmonic
measure at the bottom of fjords due to Beurling, Carleson and Jones. This method,
which relates the distribution of neck widths of the fjord to the measure at its bottom,
can easily account for the observed location of the sites with the smallest growth
probabilities in pDLA, and their large fluctuations.

This method of estimation is discussed in the next section, where we use it to show
that, in general, the harmonic measure at the bottom of fjords can have any behaviour
as a function of their Euclidean depth, such as power law and exponentially stretched
exponential. All these behaviours may therefore occur in the harmonic measure on
random and non-random fractal boundaries. We also discuss an example of the
harmonic measure on a self-afline fractal boundary, which we show vields stretched
exponential decay for the minimal harmonic measure.

In section 3 we define an infinite family of fjord shapes and derive an extremely
simple formula for the harmonic measure at their bottoms, using the results in section
2. We then explicitly show the existence of power law, semi-exponential, stretched
exponential and exponentially stretched exponential decays of this measure in this
family. We then show in section 3.3 that the Holder a at the bottoms of the fjords for
which it is finite are distributed in a self-similar fashion, which can be characterized
by a left-sided f(«a) [15, 16].

In section 4 we discuss the typical behaviour of an infinite fjord when the above
family is provided with the most simple tvpe of Markovian statistics.

2. The ‘Beurling equality’

Let z be a boundary point somewhere at the bottom of a fjord in an arbitrary fractal
curve, like, for example, the pra fjord in figure 1. Let #(r) be the (arc-} length of that
piece of the circle of radius r centred at z having one or more points in common with
the electric field line connecting z to o. If we for convenience take the lower spatial
cut-off of the boundary to be 1, then the harmonic measure p,,;, of the box of size 1
at z is approximately equal to

pmintexp(“ﬁ;\c). (1)

The extremal length A, is defined by

)\C‘J' dr——-o
o 6B(r)
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Figure 1. Fjord in a 1A cluster boundary. This is part of the boundary of a square lattice
cluster on a cylinder with circumference 512. The top arrow indicates the site with the
maximum harmonic measure and the bottom arrow the one with the lowest measure,

where r,., is the radius of the largest circle, centred at z, which still intersects the
boundary. Equation (1) will be referred to as the Beurling equality [29]. A perhaps
more simple and transparent formulation of this equation is discussed below equation
(4) and in figure 5.

Let us illustrate the use of this equality for two well-known boundaries, namely, a
cone of size [ with internal angle ¥ and an a x [ rectangle, with one of the short sides
(a) left open. For the measure at the bottom of the cone we find

g |
pmi,,(!)zexp(—w —dr)~l"”’.

Jy or

For the rectangular slit we can approximate the arc lengths by a and find

1
pmi“(l)xexp(—w ldav‘)~exp(—1—-r1).
Jiva a

Both these results are in agreement with the known exact results [25].

For any real function f(x)> 0 for all positive x, one can construct a fjord whose
borders are defined by f/ and —f (see figure 2). This fjord is thus centred around the
positive real axis and has its bottom at the origin. The quantity 6(r) equals 2f(r) for
such a fjord and by suitably choosing f one can make [jords with harmonic measures
at their bottoms having almost any functional behaviour as a function of their Euclidean
depth L
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Figure 2. The Beurling equality estimates the harmonic measure p of the lower a part
of this fjord, which is bounded by a function f(r)>0 and —f(r), to be u=
exp[~w If, dx/(2f(x))]. See also figure 5.

In turns of the Holder exponent a,,,, = In p,.../In I, where [ is, say, the Euclidean
depth of the gulf, the Beurling equality yields

TA
Inl’

Therefore, depending on the behaviour of A.(I = r...), @n.. may not be defined in the
limit /= co. In that case there is stronger than power law decay.

The two examples discussed above underscore the role of lack of scale invariance
in order to obtain non-power law behaviour. The cone is scale invariant. However, if
we increase the size [ of the slit by a lactor ¢, such that its dimensions become a x ¢/,
we only recover the slit of size I through an afline transformation [1, 30], i.e. rescaling
by a factor 1/c in the longitudinal direction and by 1 in the other. A more realistic
example is provided by the family of clusters depicted in figure 3. These clusters were
introduced in [10] as part of a study of self-affinity in bLA and psm clusters in the
scaling regime in a cylinder geometry. If the distance between the nth generation sticks
is chosen to be w, = b", then their heights are h, = w'!’*’, where w is called the affine
exponent and b> 1. In figure 3 the base b =2 and w =In 2/In 3. The Beurling equality
can now be used to estimate the harmonic measure (p,,;,) of a 1 X1 square located at
the bottom of an n-generation cluster. As we have done for the slit, we also here

(2)

Dmax =

_h3

l|l lll l|l‘l|l-ho=1

Figure 3. Skeleton of the trees forming an affine cluster as proposed in [10] to model DLA.
The horizontal distance between trees of the nth generation is w, = 2". The height of these
trees is h, = w!"/“" In this particular case the affine exponent w is log 2/log 3. For such a
cluster, the site with minimum growth probability is at the bottom and decays like a
stretched exponential as a function of the height of the cluster.
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approximate the arc lengths 6(r) by the horizontal distance between the sides of the
fiords and find

pminzexp(—wu —b") ¥ wi‘"’”"').

k=1
Using the fact that the size I of an n-generation cluster equals h, = b"’“, we find power
law decay poin~ 1 "™, with ap,= 7(b—1)/(b In b) for the scale-invariant case w = 1,
and stretched exponential decay, i.e. p,.;, ~exp(—C(b)I") for the affine cases 0 <w < 1,
with s=1-w and C(b)=m(1-b""*)/(1-b'""*}>0.

Since a fjord with any dimensions, roughly given by, say a x{, will repeat itself in
ever more elongated forms, in a self-affine fractal boundary, we, contrary to the situation
for exact self-similar boundaries, always expect faster than power law decaying prob-
abilities in these cases.

There are numerical indications that w =0.72 [10, 31] for »1.A on a cylinder, which
would imply that the smallest growth probability would decay like a stretched exponen-
tial with 5==0.28. Although this self-affinity of M and pLA on a cylinder implies a
global breakdown of scale invariance and therefore could account for exponentially
decaying probabilities, we nevertheless do not believe that the behaviour of the minimal
growth probability is completely determined by this. The reason is simply that the
self-affinity discussed in [10] is modelled by the clusters in figure 3. The predicted
position for pu, would therefore be at the bottom of the deepest fjords. The fact that
we found [27] lowest growth probabilities in the tops of trees clearly indicates that
this self-affinity is not the principle source of faster than power law decaying poi..

3. A model for fjords

The family of fjord shapes studied here are generated by starting with a square of size
1, with the top side open. This fjord of depth and width equal to 1 can then develop
in either of the three ways shown in figures 4(a-c). The width of the fjord is either

(d)

(a) M JL

: 1 2kl
0.2 0.1 0.0 0.20122

Figure 4. The lower 1 x| squares define the bottoms of the fjords in the model. At each
stage there are three possible developments: (a) the fjord opening doubles, (b) remains
the same or (¢} is halved. The construction is such that the volume added always has the
form of square. These fjord shapes can be coded using the digits 2 for doubling, 0 for
halving and | when the opening remains the same. The fjord with expansion (1.20122 is
shown in (d).
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doubled, stays the same or is halved. Therefore, each n-step fjord can be uniquely
represented by the base 3 sequence of digits corresponding to a triadic subinterval of
the unit interval [0, 1], i.e. a=0.a,a,...a,, with a,=0,1,2. In figure 4(d) we show
the realization of 0.20122. In terms of the partial sums s, = {a, = 1), the depth I of
the fjord becomes

2.
<k
-

Ka)= Y 2% (3)

k=1
and using the equality in equation (1), we find

n‘ 2‘;
Pman(’(a))zexp(—fr P 2—\)—exp(—1m). (4)
k-nt

Equation (4) illustrates a particular instance of a more general result discussed by
Carleson and Jones [2], which states that the extremal length A, is approximately equal
to the minimum number n of disks needed to form a sausage which connects the initial
disk, covering the region for which the measure is to be estimated, with the outside
region of the cluster (see figure 5). The centre of each disk lies on the perimeter of
the preceeding one and may not intersect with the boundary of the fjord. The Euclidean
depth of the fjord is thus totally irrelevant: it is the extremal length or the number (1)
of these Carleson-Jones (c1) disks that determines the magnitude of the harmonic
measure in a small domain at the bottom of a fjord. When one examines the zebra
rendering of the potential field around p1.a clusters in [27], it seems that the geometry
of pLA seems ‘deliberately’ contrived in such a way that the above ¢ construction
becomes completely perspicuous and makes obvious physical sense. With the units
used in that figure, one ¢J disk would cover approximately the domain contained
between two successive zebra stripes. Fach stripe corresponds to a decrease of V10 in
the potential and therefore so will each ¢1 disk.

3.1. Behaviour of minimal probability in the model fjords

We now show that this family of fjords exhibits a wide variety of behaviours of the
minimal harmonic measure at their botfoms, starting with power law and exponential.
The fjord 0.22...2, is a scale-invariant structure which represents a discrete version

1(€)

Figure 5. An estimate of the extremal length A, is provided by the number n of Carleson-
Jones disks. The first disk of size ¢ contains the domain for which the harmonic measure
(u(f))isto be estimated. The centre of each one of the successive disks lies on the boundary
of its successor and has a maximum radius bounded by the condition that it does not
intersect the boundary of the fijord. The Beurling equality vields u{e)=expl(—nn).
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of a cone. Clearly s, =k and n=InI/In 2. So, from equation (4), one finds pu;,~1 "=
with .. = 7/In 2. Another scale-invariant structure with the same exponent a,, is
0.22...2,00...0,,. On the other hand, the 1 x I slit is represented by 0.11 ... 1, with
s, =0 and n =1 Equation (4) therefore yields the expected result, p,.;, =exp(—=I). In
the special case 0.00...0,, the depth of the fjord rapidly converges to 2. The interesting
scaling variable here is the widths §, =2 " of the open end of the fjord, which is also
the smallest neck size. In terms of this variable, we find p,.;,(6) ~ 6" ". Configurations
with such infinitely narrow necks will be referred to as bubbles.

These three cases are well-known possibilities. We now explicitly show the existence
of two other infinite families of behaviours of p.,;, in the harmonic measure on these
fjords. The first is stretched exponential decay,

pminwexp(_cl\) (5)

characterized by the exponent 0 < s, with ¢ being some positive constant. This behaviour
was also found for the affine clusters. The other family, which will be referred to as
semi-exponential, represents a crossover between the stretched exponential and the
power law decay (characterized by the exponent « ). Its behaviour is

Paoin— 11 (6)

with the exponent zeta in the range, I << (.

Stretched exponential decay can be obtained from fjords with expansion a, with
all digits 1 except for the digits i=1, I +x, 1+x°,..., for which cases a,=2 (x>1).
For x =2, the expansion is 0.2121211121 ... . From equation (3) it then follows that
I(a,)=2",(2x), with m given by £, x'=n, i.e. m=Inn/In x. Using equation (4),
one finds that p,.,;, at the bottoms of these fjords behaves like equation (5), with
s=Inx/(In x+1In2). These fjords have the same shapes as those in the stick model
clusters discussed previously, if one takes b=2 and w=1n2/(In x+In 2). With this
subfamily we cannot go beyond s=1.

To go beyond s=1, we consider a ‘chamber and passages’ type of configuration.
Define series u(k) of digits by u(k)=0,0,...0,2,2,...2, and call such a series a unit
(e.g. u(3)=000222). If the width of a fjord at the beginning of such a unit is, say, W,
then after the unit it is the same and its total Euclidean length is never increased more
than 2W. Let us now study fjords with expansions of the type 0.U,U.U,.... For
example, if we take U, = u(1),i.e. 0.020202..., we get a fjord whose bottomisa 1 x 1
‘chamber’ connected by the next 1x1 ‘chamber’ by a 1x3 ‘passage’. One can easily
show that the choice U, = u(k™) yields poi.~exp(—#I""") for x=0, i.e. s=1.

Using these ‘chamber and passages’ fjords, one can also construct exponentially
stretched exponential decay, i.e.

Pmin~exp(—m exp )
by taking U, = u(exp k). There may of course be other fjords in this family with similar
or worse behaviours of p,,;,. Note that both the exponents a (equation (2)) and ¢
(equation (6)) would effectively be co for the above fjords.

Fjords giving rise to equation (6), consist of uninterrupted strings of digits 1 with
consecutive sizes k%, k=1,2,..., (x>0), separated by single digits 2. For x=1 we
have 0.12112111211112. ... The length of these fjords is /(a,)=2+13}.,2"k", with

”

. - (x4 1) .
m given by n=m+Z_, k%, i.e. m~n"""". Now, in general,

m ) 6\ AT a X
k\zk:(___) zi,_:(z_) Zm""'Zm.
S “az a9z
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So for x =2, one finds I(n)y~2"" and from equation (4) we find the behaviour of
equation (6), with { = x+ 1. For these fjords the exponent @ would be co, while { =0.
An example of a fjord with { =1 is discussed in [26].

From the above examples it is evident that the family of fjords introduced has a
rich variety of behaviours of the harmonic measure p,,;, at their bottoms. All of these
could therefore occur in the harmonic measure on random structures like pLA and
peMm and non-random structures like, for example, Julia sets [32].

3.2. Euclidean and extremal length

In figure 6 we show the lengths of fjords corresponding to the base 3 expansions of
the triadic intervals [j37", (j+1)37"), for j=0,...,3", with n=7. The apparent
self-similarity of this distribution suggests implementing techniques used to characterize
self-similar measures in order to classify the different behaviours of I as a function of n.

__ﬂﬂq,ﬂww Mﬂ

1

0.0 0.5 1.0

a € 517[0,1]

Figure 6. All possible seven-digit fjords (@ =0.a,,..., a,) are uniquely mapped on the
subintervals of size 377 of the unit interval by interpreting their expansion as base 3 numbers.
So fjord 0.0000000 is the most left interval while 0.2222222 is the one most to the right.
This is a plot of the Euclidean length of these fjords. From equation (4) it follows that the
behaviour of p,,;, is determined by the dependence of this length on the number of digits.

Let us denote the collection of the nth-generation fjord lengths by {I.(m)}3",. The

i=1-
in

normalized distribution of lengths at each generation is denoted by {m;(n)};Z,, where
mi(n)=1(n)/L(n), and

3" n
L(n)= % L(n)= ¥ 3" *G+1+2)"=2[())"""-3""].
i=1 k=0
To avoid confusion in the future, all quantities related to the f(a) of the lengths will
be marked by a hat. For example, the Holder @ of the fjord with length (n) is
@ =—1/nln; m(n). The maximum length is associated with the expansion 0.222...2
and gives [,,.(n)=2"""~1, from which it follows that

[35)" =3()"]

In3 (7)

n 1 &
amin(”) = _;1— ln3 7rmax(n) = amin(m)+
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With @pmin = @min(0) =1n,7=21In;2=0.5094. The minimal length is associated with
0.00...0, and in a similar way one finds

O el ]inl —-}I' In: moin(n)=In; 7—1In, 2=1.1403.
Since there clearly is only one fjord with the maximum length it follows that _f'(&,“i,,) =0.
It is also obvious that f(g=0)=1.

From @ =1im,..—(1/n)In, (I(n)/ L(n)), it follows that & = &,,.. for all fjords with
lengths I(n) such that lim, . .—(1/n)1In, I{n)=0. In the following section (see equation
(,.]2)) we show that, with probability 1, I(n)~2"""* for n-oo. This implies that
J(&ax) = 1. We therefore conjecture that_f(d‘) reaches its maximumvalue l atd = &,,,..

To estimate _f(o?) numerically we used a method [33] based on moments of the
measure. The partition function (g, n)=2%!", 7#%(n) is used to define the quantities
alg,n)=x "(gm) Y, 7% n)Inm(n) and _f(q, n)=gqci(q, n)—7(g.n), where
(g, n)=1n x(q, n). To better see the eflects of finite n, one can consider the eflective
exponents [16] &,(q)=(al{g. n+1)—dalg, n))/In3 and _f;,(q), which is defined in a
stmilar fashion. In figure 7, we show the exact numerical results forﬁ,(cf,,). for n=1
and 9, and the corresponding ffows for certain valuesof g and n=1,2,...9. The range
of g valuves is from =30 to 30 for both n =1 and 9. The considerable finite-size effect
was to be expected from equation (7). Nevertheless, the flow seems to be in agreement
with the above conjecture on the asymptotic shape of_f{ ).

~

0.5

0.0

Figure 7. The f(t?l of the apparently self-similar length distribution shown in figure 6 is
determined by normalizing the distribution to 1. There are considerable finite-size effects,
which are illustrated by the flow of the resulting functions for an increasing number of
digits n=1...9. We infer the existence of a limit from our analytical studies of &,,,, and
@ The exact values of &, and a,,,. are marked by crosses. The f(d,,,.) is a lower
bound. /(&) determines the increase, with n, of the number of fiords whose normalized
length increase is determined by the exponent a.

For the minimal probability at the bottom of the fjords the above f(&) has the
following meaning. The normalized length of a fjord i of Halder & scales like ; ~
(37")". The actual length therefore scales like

’,:(”)""’(." ")';L(”}:}'”';...:.. .H. ‘8)
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Inverting this, one finds that
n&(I)z(aAmux_&)_l ln.‘ l' (9)

The Holder o (equation (2)), characterizing the scaling behaviour of the harmonic
measure at the bottom of a fjord of type & is therefore

a(ls) ="

(&max—¢)1In3 (19

where we used equation (4). So the Holder « for the harmonic measure at the bottom
of this family of fjords can take values from « = 7/Iln 2=4.53 to c0. The f(é) can be
transformed into an f(a) byf:f" and @ = a(l;). The above conjecture on the behaviour
of f(dr‘) near &,,,, would imply that @(g =0)=c0 and that f(a) goes asymptotically
to 1. In figure 8 we plot the result of the transformation of the n =1 and 9 curves from
figure 7.

1.0 =

i n=29

1 n=1
0.5 —
0.0 |-

Ly v b v by v 1y

0 15

5 P4 10
o(a)

Figure 8. There are 3" nth generation fjords in this family giving rise to a Holder o at

their bottoms. These two curves are simple transformations (equation (10}) of the n=1

and 9 curves in figure 7. Note the left-sidedness of this curve, which becomes degenerate
for the fjords with faster than power law decaying bottom measures, i.e. a =,

The typical absolute minimum growth probability in this fjord family decays as
Pmin~ ¢ 17" (see equation (12)). If the fjords of a hypothetical cluster are of this
family, then the collection of p,,;, at their bottoms would yield a left-sided f(a) [15, 16],
as shown in figure 7. The left side of the f(«a) is determined by the fjords with power
law decaying p.;, and the non-existent right-hand side reflects the presence of fjords
with p.., decaying faster than power law with the depth of the fjord, i.e. @ =c0. In
the previous section we showed the existence of at least three subfamilies of fjords
with such behaviour. The above _f(c'r‘) is incapable of distinguishing between these
possibilities since all have a = a,,,,. Also, the f(a) cannot distinguish between them,
since their Holder

. np
a=lim— =0
.'ao('ln
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is undefined. Classifying these types of behaviours would involve stronger
normalizations, like in

In(-1
s=1lim n(=inp)
I-oc Inf
and
In(—1
{=1lim _n( np)

“iax In(Inl)

which will not be considered here. The bubble configurations with extremely narrow
openings are worse, in the sense that they cannot be renormalized by any function of
. The renormalization needed for the small harmonic measures on DLA is discussed
in [28].

3.3. Asymptotic or ‘typical’ behaviours

Evidently, the probability for a particular fjord shape to occur, in general, depends
on the boundary under consideration. We here consider the very simple case where
the statistics of the fjords is determined by probabilities P, (E_f,‘, P, =1) for the kth
digit in their expansion a to be i=0,1,2 with k=1,2,.... The measure induced on
the unit interval [0, 1] is thus a simple multiplicative multifractal measure, g. To avoid
confusion with previous f(a), we now use a tilde (e.g. @) to mark quantities related
to this measure. For P,>0, i=0,1,2, all fjords are possible, but, in general, with
different probabilities.

For large n, the subset of fjords carrying all the measure u consists of those with
n,= Pn digits i=0,1,2. (This is the subset a(1) with information dimension 15, =
—(PyIn P4+ PyIn P+ P,1n P,)/In3.) The subsets a are, however, degenerate with
respect to the behaviour of the harmonic measure at their bottoms. Namely, in
the case P,=P,=P,, ie. n,=n,=n,, the p,, at the bottom of fjord
02...2,1...1,0...0,, will have power law behaviour, while 0.2020...201...1
behaves exponentially and 0.0...01...12...2is a bubble bounded in length. On the
other hand, for n,> n,, all the fjords give rise to power law behaviour, in the limit
n-oo. For n,<n,, the length of 0.2...21...10...0 will scale like I~2", and p.;,
has power law behaviour, while 0.1...12020...2000...0 yields /~n, implying
exponential decay for p,.,. In view of the fact that we are interested here in the
behaviour of p.;,, a classification of the fjords in terms of & would be meaningless.

The Euclidean depth /(a,) of a fjord given in equation (3), can be bounded by

2w < [(@,) < n2tm (11)
where

Smax = Max

., {s¢}.

For large n, there are n*=n(1— P,) digits equal to 0 or 2. These are the only digits
which contribute to the partial sums s,, and they appear respectively with probabilities
P§=P,/(P,+ P,) and P¥=1- P}. Their statistics are thus the same as that of, for
example, the asymmetric or Bernoulli random walk in d = 1, with probability P§ to
step to the left and P7 to step to the right. In this language, s, is the maximum
positive displacement of this n*-step random walk.
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For P,= P, and thus P} = P¥ it is known [34] that, with probability 1, this s, is
of the order of ov2 vk, where the standard deviation o =+ P} + P¥ = 1. From approxi-
mation (11) we thus find

PPN 22 n 3R (12)

with A =[2(1-P,;)]"". For all P,<1, one therefore expects, using equation (4), that
the asymptotic behaviour

Penin=c"17""! (13)

with ¢=a(In2)"?(1 - P,)"'/2 and ¢’ some constant. This is a behaviour in between
power law and exponential.

In the case P,> P,, the partial sums are dominated by drift. The maximum
displacement is therefore of the order en and, from equation (11), one finds

27 < J< p2n (14)

with A=1/|e| and &= P,— P,. Asymptotically one therefore expects power law
behaviour p,=1 "™ with a,..=7/(eln2),

For P, < P,, the drift is towards —oo. Therefore s,,,,= 1, and asymptotically one
therefore expects that 2 </ < 2n. In this case, the Euclidean depth of the fjord saturates
and its opening is pinched off, resulting in bubbles in the limit of large n.

In general, we can thus distinguish three types of asymptotic behaviours for p,
at the bottoms of the fjords in this model when it is endowed with the above (Markovian)
statistics, namely,

=0 bubble formation P,< P,
Proin=14 =c'2" semi-exponential P,=P, (15)
== ] ma powerlaw P,> P,.

These asymptotic behaviours occur with probability 1 and in this sense could be called
‘typical’, a term often encountered in recent pLa literature [21, 22, 26].

It is possible to use fixed-scale transformation [35] techniques to estimate effective
values for P,, P, and P, for bLA within the above-discussed Markovian framework.
However, a discussion of this lies outside the scope of this paper and will be reported
elsewhere, '

4. Summary and discussion

The Beurling equality pinpoints exactly the intricate relation between the geometry of
(the fjords of) a boundary and the behaviour of the minimum harmonic measures. It
not only shows which properties of a fjord’s shape determine the harmonic measure
at its bottom, but also provides an estimate. The power law, semi-exponential and
exponential decays of the harmonic measure found at the bottoms of our family of
fjords can in principle be found on any boundary like, for example, that of Julia sets
Or DLA.

We have given an example of an infinite family of fjord shapes, whose individual
elements show a wide variety of behaviours of the harmonic measure at their bottoms.
In the case P, = P,, which we considered in detail in section 3.3, the f(«) which would
arise from an ensemble of such fjords would be leftsided. The subset of fjords accounting
for the left part of the f(«) shown in figure 8, has power law decaying probabilities
and the right-hand side consists of faster than power law decays. That the typical
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behaviour was found to be p.,;,~ ¢'I"*"" implies that if one were to randomly pick
out a fjord in this ensemble its bottom probability p... would have this particular
asymptotic behaviour.

Although the harmonic measure on exactly self-similar boundaries is always charac-
terized by power laws, statistical self-similarity, through suitable fluctuations in the
neck widths of the fjords, may result in deviations.
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