PHYSICAL REVIEW A

VOLUME 42, NUMBER 8

Exactly self-similar left-sided multifractal measures

Benoit B. Mandelbrot
Department of Physics, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
and Department of Mathematics, Yale University,
Box 2155 Yale Station, New Haven, Connecticut 06520

Carl J. G. Evertsz and Yoshinori Hayakawa*
Department of Applied Physics, Yale University,
Box 2155 Yale Station, New Haven, Connecticut 06520
(Received 12 April 1990)

We introduce and investigate a family of exactly self-similar nonrandom fractal measures, each
having stretched exponentially decreasing minimum probabilities. This implies that 7(q) is not
defined for g <0 and that gygem =0 is a critical value of ¢g. Since the partition function does not
scale for all values of g, these measures are not multifractals in the restricted sense due to Frisch and
Parisi [in Turbulence and Predictability of Geophysical Flows and Climate Dynamics, Proceedings of
the Enrico Fermi International School of Physics, edited by M. Ghil, R. Benzi, and G. Parisi
(North-Holland, New York, 1985), p. 84] and to Halsey et al. [Phys. Rev. A 33, 1141 (1986)]. How-
ever, they are exactly self-similar, hence are multifractals in a much earlier and more general mean-
ing of this notion [B. Mandelbrot, J. Fluid Mech. 62, 331 (1974)]. We show that in these measures
the “free  energy” (g) is singular at g =guyouom» 1N the sense that
(g)=—1+¢,q"+c,qg +c,qg*+0(g*), where 0<A is a “critical” exponent. For A <1, the transi-
tion in the f(a) is smooth (i.e., of infinite order), while for A > 1, the transition order is =2. We
then use a new sampling method to study problems arising in the study of such transitions in case of
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undersampling.
I. INTRODUCTION

Although at one time the distinction seemed to lack
practical application, we feel that recent work on fully
developed turbulence and on diffusion-limited aggrega-
tion (DLA) has made it essential to distinguish between
at least two meanings of the term “multifractal.” The
more general meaning comes from the notion of “multi-
plicative cascade that generates random measures” and
refers to such “multiplicatively generated measures.”
The virtue of all multiplicatively generated measures is
that they are exactly renormalizable or self-similar, just
like the simplest self-similar fractals, such as the
Sierpinski gasket. This general meaning has been investi-
gated in early' ™ and recent papers5 by one of us
(B.B.M.). The present paper (which can be read indepen-
dently) investigates it further, in a manner to be described
shortly.

In addition, a second meaning has since been intro-
duced by Frisch and Parisi® and by Halsey et al.,” via a
steepest-decent method. The measure (which is normal-
ized to 1) is coarse grained with boxes of size ¢, yielding a
collection {p;(€)}M¢ of box measures. The steepest-
decent method has led to a multifractal being defined as
“a measure for which the partition function
x(g,e)=3Npd(e) scales, for all —o0 <g <0, like a
power law of the form y(g,e)~€™?.” For these mea-
sures, one obtains a function f(«a) by the Legendre trans-
form a(q)=4d,1(q), and f(a(g))=min,[qalq)—7(g)]. It
always satisfies f =0, and the graph of f is shaped like a
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N, possibly asymmetric, that is, leaning towards one side.

However, there has recently been much discussion® ™ !*
of measures such that the partition function diverges fas-
ter than a power law, either for small enough negative g
values, or for high enough positive g’s. For example,
Blumenfeld and Aharony,'” in their study of DLA, have
observed that, if coarse-grained probabilities p,(€) decay
exponentially with €, the function 7(g) is undefined for all
4 < Gpotrom =0 Such measures are “anomalous” from the
point of view of Frisch and Parisi and of Halsey et al.,
and for this reason have been described as being ‘“‘non-
multifractal.”!°

At least two challenges arise thereby. An experimental
challenge is to confirm whether or not such an anomaly
indeed characterizes diffusion-limited aggregates'* and
other important natural phenomena. A methodological
challenge is to provide a conceptual framework for the
above-mentioned behavior.

The above ‘“‘anomaly” is observed in full for resistor
networks,'® and we believe strongly that guuuom =0 is
indeed characteristic of DLA and of the dielectric break-
down model (DBM).!® We also know of an occurrence of
Jhortom =0 in the study of dynamical systems.!” However,
we think that our experimental arguments concerning
DLA are more appropriately described elsewhere.'® The
present paper’s goal is, to the contrary, purely methodo-
logical. We describe explicitly a class of multiplicative
cascades which generate exactly self-similar nonrandom
measures, with the properties that 7(g) fails to be defined
for g <0 and that the minimal coarse-grained probability
decays like a stretched exponential. The fact that these

4528 ©1990 The American Physical Society



42 ; EXACTLY SELF-SIMILAR LEFT-SIDED MULTIFRACTAL MEASURES

measures are exactly self-similar makes them multifrac-
tals in the more general sense advocated at the beginning
of this paper, and makes a detailed investigation possible.
When it is necessary to refer to measures for which 7(g)
is defined for all g, we shall call them multifractals in a
restricted sense, or “‘restricted multifractals.”

The fact that exact renormalizability or self-similarity
can be compatible with the failure of the partition func-
tion to scale is surprising, but very reassuring, from the
point of view of a theoretical study of DLA or DBM. It
means that existing approaches'*?° for the analytical es-
timation of the multifractal spectrum of DLA and DBM,
which are based on an assumption of self-similarity of the
harmonic measure, may be extended to include the
“anomalies” to be discussed. A clue is implicit in the ex-
amples to follow.

The reader may be reassured to know that counter-
parts of the functions f(a) and 7(g) continue to be need-
ed in the examples to follow, and that they continue to be
cap-convex (like —x?). It also continues to be true that
flalg))=min,[qa(q)—7(q)]. As to the alternative
Legendre transforms, which express both a and f as
functions of g, they only apply for those values of ¢ for
which the partition function does scale like a power. We
already know that, when gy, =0, the left-hand side
(g <0) of 7(q) is undefined. As for f(a), its right side for
a>a(0) is degenerate. When a(0)< o, one has
fla)=D, for a>a(0). Since only the left-hand side of
our f(a) looks as it does in a multifractal in the restrict-
ed sense, we refer to our fractal measures as left-sided.

While most of the focus has been’ ' on establishing
the existence of a critical point, this paper and closely re-
lated ones® also focus on the singular behavior of the
function 7(q) (“free-energy”) near ¢, ;om. From an anal-
ogy with thermodynamics, gy, 1S referred to as a criti-
cal point. The discontinuity of order n in the f(a) at
Thottom 15 sometimes referred to as an “nth-order phase
transition” in f (). In DLA and DBM, for example, the
transition is believed to be first or third order.”!®?' Here
we show that exponentially decaying probabilities can
also lead to second-, higher-order, and smooth (oo-order)
transitions, characterized by a new exponent .

We also address problems related with the detection of
such transitions in measures which are insufficiently sam-
pled. To this end we show how a multiplicative measure
can be sampled by a general “random-walk” method.
This method is used to make samples of the above left-
sided measures, and to study the effect upon f(a) of the
fact that, for this family, every finite sample, however
large, amounts to undersampling.

Possible faster-than-power-law decay rates of the
minimum coarse-grained probability have recently been
discussed in connection with DLA.!> Reference 5 shows
that one can generalize our multifractals to include such
a behavior.

II. LEFT-SIDEDNESS CAUSED BY EXPONENTIAL
DECAY: EXACT RESULTS

A. The measures and their 7(q)

Our measures are supported by the unit interval [0,1]
and are the outcome of a deterministic multiplicative cas-
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cade process mg. As_ usual, the cascade starts by subdi-
viding the unit interval [0,1] into subintervals I 5 of length
rp, and giving the Sth interval the mass mg. At the next
stage, each of the I; receives the same treatment, in the
sense that it is subdivided into subintervals of size rprg,
with respective masses mgmg, etc. The theoretical 7(q)
of the resulting measure is known to be given by the
“generating equation”

oo

Z(g,7)=73 mf;rgﬁqlzl ) (1)
B=1
The telling feature of our multifractals, and the key
difference with standard examples (such as the binomial
measure), is the presence of an infinite base, i.e., of an
infinite number of multipliers and reduction factors rpg,
namely,

mg=2"8, rg=|Il=B"*—(B+1)7*.

The intervals I; are defined as Iz=[(B+]1 )"%B87*], and
A>0 is a parameter. We shall say that the generator is
[rg.mplg=,. Motivations for this and other similar
choices of generator can be found in Ref. 5.

For our generator, it is easy to show that, for all A,

undefined, ¢ <0
Tg)={—1, g=0 (2)
Tk(q), q>0

This establishes the left-sidedness of this family. We shall
say that the critical point is g,y om =0-

To find out about a(0), we observe that Z(g,7)=1 for
g =0 and 7(0)=—1. For g to the right of q},m» it fol-
lows that

Z(g,7(g)~Z(0, 1 }+g6%2(q,¢(q))lq:0

d
=1+q-é—qTZ(q,T(q))fq:0 .
To ensure that Z(g,7(g))=1, we impose the condition

_ 9
O_E;Z(q,f(q))lq=0

=i— 30 Wi (Pt
B=1

oc

:—1£122ﬁr5—a(0)2 rﬁlnrﬁ s (3)

B=1 B=1
so al0)=(—In23 g, Brg) /(3. rglnrg). Using the ap-
proximation rﬁzlﬁ_k—‘ for f>>1, and replacing the
sums by integrals, we find that — ¥ 7, rglnrg is finite for

all A>0, while the numerator behaves like
Egz ’ ,6'r,3~K’_}‘. We therefore find that
o, A=1
a(0) (4)

T a0 <w, A>1.

In order to determine the precise behavior of the func-
tion fla) near a=al0), we solve Eq. (1) near
q =Guorom —0- The analysis, which is rather technical, as
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seen in the Appendix, yields

c1gteqi+ -, A>2
c1g+cig’ing, A=2
g)=—1+ lc;g+c,g*+ -+, 1<A<2 (5)

ciglng+c,g, A=1

e 9", 0<i<l

where the constants ¢, ¢,, etc., depend on A. This estab-
lishes the singular behavior of 7(g) near ¢=gu om-
From Eq. (5) it is easy to compute a(g) near ¢ =¢uyuom
and recover the results in Eq. (4). Inverting this a(g) and
eliminating ¢ from the Legendre transform
flalg))=qalg)—1(q), gives the following asymptotical
behavior:

c[a(0)—als, A>1, a a,0)
fla)=1—jece % A=1, a—w (6)

ca, 0<A<l, a— o
where ¢ and ¢’ are positive constants which depend on A
and k =max{2,A/(A—1)].

The order of the transition in the f(a) at gyqom =0 is
given by the smallest value of n such that

83f(a)|a=ah(m¢0. It thus follows that the transition is

smooth, i.e., of o« order, for 0<A=<1. For A> 1, the or-
der n =k when « is integer, and n =[k]-+1 for « nonin-
teger. Here [«] is the integer part of k. Hence the transi-
tion is of order 2 for all A= 2. Then, as A\ 1, the order of
the transition increases continuously and diverges as
(A—1)"1. It stays infinite for all 0 <A < 1.

For A > 1, which means that «(0) is finite, the left half
of f(a) is shaped like the left half of N for a <a(0) (see
Sec. II B). The right-hand side of f(«) is the horizontal
f =1, and the order of the discontinuity increases from 2
to o, as A approaches 1 from above. For A=1,
a(0)=co, and the right side of f(a) is nonexistent.
These behaviors of f(a) are schematically depicted in
Fig. 1.

B. An analytical expression for a,,;,
For g — <=, we know that
T(q):aminq +f(amin) ’

which allows us to rewrite Eq. (1) as

o0

E:CXP[‘Q(Aﬁ+amin33)*f(amin)3/3]=1 ’ (7)
B=1

where
Ag=In2%,

By(M)=In[p*—(B+1)""].
In the limit g — o0, Eq. (7) implies that
Agtan,BgA)20, ¥VE>0. (8)

min

Now let us define «;(3) by
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(B)=— -2
a =— 5 9
b Bg(A) S
and a;
ay —B_}'nin a,(f) . (10

Since Bg(A)<0 and A45>0, VB>0, it is clear that
Agta; Bg(A)>0 for all values of S such that
a;(B)#a; . Any choice of a; =a,(B), that would not
satisfy Eq. (10), would result in violation of Eq. (8) and
thus in a divergence of the sum in Eq. (7). Therefore

Apinl )= (1n
Note that Eq. (11) can be applied to any multiplicatively

generated measure whose generating function is of the
form

S AzB;"=1.
B

One can easily show that — Agz/Bg(A) has a unique
minimum for real values of 8. It is reasonable to assume
that also after restriction to integer values we find a
unique minimum at 3=p*. Equation (7) then reduces to

exp[—f(amin)Bﬁ*]Zl

from which it follows that f(a,,;,(1))=0.

For small values of A one finds that o), =a,(8=1), and
thus that a,;,(A) goes to zero as —In(2)/In(1—2"*). On
the other hand, for A>>1, one has that By(A)=—AInB
and Az=pIn2, from which it follows that
UminlA)=(31log;2)A ", So a,,;, also vanishes for A— .
Further implications of a,,;, =0 are discussed in Ref. 5.

The solid curve in Fig. 2 is a numerical solution of Eq.
(11). The two discontinuities in the first derivative of this
exact curve are due to the fact that for A less than about
0.8, the minimum in Eq. (11) is determined by the term
B=1, while for A more than about 1.8 the minimum is
determined by S=3. In between it is §=2. The boxes
are numerical results discussed in Sec. III.

A=15
\ A=10
A=0.5

! ag for A=1.5

min Ll

FIG. 1. The left-sided f(a) of the family introduced here
[Eq. (6)] can have a finite or infinite @(0). In the finite case, the
discontinuity in the f{a) at «(0) can be of any finite order
larger than 2. In the infinite case, the transition is smooth and f
converges either exponentially or as a power law to its asymp-
totic value f=D;=1.
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FIG. 2. The solid curve is the exact result for «,,,, as a func-
tion of the parameter A, parametrizing the family of left-sided
multifractals discussed here. The minimal Holder vanishes both
for A—0 and A— . The boxes are numerical results obtained
from (q), solving Eq. (1) using the Newton method.

III. NUMERICAL SOLUTION
OF THE GENERATING EQUATION

The above analysis says nothing of the shape of f(a)
between a,;, and the asymptotic range. In alternative
models, an analytical solution may even be lacking for
small g. It is therefore of importance to test numerical
solutions against the analytical solution when the latter
are known. To this end, we have solved for 7(gq) by
Newton’s method, that is, using the iteration

™g)=7""Ng)+Ar 1,

where

i /

-15 -10 lnq

FIG. 3. Plots of the numerically evaluated In[7(g)+ 1] versus
Ing, for g=10"% k=1,...,7, obtained with Newton’s method
from Eq. (1). For Ing= —10, the values of A are from top to
bottom: A=0.1,0.5, 1, 1.5, 2, and 3.
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FIG. 4. To study the curvature in the A=1 curve in Fig. 3,
we plot the local slope x; =log o7y )—logo(y ;) vs 1/k,
where 7, =7(10"%). A simple linear extrapolation yields
x . (A=1)=0.99+0.01, which is in close agreement with the ex-
act result.

AT =[1-Z(g,)]1/[8,Z(g, D]l 4-1 -

In Fig. 3 we plot In[7(g)+ 1] versus Ing, for g=10"%,
k=1,...,7 and A=0.1,0.5,1,1.5,2,3. The slopes of
these curves are estimates of the exponent x in
7(g)=—1+cqg”, for 0<g <<1. This exponent is related
to the exponent A in Eq. (5), in an obvious way. For
A=0.1 the above two smallest values of g have not been
computed, because of the slow convergence of the sums
involved in Z(g,7) and d,Z(g,7). From the slopes of the
lines in Fig. 3, one finds that x =1 for A=1.5,2,3. The
case A=1 is more difficult to handle: the plot is not quite
straight and its curvature becomes apparent in the plot
(Fig. 4) of the local slope log,[7(1075)]
—logo[7(10%*1)] versus 1/k. A simple linear extrapo-
lation yields x(A=1)=0.991+0.01. The above results,
and those obtained from a similar analysis for A=0.1 and
0.5, agree very well with the exact results in Eq. (5).

Taking the Legendre transform of the 7(g) obtained by
the above method for 0.0005 <g <102, we find the f(a)
shown in Fig. 5 for A=1 and 0.5. As expected, the con-
vergence of f(a) to f =1 is much faster for A=1 than for
A=0.5, while the convergence of al(q) to infinity, as
g —0, is faster for A=0.5. The results for a(g=102) are
also shown as boxes in Fig. 2. The slight discrepancies
are due to the finiteness of the value of g used.

It is clear from these examples that, in certain cases,
the asymptotics of f(a), or the value of the critical ex-
ponent x, depend on values of g that are either extremely
close to 0, or extremely large.

IV. SAMPLING OF MULTIPLICATIVELY
GENERATED MEASURES BY A RANDOM WALK

The measures underlying physical processes are usually
estimated by some sampling procedure. In dynamical
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0.5 —

FIG. 5. Numerical evaluation of the theoretical f(a) for
A=0.5 (curve 1) and for A=1 (curve 2). Both were obtained by
Legendre transforms of numerical solutions of Eq. (1), using
Newton’s method.
systems,?? one can iterate the map in order to find the
measure on the attactor. The harmonic measure on DLA.
clusters can be found by sending many random walkers
and keeping track of how often the different growth sites
are being visited.?® It is important, therefore, to under-
stand how the existence of a critical point and critical be-
havior can be established in the presence of finite sam-
pling. As a first step, we now describe a method that can
serve to sample one of our left-sided measures up to a
prescribed precision =2

The sampling is done by subdividing the interval [0,1]
into 2V bins of size 8. The measure pu ; in bin
[j&,(j+1)8], , 1/8, is the result of a particular
multiplicative history {8,,...,8,] resulting in a box of
size  €,=[['=o g, ~8 and is given by
=IIi=1mp =TI"-12 % Note that when a measure is
constructed on a regular lattice of base r, one has €, =r"
independently of the position of the bin. In the present
case, however, the rg; are not equal, hence n depends on
the position of the bin. We can therefore sample the
measure by generating random sequences {fB,...,f,],
where 3 is chosen according to the probability distribu-
tion prob{8)=mz=2"" and n is the finite value such that
€,~6. The bin visited by this particular sequence is
[A,A+€,], where A=F1_,¢;_,(B;+1 )™ and ¢;,=1.

It is good to think of this process in terms of a random
walk with —Iny along the x axis and —lne along the y
axis. At time 0, let our random walker start at the origin.
Then the walker selects at each step among an infinite
number of possible next steps, indexed by f=1,2,
each with probability 2 #. When S8 has been chosen, the
walker will jump by B1n2 in the x direction and by —Inr,
in the y direction, and so on. To reach the desired pre-
cision &, the walker has to proceed until it crosses the line
y=—Ind. Since the jumps in the vertical direction are
not equal, the required number of steps will be strongly
dependent on the choice of jumps.
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Given M walks, denote by ¢; the number of times the
bin j has been visited by a walk Then M~ '¢; ; is an esti-
mate of the measure y; of this particular bin. To assess
the sampling accuracy, note that the bin of size 8 with
the smallest measure is clearly [0,6]€[0,1]. This mea-
sure equals 2%, with z=8"1/*—1. Therefore, our family
of left-sided measures is such that, as a function of the
coarse-graining box size €, the smallest probability decays
like a stretched exponential

Pmin(€)~exp(—e~"*n2) .

This implies that a precision 8 requires at least
M(6,,)=2% walks. For example, for A=1,0.5,1.5, one
finds M(27%1)=10%, M((27°,1)=10°, M(27%1)
~35000, M(27%0.5)~10", and M(Z’B 1.5) =10
Figure 6 shows the estimated measure ( 145 of a sam-
ple of the measure for A=1, obtained with M 4x 108
walks and §=2"15, Similar samples were constructed for
A=0.5and 1.5.

Estimating f (a)

We will now briefly discuss what happens if one at-
tempts to estimate the f(a) of this sampled measure, us-
ing a method®® that is closely related to those of Refs. 6
and 7. We expect to find problems with these methods,
due to the divergence of negative moments. One might
also expect additional problems, due to the fact that our
measures are generated with unequal reduction factors,
while the partition function involves a covering with
boxes of equal size.

Figure 7 plots alg,e)=x '(g,€)ZNpfle)lnp;(e)
versus Ine for A=1, where thc quantities ¥ and p; are as
defined in the Introduction. This graph’s slope, accord-
ing to Ref. 24, is al(gq). As expected, the plot for
g=—0.5 clearly shows that only boxes of size € =2~ are
meaningful. That is, since we have sampled the measure
with M(27%1)<M <M(27°1) walks, we expect that

0.003 —

0.002

o /M

.001

0.000

0.0 0.5 _76 1.0

FIG. 6. The A=1 measure, sampled with M =4 X 10* walks.
The size of the bins used to make this histogram is §=27"".
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C FIG. 8. A method based on the partition function is used to
- pEEREEA08gG estimate the f(a) of the sample showed in Fig. 6. Because of
- Og curvature in the log-log plots determining the exponents for
T T T B g <1 (see Fig. 7), we plot an effective f (a) curve for e=27%,
210 JE 0 k=2,3,4, for this range of ¢. The dotted curve, which corre-
1 sponds to 1 £¢ <15, was determined using the slope through all
e box sizes.

FIG. 7. From top to bottom, the slopes of these curves are
supposed to be alg), ¢g=1,0,—0.5. There is no scale on the
vertical axis, because it is different for each curve. The idea is
to show the effects of undersampling and of divergent moments
on these plots of alg,€) vs Ine.

there is at least one bin of size 2 ° which has been visited
only once, and therefore has measure M ~'. But then the
same is true for all e <2 °. Because M ~' dominates in
the partition function for ¢ <<0, we expect a crossover to
slope zero in Fig. 7 for e <27, Clearly, the same hap-
pens at smaller box sizes for larger values of g.

The systematic curvature in the ¢ =0 plot for e>2"*
implies that the quantity aJlg)=[alg,e)—alg,e/
2)]/1n2, which can be called an “effective value of a(q),”
increases with decreasing €. To better examine the conse-
quences of this monotonicity, we have computed f(a) for
1 <g <15, by means of a least-squares fit through all the
box sizes 27 '"*<e<2"!. Figure 8 represents this portion
of the f{a) curve by dots. For —15<g¢ <1, we comput-
ed an effective f_(a) curve using a(q) and f.(q). The
function f(g) is defined in the same way as a (q), using®*
flg,e)=qalg,e)—7lq,¢), where 1(g,e)=Iny(g,e). The
values of € giving the right-hand portions of the f(a) in
Fig. 8 are 27% k=2,3,4. This plot suggests that for an
infinite number of walks, the whole ¢ <0 part of the
fla) moves towards 1, while at the same time being
pushed towards a= o0, as a (g =0) diverges to infinity.’
This result would confirm the prediction in Ref. 10.

In Fig. 9, we show the most asymptotic results (k =4)
we could get with the above number of walks for A=1,
together with the much more accurate results obtained
from solving Eq. (1) with the Newton method and then
doing a Legendre transform. Because of the truncation

at «=2.5, the above encountered problems concerning
g<l, ie, azl, are less apparent in this figure. For
a <1, we expect the number of walks to be sufficient,
hence are inclined to take seriously the close agreement
between different methods for evaluating f(«). In this
range, even though the measure was generated with mul-

0.5 —

0.0 —

FIG. 9. This figure concerns A= 1, and combines results from
the generating equation and from the partition function. The
solid line is the result for A= 1 shown in Fig. 5. The crosses are
equal to the dotted part of Fig. 8. The dotted portion equals the
k =4 portion of Fig. 8. In the range ¢ > 1, i.e., @ <1, the good
agreement suggests that multiplicative measures generated with
unequal reduction factors can be analyzed by the usual mul-
tifractal formalism based on a covering with equal-sized boxes.
the problems encountered for small g, as discussed in the text,
do not show on this figure because of the truncation at a«=2.5.
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tipliers m g with unequal rg, one may be able to use a par-
tition function based on a covering with boxes of equal
size. :

For g =0, the curvature in the a(g,€) plots confirms
what we already know: neither the exponents a(g) nor
f(g) are defined for ¢ <0. Nevertheless, one can define
an effective f.(a) curve, which in the limit €—0, seems
to tend to the theoretical result. This therefore provides
support for the methods used in Refs. 9 and 10, where the
dependence of “local” exponents on the cluster size L
was invoked in establishing phase transitions in DLA.
We therefore believe that high-precision data on large
DBM and DLA clusters, combined with the method of
analysis described above, can shed more light on the na-
ture of the transition in these models.

V. DISCUSSION AND SUMMARY

The above described critical behavior will in general
occur for any measure for which 7(¢)=7(qp,om)
+e,q +c2q2+qu‘x+0{q3), with x being a noninteger
critical exponent characterizing the singular behavior of
T near the critical point gy o,- For the family of mea-
sures parametrized by 0<A < o, considered here, we
showed that the exponent is x =A. The order n of the
transition in the f(a) was shown to be equal to
n=[k]+1 for x>1 and n=cw for x =<1, where
k=max[2,x /(x —1)]. Thus the order of the transition
in f(a) undergoes two transitions as a function of A. At
A=2 there is a first-order transition, while at A=1 there
is a “smooth” transition from finite to infinite order,
characterized by n ~(A—1)" 1

In this family of measures, the smallest probability de-
cays like a stretched exponential p ;. (€)~exp(—ce °), as
a function of the coarse-graining box size €, with s =1/A.
This establishes a one-to-one relation s=1/x, between
the stretched exponential decay of the smallest probabili-
ty and the exponent x, and thus also between s and the
order of the transition in the f(a). We believe that this
relation holds in general. This would imply that the
lower bound s>D —1, suggested in Ref. 19, where
D =1.7 is the fractal dimension of DLA clusters, leaves
open the possibility for a transition of any order in the
fla) of DLA.

Other rules for the decays of the minimal probability
are possible. For example, p;,(€)~exp[ —c(—Ine) "],
has recently'” been suggested for DLA. Reference 5
shows that this rule is also compatible with self-similarity
of the measure.

We have shown that the existence of exponentially de-
caying probabilities does not necessarily imply that a
measure fails to be self-similar. This was achieved by an
explicit construction and detailed investigation of exactly
self-similar (or renormalizable) measures having this
property. This result implies that phenomena such as
DLA, for which the smallest growth probabilities are be-
lieved to decay faster than power law, may still be com-
patible with the concept of multifractality, as long as this
concept is taken in its original more general sense.! The
price to pay is that the partition function, as a tool to es-
timate f (), fails for certain ranges of values of g. In the
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multiplicatively generated left-sided multifractal mea-
sures discussed in this paper, the exponent 7(g) is
undefined for ¢ <0. We show this can give rise to
second- and higher-order phase transitions in f(a).
These transitions are characterized by a critical exponent
x, which (at least in the measures considered in this pa-
per) is determined by the exponent characterizing the
stretched exponential decay of the smallest probability.
We have also discussed how these transition could mani-
fest themselves in experimental data, and thus how they
can be found in real systems.
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APPENDIX

We solve Eq. (1) for all A in the limit of small positive
values of ¢, i.e., ¢ 10. Let 8=¢ In2, ¢ >2, ¢ >0 and write
7(qg)=—1+¢. Since the nontrivial behavior of the mea-
sures studied here is caused by the behavior of the multi-
pliers m g for large values of 3, we can use the approxima-
tion rg=AB""" 'A. Thus we can replace the reduction fac-
tors by r5=,5’_" 7]/§(7L+ 1), where the Riemann zeta
function {(x)=37_,j " is introduced to ensure that the
slightly changed lengths r; add to 1. The original prob-
lem, Eq. (1), then becomes

Je "E’Br,'g_s =L(A+1).

B=1
If we define sp=(1—e 'aﬁ)rﬁ and tg=e _'S'B(r};_"‘ =gl
the above equation becomes

E{SB_IB)=O. (Al)
B=1
This sum is split into three parts, namely,
1= 3 sg, (A2)
B<1/8
22)= 3 sg, (A3)
B>1/8
b3 el I A B DY/ (A4)
B=1
so that Eq. (A1) becomes
2(1)+2(2)—2(3)=0. (AS5)

For 2(1) we find
1

A+1
,6’<l/r.‘51e,Jr

Since this double sum is absolutely convergent we can
rearrange terms to find for A7°1,2, ..., that

A
3 (180

n=1

Z(1)=
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3(1)= f [(=1)"*/mijer § go-12 (A6)
n=1 B<1/8
-sern]] w
=§:1( L’!"H [Stx +C,+ - ‘ (A8)
=5* é!% +§] (—ii):—ﬂa"c,,+ B

(A9)

where the ellipsis represents lower-order terms. Note
that for 1 <A <2 the term in large parentheses (A9) lies in
the range (— o, —2.8]. It follows that

o0 6*5,6 o
=3
B=1

=1
and the lower bound
U —5f)nf e(A+1)

T 5 =
B<1/8
- > B at+n-5 3 2+
B<1/BB B<1/8
0(8e), A>1

=c,e—0(8Mn(1/8)e)— {0(8e1n?(1/8)), A=1
O(8*¢1n(1/8)), A<1.

4535
e8+c'"8*+ -, A>2
c8+c'8%n(1/8)+c"'8%, A=2

3(1)= {cb+c, M+ -+, 1<A<2 (A10)

c8In(1/8)+¢'s, A=1
& +c'd+ -+, 0<A<],

with ¢; <0. The results for A=1 and 2 follow from Eq.
(A6). Since 0.63<c;=[1—exp(—38B)] <1 we can write
2(2) as

I

S2)=c} 3 =254 -

P k2 s
A €D ?
B>1/8

where ¢, =c5 /A and |c,| > |c,| if 1<A<2. By Taylor’s
theorem with remainder

o e*ﬁB

2(3)_35;:1 BAH

e(A+1)InB

+0

2
%(k"f‘ 1 )21n2(ﬁ)ﬁe(l+l)

The first term has the upper bound

o e(A+DInB< 3, (InB/BNe(A+1)=c;e

(A11)

(A12)

(A13)

The expression =(3)—T(1) is of the order O(g?), as long as (1—¢)(1+A4)> 1, so that

0(8e), A>1

3(3)~c e+ 0(e})+0(e8Mn(1/8))+ {0(8eIn*(1/5)), A=1

0(8*e1n(1/8)),

Equation (AS) then yields

cS+c"8 -0, A>2
c8+c¢"8%In(1/8), A=2
e= 1c8+c"8+ -, 1<A<2

c&In(1/8)+¢"8, A=1
c&*+0(8)+0(8n(1/8)), 0<A<]1,

as announced in the body of this paper.
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