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A sharp distinction is drawn between general multiplicative multifractals, as originally
introduced by the author, and the more familiar but more restricted class defined by Frisch
and Parisi and by Halsey et al. All the general multiplicative multifractals are exactly
renormalizable, by design. However (this is important and perhaps surprising), it is shown
that the scaling relations that serve to define the restricted class fail to extend to certain
multiplicative multifractals. As a result, in addition to the familiar restricted class, the general
multifractals are shown to allow for a wide variety of “anomalous™ behaviors, several of
which are described. We believe that suitable examples of these anomalies are of the most
direct practical relevance. In particular, there is evidence that they characterize the very
important concrete applications to fully developed turbulence and to diffusion limited
aggregates (DLA). This paper concerns several new classes of multifractals we have recently
proposed as tools to model the anomalies of DLA. They are “left sided”, that is, character-
ized by @, == with f(a,,,.) = D,. Related multifractals characterized by «,,,, = 0. and even
by a,.. = and «,,, =0, are encountered along the way.

max min

1. Introduction to two distinct meanings of multifractality

The term “multifractal” may have at least two meanings, depending upon
the role given to multi. At one time, this distinction seemed to lack practical
bite, but we feel that recent work on fully developed turbulence and on
diffusion limited aggregates (DLA) has made it become essential.

The earlier and more general meaning comes from the notion of “multiplica-
tive cascade that generates non-random or random measures”, and describes
“measures that are multiplicatively generated”. The virtue of all multiplicative-
ly generated measures is that they are exactly renormalizable (just like the
simplest self-similar fractals, such as the Sierpinski gasket). This general
meaning of multifractality is investigated in early [1-3] and recent papers of the
author and co-workers. (Ref. [1] and other early papers are to be reprinted in
ref. [4].) Note that our papers of 1974 have laid the ground for a general notion
(the word fractal had not been coined yet!) that went beyond the original
specific application to fully developed turbulence.
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In addition, a second meaning has since been introduced by Frisch and Parisi
[5] and by Halsey et al. [6]. Let space be subdivided into small boxes of side &,
and let u(e) denote the measure within the jth box. A multifractal can be
defined as ““a non-random measure for which it is true for all —o < g < that
the partition function x(q, €) = L p!(e) scales like a power of the form &™?”.
An alternative form of this definition involves the Holder exponent « =
log p,/log e. Thus, it is useful to represent such a multifractal as a multiplicity
of intertwined measures, each of which is supported by a Cantor set and is
characterized by a uniform a. The proportions of different a’s in the mixture
are characterized by a function f(a) = 0, whose graph is shaped like the sign N,
perhaps asymmetric and leaning to the side, but always standing above f =07,
Applying the method of steepest descents, one shows that this function f(a) is
related to the function 7(g) by the Legendre transform. The basic facts about
this approach are restated in these Proceedings in ref. [7].

We now come to one of the central points of this paper. In restricted cases of
our multiplicative multifractals, the scaling relation that defines 7( g) is indeed
valid for all g. As a matter of fact, this was precisely the point of departure of
ref. [5]. On the other hand, we shall give explicit examples of multiplicative
multifractals with the property that the scaling relation fails to hold, either for
small enough negative ¢’s or for high enough positive ¢’s. Insofar as they differ
qualitatively from the familiar restricted class, these multiplicative measures are
“anomalous”. Nevertheless, they preserve the desirable property of being
exactly renormalizable. As already implied, some of the examples we have
constructed fit fully developed turbulence. We propose to provide further
examples that we believe fit DLA, the diffusion limited aggregates.

Notations. In the non-random case, the bounds on “normal” ¢’s will be
denoted by Guoom and q,,,. In the canonical random case, mentioned in
Section 6, yet another cause of anomaly may restrict g to lie below a different
threshold, denoted by q,,;,, which may satisfy 1< q_;, < q,,,-

The reader may be reassured to know that, in our more general multiplica-
tive multifractals, counterparts of the function f(e) and 7(g) continue to be
needed and continue to be cap-convex (like —x). Do they continue to be
linked by “the” Legendre transforms? Yes, but only at the cost of introducing
(here again) a fine distinction. It happens that it continues to be true that
f(a) =min [ag — 7(g)], which implies that the graph of f(«) is straight for
g >min(q,,,» Geri)s and for g < gy, - But the alternative Legendre trans-
forms that express both a and f as functions of ¢ only apply in the restricted

range thlom = q = mll'l( q{op? QCrii)‘



B.B. Mandelbrot | New “‘anomalous” multiplicative multifractals, and DLA 97

The first major novel consequence of using the notion of multiplicative
multifractal is that the function f(«) of a multiplicative multifractal need not, in
general, be =0 and shaped like M. Instead, it can take one of several
alternative overall shapes, each of which corresponds to a qualitatively distinct
behavior for the corresponding multiplicative process.

The new multiplicative multifractals introduced in this paper also raise a
second important new issue. We shall show that even a fairly detailed empirical
knowledge of f(a) gives unexpectedly incomplete information about such a
measure, and we shall claim that an acceptable description of DLA requires
information that goes beyond the f(«) that one can hope to obtain empirically.
In the simplest case, yet another form of scaling comes in, characterized by a
new scaling exponent A.

Could one further generalize our multiplicative multifractals, without aban-
doning renormalizability? We prefer not to try until the need arises. However,
the end of section 6 refers to a small step in that direction.

2. “‘Anomalies”’

Let us elaborate on our claim that, from the viewpoint of the steepest
descents formalism of Frisch—Parisi and Halsey et al., the important applica-
tion to DLA turns out to present deep “anomalies”. Section 6 tackles briefly
the related anomalies associated with certain dynamical systems, and the very
different anomalies associated with fully developed turbulence.

In the example of DLA, the growth probabilities are known to be ruled by
the harmonic measure. One observes the experimental “‘anomaly” that, for
g <0, the partition function y(g, &) fails to scale like £'”. Therefore, a blind
application of existing computer programs yields wildly disagreeing f(«)’s, and
even f(a)’s with cusps. The restricted theory of multifractals does not allow for
these baffling and contradictory results, which is why the harmonic measure
has been described as being “non-multifractal”. This term appears in the very
title of R. Blumenfeld and A. Aharony [8], which also includes an extensive
bibliography of the rich recent literature on the multifractal study of DLA.
(We hope to be forgiven if this bibliography is not repeated here). One may be
tempted to elaborate on this “non-multifractality”’, and conclude that this
harmonic measure is not renormalizable. If true, this would be a very serious
setback.

However, the very same anomalies can immediately be fitted by the new
classes of our multiplicative multifractals presented in sections 4 and 5. This
shows that, after all, despite its anomalies, the harmonic measure may well be
renormalizable. We view this conclusion as very reassuring. The price to pay is
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that, in these examples, the steepest descents method is altogether invalid for
g <0, and the validity of the broader Legendre transform is something of a
coincidence: this is an issue we hope to discuss in detail in the near future.

Combining these conclusions with those of several recent publications [9-
13], we venture to claim that the known multifractal anomalies basically
disappear if one follows the open ended approach of our general multifractals,
and if one accepts the need for a separate discussion for each of several
qualitatively distinct basic categories, each illuminated by well chosen special
cases.

Note incidentally that the binomial and finite multinomial measures, which
are non-random and are studied in detail in sections 1 to 6 of ref. [9], exhibit
essentially every feature of the restricted multifractals, as defined above. In
particular, the thermodynamic interpretation of the multifractal formalism
comes near-unavoidably through the Lagrange multipliers borrowed from the
most elementary statistical thermodynamics. Our impression is that this path
shows best the simplicity of this interpretation.

3. Non-random multifractals with an infinite base that can readily be made
to exhibit a new ‘‘anomaly’’ needed to account for DLA

One reason why many measures are expected to be multifractal (e.g.. the
harmonic measure on DLA) is because they are supported by a fractal set
(c.g., a Julia set, or the boundary DLA). However, the basic ideas behind
multiplicative fractals are best understood if this complication is postponed,
and if one first examines measures supported by the interval [0, 1] (e.g., linear
cuts through developed turbulence, or developed turbulence itself). Thus,
using a widely known notation, we assume D, = 1.

This paper (which has a large overlap with ref. [12]) provides several families
of multiplicative measures on [0, 1], having by and large the properties claimed
in ref. [8]. Randomness brings in genuine complications, but it is possible to
avoid them in the present discussion, by working with non-random measures.
This section describes a general idea, then sections 4 and 5 provide two basic
illustrative examples.

A construction. We start with the interval [0, 1] carrying a mass equal to 1.
Hence, the measure we shall obtain will be usable as a probability measure. At
each stage of construction, [0, 1] is divided into an infinity of (necessarily
unequal) sub-intervals, which we index from right to left by the unbounded
integer B =1. The Bth sub-interval of [0, 1] is taken to be of length r,, with
Lso1rs =1, and to contain the mass mg,, with L5y mg=1. Next, the
sub-intervals of lengths r, are subdivided into sub-sub-intervals of lengths

rg Tg,» for all combinations of B, and B,, and these sub-sub-intervals are made
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to contain the respective masses mg mg . The process is allowed to continue ad
infinitum. It is clear that the measure it generates is self-similar, in the sense
that the relative distribution of mass is the same in all (sub)*-intervals.

When my, = r,, this measure is, of course, uniform, but in all other cases, it
is multiplicative multifractal.

To describe a multifractal, it is the custom to evaluate its function 7(g). We
must postpone to a later occasion a critical discussion of the meaning of 7(g)
when the subdivision is infinite. We shall be content to explore a blind
generalization of a formula that is familiar in the restricted theory. There, 7(q)
is known to be given implicitly by the following relation due to Hentschel and
Procaccia, which we call the “‘generating equation””:

Mg

Gomnla)
]mﬁrﬁ =1.

B

A special case. Take my =m”™' — m®, with 0<m <1, and 7 =Pl B

with 0<r<1. A moment’s thought shows that the resulting multiplicative
measure reduces to the ‘“‘skew binomial” multifractal, which is defined by
assigning the masses m and 1 — m to sub-intervals of [0, 1] having the lengths »
and 1 —r. The graph of the resulting f(«) is well known to be shaped like N.
Also, a,;, and « . are, respectively, the smaller and the larger of the two
quantities log m/log r and log(1 — m)/log(1 — #).

Generalization. The reason for introducing the new construction is, of
course, that it also allows a variety of more interesting outcomes. The nature of

their anomalies will be seen to depend on the following functions:

M*(B)=—log, 2. m,, R*(B)=-—log, 2 r,

u=p8 u=p

and a*(B) R (B) '

A criterion. Suppose that lim,_,, a*(8) exists. (The case when it does not
exist will be examined elsewhere.) The novel and interesting features that
motivate our new construction are the following. We show momentarily that
limg_,,, a*(B) = is a sufficient condition for e, ,, =%, hence for g, = 0.
We show in section 7 that lim, . «*(B)=0 is a sufficient condition for
=0, hence for q,,, = 1. The condition that lim,_, @*(B) exists and is >0
=

®in

and <o, is sufficient to obtain the ‘““‘usual” situation, in which 0< «
Dy ax = 2y hence qtop =i and Tvorom = — -
The case a,, =. A sufficient condition for «,,, = o is that one can identify

min
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at least one point where a =%. When a*(8)— o, such is indeed the case at
the left most point of [0, 1]. It is easy to see that in that case 0 <, <<

A consequence of a =% is that ¢, — 0, meaning that for g <0, the
function x(g, €) fails to scale like ¢?, and the function 7(gq) fails to be
defined. To prove this, observe that the largest addend in the sum ¥ uf(e)
always comes from the interval where u(e) is smallest. In this instance, this
interval goes from 0 to e. When e =X, _, r, for some 8, this interval contains

the mass X _, m,. Thus,

max

min (&) ~ e ® and pi(e) = gl
F

Does there exist a finite 7( ¢) such that ¥ uf(e) = ¢”? for £— 0? The answer
is no, because assuming this behavior would yield a contradiction. [Proof: A
little algebra would yield the result that, for every g, |7(g)/q|= a*(B) for
e—0. But B—o as e—0, and lim,_, @*(B) = = is true by hypothesis. Hence
7(g)/q would be infinite for all g.] Observe that a non-defined 7(q) enters in
the form of 7(g)— —.

Conclusion. When «a*(8)— %, our infinite base multiplicative multifractal
satisfies «,,,, =%, hence is not a restricted multifractal.

The very special role of mg = 27" Note that, in the preceding discussion, the
algebra can be greatly simplified by simplifying the dependence of either
M*(B) or R*(B) on the parameter B. Given that M*(1) = R*(1) =0, this
parameter may simply be set to be g — 1. It is easier to set M*(B)=p —1,
16y Biua i, =2'"P Then the expressions for m, and for the criterion
function a*( ) become

m,=2"F and a*(B)=(B—1)/R*(B).

It is easy to see that one may redefine M*(8) and R*(8) with logarithms of
base 1/m #2. This would suggest selecting m, = m®? ™' — mP with m # 27", but
0 < m < 1. However, the change would bring no significant generalization, only
the replacement of log2 by —log m in most formulas.

Section 7 extends the above considerations to the case «,;, =0, which 1s not
needed in sections 4-6.

4. A first family of new multifractals: one-sided f(«)’s yielded by m, = o
and rp = B™* = (B +1)"", where A >0 is a parameter

Now, having set m, =2"% we proceed in this section and the next to
examine in detail two simple examples of sequences r,.
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When r, = 7 — (B +1) 7, our criterion function of section 3 becomes
e*(B)=(B—1)/R*B)={B—1)/Llog; 8 .

As B— o, this quantity tends (rapidly) to =, so that e, ==.
Minimal measure. We have

min w,(¢) = R,
7
Since e =B " and L =1/e = B7, elimination of B yields
min p,(e) =e“exp(—ce ") and min (L) =eexp(—cL'™).
J
The constant ¢ is non-intrinsic: here, ¢ =log 2, but taking m, = mP ™ — m*
with m # § would yield ¢ = —log m.
This logarithmic behavior is postulated in ref. [8], and has strongly contri-
buted to our writing the present paper.
The function 7(q) for ¢ < q,...om = U. We see that, irrespective of the choice
of 7(g), one has 2°198* "W Therefore, the left-hand side of the
generating equation diverges for all 7(g). This confirms that the implicit

equation for 7(g) has no solution. That is, 7(g) is not defined. To give further
evidence that & u?(e) fails to scale like £'?, note that

x(q, €)= [mjln n ()] ~ exp(| q|cgfl"‘") )

On the basis of certain limit theorems of probability (whose scope is beyond
the present discussion), we believe that the symbol = can be replaced by the
symbol ~. In any event, the present multiplicative measure is not a restricted
multifractal.

The function 7(q) for ¢ > ¢, ,.om = 0, The situation is very different. Lengthy
but conceptually straightforward arguments [12] show that for non-integer A
one has for small g > 0:

(@)= =1+ (g —ef’ + ) e+

The function f(a). Now let us move (again, formally) to the function
fla) =min_ [ag — 7(q)]. For small @, f(«) is ruled by the large positive g’s.
Hence, f(«) is non-anomalous: it is positive with a readily obtained value of
«..,. Butlarger «’s are ruled by the small positive g’s. Here, the leading terms
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of r(q) are

—1+ch’\ for A<<1,
W)= —1+eg+oa for I<<A<2,
~1+¢,9-¢,q° for A>2.

Hence, the Legendre transform defined by f(@) = min, [ag — 7(g)] exhibits
one of the following extreme anomalies for sufficiently large «. Write
k =min[2, A/(A—1)].

For A<1, one has k<0 and one finds that a, =% and that f(a)~
1—c (a— a)"as a—=. Here ¢, and a are constants that could be “tuned” by
changing r, for small 3.

For A>1, one has k>0 and one finds that «,<<= and that f(a)~
1-c (a,— a) for « ~a, — ¢ and f(a) =1 for a > a,.

Let us add that, when A is an integer, there are terms in ¢" log(1/g). For
A=1, one has 7(g)~—-1+c,qlog(l/g), which vyields fla)~1-
c. exp[—c'(a — &)] for a— =,

For A >1 and small @, f(«) is shaped like the left half of N. Thus, for A=<1
the right side of f{«) is nonexistent and for A >1 the right side reduces to the
horizontal. For all A, f{«) can be said to be “left sided”. The three behaviors
of f(«) are illustrated schematically by the bold curves of fig. 1.

Recall that one can also determine f{e) by giving f and « as functions of the
exponent g taken as parameter. There would no change for A=<1. But for
A>1, the function f(«) would only be defined for a < a,, which would be
incorrect, and would hide an extremely unexpected and important aspect of a
complicated reality.

Sampling and the definition of an “effective” f(a). Now let a large number N
of points be chosen independently on [0, 1] following the probabilities given by

Omin 04 o for A=1.5

Fig. 1. The three basic shapes of f(«) for a left sided multifractal. The low a portions are
completely schematic. Precise graphs are found in ref. [12].



B.B. Mandelbrot | New “anomalous™ multiplicative multifractals, and DL A 103

our measure p. A box of measure u,(¢) then will include Ne,(e, N) points,
with ¢,(e, N) ~ p,(e), except that most boxes such that Nu,(e)<1 will be
empty.

In restricted multifractals, the number of empty boxes decreases rapidly as N
is made to increase faster than & =1/L. The frequencies ¢,(¢, N) are then
combined into a partition function, which yields a sample estimate of 7(g).
Finally, f(a) is defined as the Legendre transform of 7(g). In left sided
multifractals, to the contrary, we know that the same approach leads to a
meaningless estimate of f(«). One would like, however, to be able to define for
each £ a notion of “effective” [ (a). Unfortunately, the restricted theory has
no room for such a notion.

The quantities ¢;(¢) also enter into our general theory of multiplicative
multifractals, but in a very different fashion, which does happen to involve an
effective f.(«). The difference is very important, but in this paper the issue can
only be sketched. The point is that our approach does not define f(a) as the
Legendre transform of 7(g). Instead, given that D, =1 in the present case, our
approach introduces the quantity p(a)=f(e)—1 as a limit of the form
pla) =lim,_, p (a), where p,(a) = —(1/log €) log p, (@), and where the quan-
tities p_(«) are the probability densities of « for given &.

To form p,(«) is to take the logarithm of a probability density, and to
renormalize it by dividing by log . This is precisely how the Holder exponent
@ is obtained from w, namely, by taking the logarithm and renormalizing it
through division by log e. To plot a function on doubly logarithmic coordinates
is a cliché in the study of fractals. But here the plot is not a straight line! The
tact that the sequence p,(a) does indeed have a limit is a remarkable feature of
the main tool of our theory, which is Harald Cramer’s theory of large
deviations [9]. As may have been expected, the Cramer theory does use the
Legendre transform, but only to evaluate f(a), not to define it.

Now we come to an important distinction. For the restricted multifractals,
fle) is useful even for relatively large . The reason is that the convergence of
p.(a) to p(a) is acceptably rapid and uniform, and the “finite & corrections
p(a) = p,(a) have not yet been found to be needed in physics. (They probably
will 1)

For the special multipliers that yield left sided multifractals, to the contrary,
the convergence of p (a) to p(a)=f(e)—1 turns out to be extraordinarily
slow and the shape of the approximant, even if e is small, gives a totally
misleading idea of the actual limit f{a). We have even seen that, if A>1
(hence a,, <), the limit of p_(«) is identical to 0 for @ > «,. Therefore, this
limit hardly matters at all when &> 0.

Instead what does matter greatly is the “preasymptotic” behavior of p,(«).
This paper gives us no room to go beyond asserting that, denoting — log ¢ by k,
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one has
pl(@)~ck' *a™" and  p,(«)~ (1/k)log(ck' *a™71) .

Our fig. 2 compares very schematically the shapes of p,(a) + 1 and of f(«).
In a different context, fig. 2 of ref. [14] had illustrated the same effect (but
without explaining it) for data from a multifractal that a recent study [15] has
shown to be closely related to our case A =1 (see section 6).

The expression f (a)=p,(a)+1 is not the Legendre transform of any
function 7,(gq). One of many reasons is that all Legendre transforms are
cap-convex, while our p,(«) is cup-convex for large a.

In a rough way, f, (@) is a modified box dimension that would only concern
boxes of size b~ *. But there is no Hausdorff—Besicovitch dimension behind this
box dimension.

Pre-asymptotics and the search for an “effective” 7(¢g). Given that

—1/a

log x(q, €)/log e = | q|(log2/A)e” "/log € ,

it is tempting to view the right-hand side as a “variable” 7(g). This amounts to
defining, for each &£ and ¢ <0, an “effective” function 7(gq, &) that satisfies
(g, ¢)— — as e—0. When A is small, this effective 7( g, ¢) will vary greatly
with £, and it will be difficult to fit the data by a single straight line. But when A
is large, 7(q, €) will vary more slowly, and tolerant curve fitting algorithms will
manage to fit a single straight line. Alternatively, a physicist overzealous to find
a straight fit will decide that one may discard the data for small &, or perhaps
for largish &, and then fit a straight line to the remaining data. This is the
procedure that seems to have produced many of the published f(«)’s relative to
DLA; no wonder that different statistical ““fixes” yield different results.

1 /_.——
e i
\\\\ \\'--.
T -~
. T | -
N ey =~
~ ~ =
\\ ~———
\_‘_‘_—
0
Cmin &1 ag for A=1.5

Fig. 2. This schematic view of the convergence of p, () + 1 to f(a) shows that the left-sidedness of
the asymptotic f(«) fails to be reflected in the shape of finite sample approximants to p,(a) + 1.
The value of k increases from bottom to top. Detailed study of other classes of multifractals
suggests that the form of f(e) to the left of «, is likely to differ markedly from p, («) + 1 near its
maximum. The difference or “‘bias” is likely to depend upon details or r, for moderate 3, and we
prefer to disregard it here.
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Truncation. One can truncate our multiplicative multifractals by replacing
all the sub-intervals with u > B by a single sub-interval with the mass m; = ol
and the length e(B8)= R*(B8)=B"" Denote the truncated measure by P
When inspection stops at scales =¢e( ), the true w and the truncated g, cannot
be told apart. Moreover, the truncated measure seems to be a restricted
multifractal. Therefore, one may hope to describe it by standard functions
7(q, B) and f( g, B), with the property that, as 8 — =, one has 7(g, B8)— 7(g)
and f(q, B)— f(a).

In practice, this hope is unfortunately unfulfilled. It is indeed true that
Xa(4, €) ~ £”®) for small enough &, but “small enough” means smaller than
e(B) = B~ ". However, these scales are beyond the reach of observation, which
is (as a result of truncation) restricted to &> 8"

Screening. Thinking in terms of the hoped-for use of these measures to
model DLA, values a < a, — ¢ could correspond to ‘“‘unscreened sites”” and
values of a >, + £ could correspond to “screened sites”. Thus, in the case
A>1 (but not for A=1), the screened sites subdivide further according to
whether a < g, or a > «,.

Mathematical digression and query. In the case of restricted multifractals, it
is known that f(«) is a Hausdorff—Besicovitch dimension. For the binomial
measure, this property follows from difficult but standard theorems of Eggles-
ton and also of Volkmann (see ref. [9], p. 24). Turning to the present
generalization and supposing that a, <o and f(a) =1 for a« > «,, consider the
Hausdorff-Besicovitch dimension of the set of points where « satisfies a, <
a' < a<a" forgiven ' > g, and " > «'. It is tempting to conjecture that this
set’s dimension is 1 for all «’ and «". Nevertheless, this set’s linear measure
(that is, its Lebesgue measure and its Hausdorff measure in the dimension 1) is
necessarily 0, because the Holder alpha equals a, almost surely.

Smooth or arbitrary-order phase transitions. Our model demonstrates the
possibility of a smooth “phase transition™ in the f(«) curve, characterized by
k <1, as well as of transitions of all finite orders =2.

5. A gradual cross over from restricted to left sided multifractals. Second
family of left sided f(a)’s, and their extension

The input r, ~ B """ used in section 4 was knowingly “tailored” for very
specific goals. Recalling the very special example by which we had started in
section 3, we also know already that our new infinite base construction is
allowed to lead to a N-shaped f(«). It remains to input alternative sequences
rs, in order to span the wide gap between the skew binomial and the family
Fg =~ B "' in section 4.
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A first multiparameter family is based on mgy= 27 and Bpen W=
exp[—A(log B)"], where A >0 and m>0. There is nothing new to the value
n =1, which brings us back to r, = B~ —(B+1)"

For all 7, the criterion function of section 3 is a*(8)~ B/A(log B)"
Therefore, a*(B)—* as B—2, and we deal with a left sided multifractal.
When 7 >1, this measure is even more ‘“‘anomalous” than any measure
obtained via r,; ~ B ™Y, And for n < 1, this family does not reached down to
the skew binomial.

A far more interesting second multiparameter family is based on m, = g
and X;,_ r, =exp[—A(B — 1)"], where again A >0 and n > 0. Again, the value
n =1 brings us back to r, = rP71 — P with r=e" ie., to the measure in
section 4. For very small o, " is “like” log B, and r, is “like” g~*""". This
suggests that this family can be said to include the range from the multifractal
in section 4 to the skew binomial of section 3.

The criterion function of section 3 becomes

a*(B)=(B—1)"A.

When n<1, we find a,_ =%, but the power (8 —1)' " increases far less
rapidly than the ratio ~B/log B in section 4. When > 1, we find o, =0, a
possibility discussed in section 7.

The value of p,(e) at the left most point of [0,1]. We have

py(e) = ¢ exp(—eA " log e[ 7).

Again, the constant ¢ is non-intrinsic: here, it is ¢ =log2, but taking
s =m’ 1= mP with m# } would yield ¢ = —log m.
Remark. A preprint we have received since the rest of the paper has been
written [16] proposes this last expression to describe the harmonic measure of
DLA, in preference to the exponential dependence feature in section 4. This is
not the proper place to discuss which of our several analytic expressions gives a
better fit to the data. But one reason for including the present example is to
show that all the behaviors that have been proposed so far can fit very well in
the framework of our multiplicative multifractals.

The extremal «,(¢). The values of « is either largest (if n < 1), or smallest (if
n>1) at the right end point of [0, 1], where one has

m

extremal (Ij.(g) = (log 2)/\—1,*n(|10g gl)qﬂm ]

As expected, extremal «;(g)—= if n <1, and =0 if n>1.
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The function 7(q). In the generating equation for 7(g), the addend is

277 = MB" " exp[—(log2)gB + Ar(q) (B — 1)"] .

When n <1 and g <0, the term 2!?"* predominates. Therefore, no choice of
7(q) (of either sign) can prevent the addend from tending to infinity with 8. A
fortiori, the left-hand side of the generating equation diverges for all 7(¢). The
generating equation has no solution for ¢ <0. But for n<1 and ¢ >0, no
problem is expected, and none arises, because 2 ‘° predominates. Hence
Goouom = U, and we deal with a left sided multifractal.

When 7 >1, to the contrary, no problem is expected if ¢ <0, and no
problem arises. In that case, 7 =0 yields £27% > 1, while <0 yields 0 <
%2 % <1, The sum ¥ 2"“%; being monotone increasing as function of 7, its
value necessarily crosses 1 for some negative value of 7(g). But if >1 and
g>1, all 7<0 yield £27%r ;" <1, and for all 7>>0, one has 2”77 — o as
B0, Henee, ...~ 1.

This leaves n =1 as yielding the only restricted multifractal in this family.

The shapes of 7(q) and f(a). Without being able to dwell on details, let us
say that for all n and A the graph of f(«) is made of two parts: for a < «,, one
has a left side with a second order maximum, and for @ > «,, one has a
horizontal right side. (Hence, we deal with a “phase transition”™ of order 2.)
For the purposes of the following paragraph, we shall write this f(«) as f,,,.(«).

Important discontinuities. A most interesting sharp discontinuity arises be-
tween i =1 and 7 just below 1. Below n =1, one must define two distinct
fla)'s. The left sided “true” f,, . (a) only concerns the far-out asymptotics.
That is, f,..(«) only matters when & is below a threshold that converges to 0
with 1 —n. When & is not small, the mass in an interval of length & is for all
practical purposes skew binomial, i.e., it is ruled by an f(«) that is N-shaped.

What about intermediate and decreasing values of £? To describe them, it is
best again to use our probabilistic definition of f(«) as a limit, a definition that
is already touched upon in section 4. It turns out that one should expect the
histogram of « to be shaped like N, except for the added presence of an
“anomalously” large number of “anomalously” large values that form a “tail”
for large «. Using the statisticians’ vocabulary, one would be tempted to
consider these large values to be “outliers” generated by a “contaminating”
mechanism unrelated to the mechanism that generates the N-shaped portion.
For data in our spanning family, however, this would be a totally incorrect
interpretation.

A symmetric sharp discontinuity arises between =1 and 7 just below 1,
but now the apparent “outliers” are expected to be found to the left of the
M-shape relative to n = 1.
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6. Miscellaneous remarks

For details of the multifractals described in this paper, see refs. [12, 13] and
forthcoming references. The connections between the construction of sections
4 and 5 and the physics of DLA begin to be understood [13].

An issue of rigor. Sections 3 and 5 have started with a formal equation for
7(g) and have continued by using diverse formal manipulations that are known
to be valid for restricted multifractals. But the function f(«) obtained by these
manipulations falls beyond the restricted class. This raises an issue of rigor that
we shall have to discuss elsewhere. :

A genuine underlying complication is that 7(g) can be defined in either of
two different ways: The partition function [5,6] can be used when u is a
restricted multifractal, but in other cases one must use the earlier definition we
had advanced in ref. [1].

Randomness and its necessity in modeling. One point of the present paper is
that, even in the non-random case, the multiplicative multifractals introduced
in ref. [1] are more general than the multifractals introduced in refs. [5, 6].

A different advantage of the approach in ref. [1] is that it applies immediate-
ly and rigorously to random multifractals. Of course, in the hands of many
researchers, the theory in refs. [5,6] has been informally extended to the
random case by resorting to averaging. The reason we call these extensions
informal is because they are not based on any theory. This is why they involve
murky discussions of which of seveal methods of averaging is “the best”. Our
original theory of multiplicative multifractals tackles these issues in advance.

One feature of our random multiplicative multifractals, is that they involve a
different definition of 7(g¢).

The anomalies of f<0 and « <0 in random multifractals, and energy
dissipation in fully developed turbulence. This paper has discussed the
anomalies that consist either in e, =% with f(a,,,)=1, or in . =
fla,,;,) =0. We wish to stop for just a moment to draw attention to refs.
[10, 11], which discuss very different anomalies, which are needed in the study
of turbulence.

One of these anomalies is due to the presence of negative f(a)’s. When one
starts with the usual formalism and then superposes diverse methods of
averaging upon it, one finds that negative f(a)’s do occur with certain methods,
but not with others, and their origin and meaning is totally obscure.

In our approach, to the contrary, they are perfectly well understood and
essential. In broad outline, the positive f(«)’s can serve to define a typical
distribution of a random fractal measure, and the negative f(a)’s describe
fluctuations one may expect in a finite size sample.

Ref. [11] discusses yet another anomaly, which allows « < 0 and gives rise to

max
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the bound g, on g, first introduced in ref. [1]. One has 1=g,, =g, and
7(q.;) = 0; when g, =1, one also has the further relation 7'(1) =0. This
definition of g, only makes sense with our definition of 7(g). However, g_;,
also entes in the study of non-random multifractals, where it is necessary to
justify calling D(q)=17(g)/(q—1) a form of dimension. (Note that the
treatment of H in ref. [9], hence fig. 5, are in error; the correct result is given
in ref. [11]. The journal issue in which ref. [9] appears is also reproduced as a
book [17]. This reference is summarized in ref. [18].)

On left sided multifractals that arise in dynamical systems. Let us mention
that the “anomaly” of left sided f(«), which is described in this paper, is not
limited to multifractals in real space, like DLA, but does extend to certain
dynamical systems. This fact broadens the impact of our criticism of the
restricted multifractals as being a tool of inadequate generality for the needs of
physics. The new application, described in ref. [15], involves a non-linear
multifractal cascade already discussed in ref. [14]. (Ref. [14] came very close to
identifying left sided multifractals and the anomaly «;, = f(«,,;,) =0 of section
7, but it stopped before the critical last steps.)

It is shown in ref. [15] how the multifractal in section 4 was originally
obtained form the multifractal in ref. [14]: by a linearization that yielded A =1,
followed by a generalization that allowed other values of A. Thus, the
argument in section 3, which may seem to have come a priori, was only
developed after the fact.

7. Continuation of section 3

Let us add a little to the considerations in section 3.

win = 0. First, a warning. In order that «.;, =0, a sufficient
condition is that some point carries an “atom” of positive measure. But this
condition is not necessary: «,; =0 also holds when w[r, 1+ €] ~ L(e), where
L(¢) is any function (such as 1/|log £|) that —0 with &, but more slowly than
any positive power £

Now, let us study a, . =0. The argument proceeds roughly as in section 3
for @, = . A sufficient condition for «,;, = 0 is that one can identity at least
one point where a =0. When a*(B)—0, such is indeed the case for the
left-most-point of [0, 1]. It is easy to see that, in that case, 0 < o, <.

A consequence of a,; =0 is that g,,, = 1, meaning that for ¢ >1, x(q, €)
fails to scale like &%, and the function 7(g) fails to be defined. [Proof:
Observe that we now have max; w;(e) ~ ¢*"®)] Hence, the existence of 7(q)
would, again, require the inequality £**"*’ = ¢ When ¢ >0, this becomes
7(q) = qa*(B), which would require 7(g)=<0. Since 7(g)=0 for g >1, we

The case o

min
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have proved that 7(g) =0 for g > 1, if 7(g) exists. But, if g > 1, it would follow
from 7(g) =0 that y(g, €) = constant for all . This last relation only holds if
the measure concentrates at o = 0, which we shall see is not the case.] Hence,
7(q) is not defined for g > 1.

Conclusion. When a*(3)—0, our infinite base multiplicative multifractal
satisfies «,;, =0, hence is not a restricted multifractal.

Reciprocity between the anomalies e, =< and «_,, =0. It happens that
much about our new multiplicative multifractals does not depend on the
functions mg; and r, i.e., on M*( ) and R*(B) taken separately. They depend
solely on the behavior of the functions R*(M*) and M*(R™), obtained by
eliminating 8 between the functions M*(8) and R*(3). The fact that two
alternative functions are involved expresses that our input quantities mg; and r,
obey exactly the same constraints. It also follows that one can exchange their
roles. This will exchange the roles of M* and R*, and replace the anomaly
@,.. = by the anomaly «,_,, =0, or conversely.

The two measures obtained in this fashion, call them reciprocal and denote
them by w and @, must be closely related. Indeed, one can verify that the
functions ([0, &]) and @([0, w]), which are monotone increasing, are the
inverse of each other. Graphically, the relation between p and [ is as
illustrated in the case of a very analogous measure by figs. 1 and 6 of ref. [14],
where the graph of p as function of & is called a “slippery staircase”. Its
apparent horizontal steps are in fact “not quite” horizontal, which is why the
measure (& does not quite include atoms. We shall publish elsewhere the proof
that the functions f and f that characterize p and [ are linked by f(a) =
af(l/a).

Combining the anomalies «a,,, =% and a,,, =0 through a bilateral generali-
zation of our construction. Now make the parameter 8 an integer between —=
and . This generalization allows the relations lim, . a*(B)= — and
limg . a*(b)=0 to be both true. It is even easy to satisfy the identity
f=af(1/a), which is a way to insure that the reciprocal measure g is identical
to p. An example when this goal is fulfilled is when m_, =r; and r_, = m,.
The example shows that, even after the behavior of @*(B) at 8 — = has been
fixed, there exist an infinity of different “self-reciprocal” measures. When
=1/a_._ >0, these measures are restricted multifractals.

min max

a. . <o, and «

max
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