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ABSTRACT. This paper takes as established that the large scale distribution of galaxies in-
cludes a self-similar fractal range. The astonishing power of simple fractal algorithms to
generate rich form is recalled and illustrated, then two issues are tackled. A) Does the fractal
range stop at 5 Mpc, as asserted by Peebles et al.? Or does it continue beyond? Does it stop
before the limits of observation? Thatl is, should one believe the conventional statistical ar-
guments in favor of 5 Mpc? B) The simplest fractal distribulions are "fractally homogenous.”
that is, homogeneous over a fractal sel, and zero outside of this set. However, the distribution
of galactic and inter-galactic mass is non homogenous to the extreme. It can be sell-similar,
in which case it follows a "multifractal measure,” as discussed by the author in 1974, This
paper is concerned with questions of method, and analysis of data is not included.

1. Introduction and Summary

1.1. THE FRACTAL RANGE

The existence of a fractal range in the distribution of galaxies does not appear to he
questioned, though appearances sometimes suggest the contrary. Thus, some writ-
ers prefer to make use of terms such as “self similar range” or “scaling range,”
which have the same meaning, but sound less affirmative. Other writers say that they
have proof that the fractal model [ails, but they willfully restrict the scope of “fractal
model" to the “pure mathematical” case of fractals without cross-over.

The evidence in favor of fractals is basically as follows.

On the one hand, the author's models (as restated in Section 2) are easily fitted to
have not only the observed correlation properties, but also the observed visual ap-
pearance. That is, the prevalence of voids and filaments was not known when these
fractal models were developed, yet these features do not have to be put in separately,
but appear to be an unavoidable consequence of the fractal character of the distrib-
ution. This last fact is an empirical observation that is not fully understood, and de-
serves further examination, but cannot be dismissed.

On the other hand, suppose that a geometric model of distribution fails to be a
fractal. Could it fit the observed power law correlation functions, and have the correct



appearance, while invoking only a small number of parameters. There may be no
mathematical proof this cannot be done, but there is no known example, either.

Therefore, a prudent student of the large-scale structure will find it worthwhile to
keep in mind the properties of the fractals. He will attempt to know more about the
unexpectedly rich variety of pattern allowed by simple fractal constructions, and to
know better the techniques required for their study. Some references to fractals
could be said to imply that fractal geometry reduces to a few simple arguments about
how different quantities scale with respect to each other. Today, this is very far from
being the case. The substantial body of knowledge that exists cries out to be tapped
further in the study of the Universe.

1.2. A LIST OF POSSIBLE GEOMETRIC MODELS OF DISTRIBUTION

In the following list by increasing complication, the last possibility is phrased to cover
every possible views of the relevance of fractals to the description of the Universe,
a description that should be the first step towards understanding.

— 1. Homogeneity. The Universe is homogeneous, save for very local effects.
This would be the simplest Possibility, but of course it fails very grossly to fit the data.

— 2. Pure fractal. Save for very local effects, the Universe is a self-similar fractal
up to infinite scales. More precisely, the galaxies are of equal masses, and the Uni-
verse is fractally homogenous. This would be the next simplest Possibility. In this
case, the appropriate statistical substitutes for the correlations follow power laws
throughout, the principal parameter being one number called fractal dimension.

Comment. Possibility 2 predicts a vanishing overall density of matter, a property
that is known to elicit fierce a priori opposition. Let us, therefore, comment imme-
diately that other fractal models are available, as will be seen momentarily. There-
fore, to disprove Possibility 2 is NOT to disprove the relevance of fractals.

— 3. Pure multifractal. The Universe is a self-similar multifractal throughout. The
precise meaning of this term will be explained in Sections 4 and 5, but implies une-
qual galaxy masses and an interglacting medium. In this case, the principal param-
eter is not one number, but a probability distribution. The appropriate substitutes for
the correlations follow power laws throughout, but with different exponents.

— 4. One crossover. The Universe is a self-similar fractal only up to a crossover
scale that satisfies 0 < R_.. < oo, and the crossover hetween the fractal and the ho-
mogeneous ranges occurs very sharply. That is, there is no transient range of sig-
nificant width, whose structure would require additional parameters in order to be
specified.

Comment. To be the distance beyond which the large-scale structure of the Uni-
verse becomes homogeneous, R, should be the size of the largest significant
structures (such as the voids). To understand the contrast between Possibilities 2
and 4, the telling background example is that of a structure very familiar in statistical
physics: percolation clusters. Percolation clusters at criticality fall under Possibility
2. In percolation clusters above criticality, R.... is finite, namely is the size of the
largest observed patterns. These percolation patterns at criticality are “voids,”
whose shape would not surprise the astronomer of 1988.

— 5. One crossover. There is a crossover R, like in Possibility 4, but the Uni-
verse is multifractal.



— 6. Two crossovers. The Universe involves a fractal range for “small” scales,
an ultimate homogenous range for very large scales, and, in addition, involves a
broad intermediate range characterized by significant structures. In this case, the
single measure of scale R of Possibility 2 is replaced by at /east two measures of
scale.

Comment. Insofar as we can tell, this Possibility is embraced by J.P.E. Peebles
who invokes an intermediate range with negative correlations to explain the size of
the observed voids. This is why the smaller measure of scale will be denoted by
R,..ves» @nd the larger one will be denoted by R,,... Clearly, R ..., is @ lower bound to
R,pper. DUt the Universe is not homogenous beyond R .,..; in fact R...., is far below the
size of confirmed voids.

— 7. Two crossovers. The Universe is like in Possibility 6, but with fractal re-
placed by multifractal.

— 8. Anything that does not fit in 1 to 7. One possibility is that there are succes-
sive “rings” of different fractal dimension. An extreme possibility is that the distrib-
ution is ruled by a chaos without order.

Comment. We subscribe to the notion that the best models are the simplest.
Therefore, in cases of doubt, we advocate the Possibility with the lower number.

Cross

1.3. THE ISSUE OF CROSSOVER AND THE RELIANCE UPON STATISTICS

Let us now elaborate. We first rephrase the above list of Possibilities by extracting
two important issues. We assume that the fractal range, is not questioned for small
distances. The horizon of observation will be denoted by R_,,.

The first issue is whether this fractal zone crosses over sharply to a homogenous
zone for some R, .. < R, OF ends for some R, < R t0 be followed by a transient
zone, or is a least as deep as R,,, In the latter case, we shall say that R = oo.

Let us recall that our book The Fractal Geomelry of Nature (FGN) was clearly par-
tial to Possibility 2, yet open-minded on this issue, primarily for lack of actual empir-
ical checks. The recent analysis of the data in Pietronero 1987 and in Coleman et al.
1988, together with the rejoinder in Davis et al. 1988, have convinced us that, either
Davis et al. is wrong in its criticism, or this issue cannot be resolved on purely sta-
tistical grounds. On the other hand, the visual analysis of the observation of in-
creasingly large filaments and voids continues to encourage us to be open-minded,
with clear partiality towards Possihilities 2 or 4.

The main fact is that to perform a statistical test between the aiternatives
R.10ee < Roae @and R,,... = oo turns out to be a very delicate matter. Most important, it is
necessary to limit statistics exclusively to tests that avoid prejudging a priori against
the possibility R,.,= co. This happens to require fresh statistical thinking, instead of
blind reliance on previously “proven” techniques. The reason is that all the existing
methods of statistics make explicit or implicit assumptions that happen to become
invalid when R,,.. = oco. In particular, customary and usually innocuous normaliza-
tions, like those involved in the definition of the usual correlation and of the pseudo
correlation used by Peebles 1980, yield reported results that are processed to excess,
and have been made practically impossible to interpret by the reader.

Section 3 will analyze some statistical tools, step by step. One neutral summary
of the evidence is the mass radius function M(R). Its derivative, divided by 4nR?, is a
conditional occupation probability; it is better than M(R) in some ways, but less ac-



ceptable in other ways. Arguments will be given against replacing it by the normal-
ized pseudo correlation function of Peebles et al.. Normalization is proper in more
conventional statistics, but in the case when the fractal range is significant normal-
ization is risky and unacceptable.

Comment. The seasoned statistician knows that, when a theory is submitted to a
sufficiently wide battery of tests, it often happens that every hypothesis fails at least
one test. This is the case even when the tests themselves have proven their appli-
cability. When the statistical techniques are new and unproven, one individual neg-
ative test cannot suffice to eliminate an otherwise attractive possibility.

Statistics is little used in the hard sciences, and we must confess puzzlement at
the importance it has achieved in the present context. The facts that filaments and
voids of increasing size continue to be observed when one reaches the deepest lev-
els of observation is a very clear-cut symptom of an underlying fractal distribution;
indecisive statistics involving arguable corrections to the data carry little weight in
comparison.

1.4. THE ISSUE OF MULTIFRACTALITY

Granting that there is a fractal range, the second basic issue is whether (in this range)
the distribution of mass is homogeneous on a fractal set, or whether instead it in-
volves galaxies of varying mass, as well as interstellar matter. If either or both is the
case, and the distribution is self-similar, it must be multifractal. Examples of fractally
homogeneous measure are obtained by placing a uniform measure on either of the
fractal dusts defined by the tales in Section 2. The resulting models can now be
called unifractal. But it is nearly as easy to study fractal but non uniform measures.
As a matter of fact, it is easy to construct a distribution of mass that combines self
similarity, very high peaks (to be interpreted as galaxies of variable mass), and a low
background (to be interpreted as a very variable interstallar mass). To fulfill this aim
(in the analogous case of intermittent turbulence), we have introduced and developed
the notion of multifractal measure, in 1968 then mostly in 1972-1976, but it has not
acquired a large following until recently. The most widely known approach to
multifractals is, unfortunately, quite unnecessarily complicated and artificial. Our or-
iginal approach, in a recently completed form, is much more straightforward, and a
survey is included as Section 5, in order to make it readily available to the student
of large scale structure of the Universe.

1.5. THE ISSUES IN SECTION 1.3 AND 1.4 INTERACT
It will very soon become necessary to face them simultaneously.

2. Two Fancy Tales of How the World Began. Demonstration by Examples of
Power of Simple Fractal Models to Generate Unexpectedly Rich Structures.

This section begins by restating in fanciful style our two basic models of ga
clustering using random fractals.



2.1. “THE SEEDING OF THE HEAVEN"

“In the beginning, the heaven was a void. And the Master of Matter, Light and Life
proclaimed, Let there be matter: and matter was. It was one point. And the Master
proclaimed, Let matter be seeded over the heaven, and Let every small part of the
heaven be just like every other small part and like every large part. And two
archangels set forth hopping; wherever they alighted, they left a pinch of matter and
then resumed their journey as in its beginning. And the parts of the heaven were all
made just alike. And the Master was everywhere, dwelling in every pinch of matter;
and the heaven looked the same from every point where the Master dwelt.”

2.2. "THE PARTING OF THE HEAVEN"

“In the beginning, the heaven was filled with matter. And the Master of Matter, Light
and Life proclaimed, Let matter part away. Let it remove itself to form voids without
number, and Let every small part of the heaven be just like every other small part and
like every large part. And matter removed itself, and the Master was everywhere,
dwelling in every place that was not in a void: and the heaven looked the same from
every point where the Master dwelt.”

2.3. COMMENT ON THE GENERATIVE POWER OF THE FRACTALS

In Chapters 33 to 39 of my book, The Fractal Geometry of Nature (FGN), the above
fancy tales are translated into sober fractal models, involving very simple statistical
algorithms one can easily simulate on the currently available computers. A priori,
one expects simple algorithms to generate nothing much of interest. In the specific
case of galaxy modeling, this low expectation may be related to the natural but quite
incorrect identification of all fractal models with the very early but extraordinary crude
ones. For example, in the model of Fournier d'Albe, little is put in, and nothing more
is obtained as output. Therefore, there is a strong tendency to use highly specified
algorithms, in which every one of the features one wishes to see in the output (e.g.
large voids) has been knowingly introduced in the input. An example of a needlessly
over-specified fractal model is the one advanced by Soneira and Peebles. Similarly,
Peebles 1980 proposes to correct in advance for presumed inadequacies of our
“Seeding” model, by adopting multiple “Seeding centers,” distributed uniformly.
This introduces a finite R,,.., but is far too hasty a solution.

Given the a priori fear that simple models must be inadequate, it is a surprise to
see that the simulations of our “Seeding” and “Parting” models look far more real-
istic than anticipated by anyone . .. even by us. Since “to see is to believe,” many
examples are shown in my book, FGN.

Yet another fractal construction, recently put forward by Szalay and Vicsek, has
become famous as the cover of Audouze et al. 1988. It may or may not be physically
realistic, but it strengthens further our belief that almost any sufficiently “natural”
fractal dust would be reminiscent of the actual distribution of the galaxies.

These examples are meant to underline the power of simple fractal models to
generate rich form. This power is the geometric facet of a fact that is growing in
public awareness, namely of the power of simple dynamical systems to generate rich
and seemingly chaotic orbits. Our hope is that the fractals’ power will cease to be



underrated, and that they will no longer be dismissed casually when it happens that
some single statistical test appears to encounter difficulties.

3. On Diverse Statistical Summaries of the Data, and on the Pitfalls of “Normalizing”
them

3.1. NON-TRUNCATED FRACTALS AND THE MASS-RADIUS FUNCTION

In order to simplify, this Section makes the “unifractal” assumption that all galaxies
carry the same mass. This makes it possible to define the mass-radius function
M(R) = mass within a radius R around a fixed (randomly selected), galaxy.
Under Possibility 2 of Section 1.2, on has

M(R) = F(R)R".

This is reminiscent of the formula valid when the distribution is completely ho-
mogeneous, but there is a fundamental difference. In the homogeneous case, the
mass in a sphere is M(R) = (4n/3)0R? which is the power R® with a numerical multi-
plicative prefactor. To the contrary, non-truncated fractals involve the very important
fractal prefactor F(R), which is nof a constant. It is a stationary random function of
log R, and it can vary greatly.

The variability of F(R) or of log F(R) around their expectations is an interesting
characteristic of a fractal, independent of its D and recommended for further empirical
and theoretical study. It is one aspect of a fractal's “lacunarity.” For example, as
variability measured by the usual variance increases, the fractal’s lacunarity also in-
creases (FGN, Chapters 34 and 35). We have investigated diverse families of fractals,
in which different members differ solely by the value of the fractal dimension D. As
D is varied from its highest possible value down to its lowest possible value (which
is usually 0), the variability of F increases very sharply. The works of de Vaucouleurs
and Peebles 1980 suggest D ~ 1.2, which is a small value for a dust in 3 dimensional
space. Hence, our impression is that we should expect F(R) to have a large fluctu-
ation. This impression deserves 1o be subjected to a hard critical study.

In order to appreciate what happens as we move from M(R) to the covariance and
the pseudo-correlation, it is best to make the move in several distinct steps, and to
introduce notation gradually.

3.2. NON-TRUNCATED FRACTALS AND THE LOCAL CONDITIONAL DENSITY, WITHIN THE VOLUME
BOUNDED BY THE SPHERES OF RADII R AND R + AR

Now consider the local conditional density at distance R from the point P, that is the
mean density within the volume bounded by the spheres of radii R and R + AR cen-
tered at the point P. It is

AM[47R?AR = (1/4m)RP [ DF(R) + RAF(R)/AR].

The expectation {(F(R)) is positive and finite, and is independent of R. And the
expectation (AF(R))R/AR = {AF(R))/A log R vanishes, because we saw that the pre-
factor F(R) is a stationary random function of log R. Therefore, the plot of log AM
versus log R would run around a straight “trend line" of slope D — 3, with superposed



fluctuations throughout. Several plots corresponding to different samples would have
the same trend line, but entirely distinct fluctuations.

3.3. NON-TRUNCATED FRACTALS. THE USUAL NOTION OF "REPRESENTATIVE SAMPLE"” IS NOT AP-
PLICABLE. CONDITIONAL DENSITIES MUST NOT BE RENORMALIZED.

Statisticians have almost always dealt with situations where samples of sufficiently
large size can be viewed as “representative” of the whole population, but this is not
the case for non-truncated fractals. In particular, evaluate

AM[47R?AR

3
M(Rsampie)/4ﬂ-Rsample

This is the ratio between the density at distance R and the overall density in a sample
of size R,,.,.. FOr a standard distribution, the denominator is hardly random at all if the
sample is sufficiently large, and the above renormalization is useful. But the fractal
case is totally different. The ratio of the expectations would simply be

( R )D—B
Rsample / ,

and would provide marvelous material for the estimation of D. However, the ratio of
non-averaged quantities is

DF(R) + RAF(R)JAR / R )M
F(Rsample.) ( R .

sample

Its overall trend is (R/R,,.,.)° °, as expected. However, there is a random prefactor.
Its numerator duly depends upon the randomness at the distance R, but its denomi-
nator mixes in the randomness at the distance R,,.,.. Again, plot log (ratio) against
log R. There is still a straight trend line of slope D — 3. But the prefactor is reflected
in a translation log (denominator of the prefactor), which depends on the overall
sample. Thus, different samples have parallel but distinct trend lines. Any sensible
scientist will push these line together in order to estimate their common slope, but
the affect of renormalization upon the estimation of D is not helpful at all.

3.4. NON-TRUNCATED FRACTALS. THE COVARIANCE (OR “CORRECT CORRELATION FUNCTION") LE.,
THE CONDITIONAL DENSITY AVERAGED OVER ALL ORIGINS.

Let us return to the “raw” prefactor DF(R) + R(A)F(R)/AR of section 3.2. In order to
average out its wild fluctuations, the best is to average for fixed R over all the spheres
centers P. The resulting quantity is called “correct correlation function™ by Pietronero
1987, but | prefer to continue to use the standard probabilistic term, which is
covariance. Write n(P) and n(P + R) for the number of galaxies in a small sphere
around P and around a point P + R whose distance to P is of length R. One has

{n(P)n(P +R)>
() '

I'(R) =



¢(r)

r
In this range of distances,
In this range of distances, the statistics is meaningless.
pseudo-correlation is zero, and
the covariance is constant.

This is the Peebles range: the value of r
where the pseudo-correlation is equal to 1.

Figure 1. The relation between the covariance and the normalized “correlation”
for a fractal universe with a sharp crossover to uniformity.

¢(r)

: r
In this range of distances, the ;
pseudo-correlation is negative, | IN this range of distances,
but the covariance remains statistics is meaningless.

positive and fractal. |

This is the Peebles range: the value of r
where the pseudo-correlation is equal to 1.

Figure 2. A typical renormalized correlation. The normalization does not use
the value of (n) that is given by the last point of the sample
covariance of the sample under investigation, but rather a value
obtained by a larger but different sample.



Comment. 1t is an unavoidable feature that any given portion of space of radius
R..< (e.g., the volume covered by a catalogue carried to a uniform depth) includes a
small number of spheres of large radius, but a large number of spheres of small ra-
dius. When the sample average is carried over the origins of all the spheres within
the catalog, the sample values for different R’s fail to be independent. Hence, the
fluctuations in F and AF average out even more poorly than if the samples had been
independent. One deals with a reduced “effective sample size,” whose value de-
pends upon R. More precisely, when R is well below R,,,. the effective sample size
is near the actual sample size, and the conditional density is reliable. But for R close
to R,.. the effective sample size becomes small, and the conditional density becomes
greatly affected by the fluctuation of F(R,.,). For example, while the expected condi-
tional density decreases up to R =R,_.... the sample density may well actually in-
crease in the range below R

cross*

3.5. NON-TRUNCATED FRACTALS. THE (PSEUDO) CORRELATION.

Let us now turn to the renormalized ratio of Section 3.3. By averaging over all the
sphere centers P, one obtains the quantity
50 ER)+1

Again, the renormalization via the division by {n) introduces entirely spurious ef-
fects.

The quantity £(R) is called correlation by astronomers, but the statisticians’ corre-
lation is a different expression that <1 in absolute value, while £(R) certainly can
exceed 1, and the value where it reaches 1 is given a special standing.

3.6. THE DISTRIBUTIONS OF GALAXIES AND OF CLUSTERS, COMPARED

This section brings two remarks together. First, it was predicted in Section 3.3 and
3.5 that renormalization should be expected to introduce a spurious prefactor, hence
a spurious translation in doubly logarithmic coordinates. Second, it can be shown,
under a wide range of definitions of the notion of “galaxy clusters,” that the functions
I" should be identical for galaxies and for their clusters.

The two remarks in the preceding paragraph make us expect that the &(R) + 1
function of galaxies and of galaxy clusters should differ by a factor, i.e., by a trans-
lation on doubly logarithmic coordinates. This is indeed the situation that is ob-
served, as seen, e.g., in Szalay and Schramm 1985. This discrepancy has been
viewed as a real empirical fact to be explained, and also as a counter argument to
“the” (that is, the simplest) fractal description. To the contrary, we have always ex-
pected that this discrepancy will turn out to be almost certainly spurious. The data
analysis in Pietronero 1987 confirms our expectation.

3.7. FRACTALS WITH ONE CROSSOVER

A wide class of random fractals with sharp crossover at R,,.., are covered by Possi-
bility 4 of Section 1.2. They include variants of the Parting model of Section 2. For



these distributions, the fractal non homogeneity is described by the behavior of the
mass-radius function M(R). One has

M(R) = F(R)R® forR < Rgrose
M(R) = (47/3)5R> + (a fluctuation ~ /(4n/3)6R>) forR > Reross

In the homogenous range R > R,..., things are classical: there is a non random
factor involving a density 6, and a Poisson fluctuation factor, which is additive, and
whose form is familiar to everyone.

To the contrary, the fluctuation factor in the fractal range R < R,,,.. is multiplicative,
like in Section 3.1. The local density described in the title of Section 3.2 is

AM/[47R?AR = (1/4m)R°°[DF(R) + AF(R)R] for R < Rerose-
AM[47RP*AR = & + (a fluctuation term) for R> Reross.

On a plot of log (density) as function of log R, the fractal and the homogenous re-
gimes give straight trend lines of respective slopes 3 — D and 0. The crossover oc-
curs where these straight lines intersect each other.

In truncated fractal models | know well (and also for percolation clusters a little
above criticality), the crossover between these two regimes is quite sudden, which
is a great asset. (The corresponding expected mass-radius plot is the plot of an in-
tegral, hence the crossover is far imore gradual, which is a drawback.)

What about the effect of renormalization on log (density) where there is a single
crossover R,... < R... we are in the standard statistical world, in which renormaliza-
tion is perfectly legitimate, as seen on Figure 1.

For R<R the function &(R) -+ 1 stabilizes at 1, and the function £(R) stabilizes
at 0.

The radius where ¢(R) = 1 and £(R) + 1 = 2 has been singled out by P.J.E. Peebles
in the analogous context to be tackled in Section 3.8. Let this value be denoted by
R Clearly, when &R)+1~R?3% and R<R,. with D=12 one has
R =2 MR, .=.68R

max

€ross?

peebles*

peebles cross cross”

3.8. FRACTALS WITH AT LEAST TWO CROSSOVERS. THE (PSEUDO) CORRELATION AND THE DEFI-
NITION OF R

peebles
Section 3.7. shows that £(R) has a useful meaning when there is a single sharp
crossover R_... < R..... Could &(R) continue to be of use in other cases? This cautious
writer expects little from statistics, and would not trust any expression “in the wild”
before it has been “tamed” on a well-understood explicit example. However, some-
thing very much like é(R), with one essential modification to be distributed shortly,
has been extensively used in many works by P.J.E. Peebles, both those summarized
in Peebles 1980 and more recent ones. This use is bold, in fact, it is reckless in our
opinion, because the underlying model is never fully described — to our knowledge.
Implicitly, Peebles does not believe in Possibility 4, since he describes a function he
calls “correlation” behaves like on Fig. 2: it is =1 for R=5Mpc; it is >0 for
R < 1.46 x 5 Mpc and it is = 0 over some ultimate homogeneous range, but it is <0
over an unspecified intermediate range beyond 1.46 x 5 Mpc. In this framework, the
existence of the intermediate range, where £(R) is most often negative, is indispen-



sable to account for the existence of large voids and of all the other interesting
structures observation keeps revealing.

Now to the essential modification Peebles brings to £(R). In his view, in order to
evaluate the global density of galaxies, it is not only permissible, but is desirable, to
use counts that are broader than the counts that lead to I'(R).

Granted this modification, let us go beyond formal manipulation, and ponder the
implications of Fig. 2, without questioning the validity of the essential modification.
Given the list of Possibilities drawn in Section 1.2, it is clear that the simplest inter-
pretation of Figure 2 involves Possibility 6, with R,,.,.. being (within some factor of the
order of 1) the radius where one leaves the fractal range. However, this is not the
way R,.... is ordinarily presented. There is a widespread perception that R, ..,
(within some factor of the order of 1) is a measure of R,,,.,. We see that this perception
is not warranted. As a matter of fact, there is invariably a gap in the graph of £(R),
between the largest R for which a correlation is reported, and the presumed
asymptotics. The result is that given Figure 2, no numerical value can conceivably
be inferred for R,,.. In words, the value of R_.,.. gives no hint of where the
asymptotic homogeneity begins to prevail.

Let us now dig deeper, by questioning the assumption that one can plug into &(R)
a global density estimated on the basis of independent very deep data. This equality
assumes that on the scale of the largest existing catalogue, the Universe is already
homogeneous. Since this is what our task is to either confirm or contradict, assuming
it in advance is not permissible. We also observe that deep surveys involve drastic
corrections of uncheckable validity. The cosmologists feel that the density of visible
matter is smaller than it “should” be, so that their corrections cannot inspire full
confidence.  This writer has attended the Seminars that followed the 1987
Balantonfiired Symposium of the IAU. While several speakers asserted that the
global density is a well-defined number, its value did not lead to any consensus.

3.9. CONCLUSION OF SECTION 3

Many statistically dubious steps enter in the procedures customarily used to reach
the widely accepted conclusion that the Universe becomes homogenous at compar-
atively short distances. Therefore, this conclusion is not persuasive. By its defi-
nition, R,..pes IS @t best concerned with the range of significant fractal correlation, and
is likely to underestimate it. More important, the value of R,..... gives no inkling
whatsoever on the distances beyond which the universe is homogeneous.

Our feeling, therefore, is that, in the present state of knowledge, it is imperative
not to renormalize the observed covariance I'(R). On Figure 2, a bold line represents
the typical non normalized covariance I'(R). This line’'s overall shape suggests that
these data are entirely compatible with Possibilities 2 and 4 of Section 1.2.

Analogous criticisms, combined with a fresh analysis of the data, are made in
Pietronero 1987 and in Coleman et al. 1988. The counter analysis by Davis et al. 1988
involves unconvincing corrections. The strongest conclusion one may draw from this
counter analysis is that the unquestioned data do not suffice to decide between the
thesis of Peebles and Possibility 2 in the list in Section 1.2.



4. Spatial Variability Beyond the Fractally Homdgenous Model

More detailed versions of Sections 4 and 5 are found in Mandelbrot 1989 and in our
forthcoming Selecta.

In the models described in Section 2, mass is concentrated on a definite portion
of space. Using the appropriate technical terms, mass is “supported by a closed
fractal set.” Furthermore, the mass distribution can be called “fractally
homogenous.” The rough meaning is that all galaxies are given the same mass, and
the more precise meaning is that when two portions of the supporting set are identi-
cal except for translation, they support the same mass. These assumptions contra-
dict two unquestionable facts.

First is the great inequality that prevails between galaxy masses.

Second (to quote from FGN, p. 376) is “our knowledge of the existence of
interstallar matter. Its distribution is doubtless af /east as irregular as that of the
stars. In fact, the notion that it is impossible to define a density is stronger and more
widely accepted for interstellar than stellar matter. To quote deVaucouleurs, ‘it
seems difficult to believe that, whereas visible matter is conspicuously clumpy and
clustered on all scales, the invisible intergalactic gas is uniform and homogenous . .
. [its] distribution must be closely related to . . . the distribution of galaxies. . . .

“[Thus, in the models of Section 2, parts of space] of less immediate interest were
artificially emptied to make it possible to use cl/osed fractal sets, but eventually these
areas must be filled. This can be done using a fresh hybrid [now called
multifractals. A multifractal] mass distribution in the cosmos will be such that no
portion of space is empty, but, [given two] small thresholds @ and 4, a proportion of
mass at least 1 — 1 is concentrated on a portion of space of relative volume at most

6.
5. The Principal Ideas Underlying Multifractal Measures

5.1. AN OLD BUT GOOD ILLUSTRATION

Multifractals are old, insofar as we had first developed the basis of this technique in
the years 1968 to 1976, in order to study different aspects of the intermittency of tur-
bulence. Since “to see is to believe,” Fig. 3 reproduces the earliest illustration of a
multifractal, as it first appeared in our earliest full paper on this topic, Mandelbrot
1972. We expect it to inspire astronomers to many applications.

The horizontal axis shows “time” divided into small boxes of width Af, and the
vertical axis shows the sequence of the masses within these boxes. If the total inte-
gral measure over the total time span [[0,7] is set to 1, one can think of the measure
in a box as the probability of hitting this box. If an analogous diagram were drawn for
a measure having a density, it would be an approximation to this density — and a first
characterization of our measure would be provided by the distribution of this ap-
proximate density along the horizontal.

In the present instance, however, the situation is extremely different. By design,
the measure is approximately self-similar, in the sense to be discussed in Section 5.3.
It follows that this measure grossly fails to have a density, nor is it discrete. For ex-
ample, if the Af is halved, the sharing of the measure in an original At between the
two halves is usually very unequal. There is no such thing as a notion of



“distribution” for the values of this measure. Fortunately, there is a very useful sub-
stitute.

5.2. THE NOTIONS OF LIMIT PROBABILITY DISTRIBUTION p(x), AND OF f(a).

Take different values of At, and, for each value of Af, plot the corresponding measure
distributions on doubly logarithmic coordinates. The measures we want to call
multifractal have the following property. When both logarithmic coordinates of the
plots drawn for different Af's are reduced by the same factor log At, the reduced plots
of the distribution converge to a limit as At — 0. This property can be turned around,
and used to define the notion of multifractal. (But one must realize that the conver-
gence to the limit may be slow.)

The reduced horizontal logarithmic coordinate is denoted by «, and will be seen
to be a quantity called Hélder exponent. The reduced vertical logarithmic coordinate
corresponding to the limit will be denoted by p(x). It will be seen that it is negative
for all a, except where p(a) reaches its maximum, which is 0.

As has been first pointed out by Frisch and Parisi 1985, it is convenient to also
introduce a quantity denoted by f(a) = p(a) + 1. When f(a) = 0, one can interpret f(«)
as being one fractal dimension of a suitable set. This is the only case Frisch and
Parisi consider, and this is also the only case relevant to the application to astron-
omy. The replacement of p(a) by f(a) has virtues in some cases, but our feeling is
that, fundamentally, it hides the nature of the multifractals.

Until the preprint of Frisch and Parisi was distributed in 1983, multifractals had
continued to develop only in the sense that the mathematics was very much extended
(see Kahane & Peyriére 1976). But they did not receive new applications, nor were
they mentioned in Astrophysical Journal Letters. Their spread is a recent phenome-
non, and most readers who have heard of them are likely to know presentations that
follow the approach common to Frisch and Parisi and to Halsey et al.. Unfortunately,
the algebra of these presentations is needlessly complicated, artificial, and of limited
applicability and the terminology of Halsey et al. hides the extremely simple and al-
most familiar nature of the underlying structure. We shall, therefore, adopt the nota-
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Figure 3. The earliest simulation of a sample from a multifractal measure. This
measure is called limit lognormal in Mandelbrot 1972 (others call it
“M's 1972 measure”).



tion of Halsey et al., but follow our original approach in the form into which it has
lately developed.

The multifractal formalism centers around the functions p(a) or f{). In the simplest
case, this paper obtains f(a) via the Lagrange multipliers procedure of statistical
thermodynamics, which has long been familiar to every physicist. Later on, a full
mathematical justification of the formalism, valid in a broader context in which f(a)
can very well be negative, is provided by reference to existing (but littie-known) limit
theorems of probability due to Harald Cramér, and concerned with “large deviations”.

Mandelbrot 1974 considers two distinct kinds of random self-similar multifractals,
respectively called conservative (or microcanonical) and canonical. This distinction
is crucial to the study of low-dimensional cuts of multifractals embedded in a high
dimensional space. But in astronomy this issue is not important.

5.3. SELF-SIMILAR MEASURES AND BEYOND

We need some definitions concerning measures i(S). These u(S) will be positive;
therefore again, those not familiar with measure can think of u as being the proba-
bility of hitting the set S. The multifractal measures obtained as a result of multipli-
cative cascades are the closest analog among measures of the exact self-similar
fractal sets. Recall that a fractal set is exactly self-similar, if it can be decomposed
into parts, each of which is obtained from the whole by a contracting similitude, €.
Such a set if fully determined by a collection of contractions. For example, each third
of a basic fractal called Sierpinski gasket is obtained from the whole by a contracting
similitude of ratio r = 1/2. Starting with any triangle in a “prefractal collection of
triangles,” the interpolation of the shape itself continues without regard to the “past”
construction steps.

Now suppose that a (positive) measure u(P) is defined for each third of the gasket,
for each third of a third etc.. When the part P’ is obtained from the part P by the
contracting transformation €, so that P’ = ¢(P), the conditional measure of P’ in P is
defined just like a conditional probability, that is, by the ratio j(P’)/u(P) of the meas-
ure u(P') to the conditioning measure u(P). Now the idea strict of self-similarity for a
measure is that the interpolation of the measure carried by a triangle in a prefractal
collection of triangles also continues without regard to the “past” steps. That is as
the parts contract, the measures they carry contract proportionately. To express this
idea, take a second contracting transformation £, and compare u(P")/u(P) with
pl2P)]/ul2(P)]. If these conditional measures are identical, the measure p will
be called a strictly self-similar multifractal.

A random measure is called stafistically self-similar if, given one or a finite col-
lection of non overlapping parts P, = 4,(P), the distribution or the joint distribution of
the quantities u(P,)/u(P) depends only on the contractions €,.

Side remark. In a more general mathematical fractal set, the parts are obtained
from the whole by transformations that are non linear. Examples where the con-
tractions are in some sense near linear include the Julia sets of polynomial maps.
The corresponding multifractals include the harmonic measures on these sets. Other
examples of multifractal measures concern the limit sets of groups based upon inv-
ersions in circles (FGN, Chapters 18 and 20). A case when the limit set itself is a
straight line is examined by Gutzwiller & Mandelbrot 1988. Finally, the “fat fractal/s”



(new term for the fractals in FGN, Chapter 15) and the Mandelbrot sef involve essen-
tially non-linear transformations.

5.4. THE BASIC NON RANDOM SELF-SIMILAR MULTIFRACTALS

5.4.1. Basic background. the binomial multifractal measure. To construct this meas-
ure, given m, satisfying ¥2 < my< 1 and m, =1 — m,, we spread mass over the halves
of every dyadic interval, with the relative proportions m, and m,. f t=0nm, ..., is
the development of ¢t in the binary base 2, and ¢, are ¢, the relative frequencies of
0's and 1's in the binary development of ¢, the binomial measure assigns to the dyadic
interval [dt] = [¢, t + 2*] of length dt = 2 ¥ the mass

p(dt) = m[’,“”*’mf"".

Adapting the classical notion of Holder exponent to apply to the interval [dt], we
write

o = log[ u(dt) ]/ log(dt) = — @q log,mg — @4 logymy,

and O0<ao,,=—logm,<a<a,,,=—log,m <oo (The Holder exponent has been
given many new names. For example, it has been relabeled as “dimension” by
Hentschel and Procaccia 1983, or as “pointwise dimension,” but the term
“dimension™ must be reserved to sets.)

The number of intervals leading to ¢, and ¢, is (ke,)!(ke)!/k!, giving the box fractal
dimension

0 = log[ (kgo)!(ke4)!/k! ][ log(dt).
For large k, the Stirling approximation yields
d = — g 10900 — @1 10gy0,.

Thus, o determines ¢@,, hence § = f(a).

=

0 . =

Figure 4. Rough idea of the domain of («, §) for a multinomial multifractal with
b =4, when the m, differ from one another. The upper boundary
defines the function flx). Here, «g,= min(-log,m,)>0, and
Omax = Max( — log,m,) < oo.



A theorem by Eggleston relates d to the Hausdorff dimension (Billingsley 1967).

5.4.2. The multinomial measure. To construct a multinomial measure of base b > 2,
we require b masses m, (0< ff<b — 1). The b-adic intervals characterized by the
frequencies ¢, of the digits /i in the base-b development 0.9,, . . . 7, yield

o=-— Z(pﬂ Iogbmﬂ and 0 =— Z(pﬂ logy 4.

Now, the points («, 4) cover a domain shown in black on Figure 4.

5.4.3. The Lagrange multipliers argument, and the Legendre and inverse Legendre
relations of the Gibbs theory. The sets of @,'s yielding the same « are dominated by
the highest dimension term. This term maximizes — > ¢,log,p, given
— 2, log,m,=«, and Y ¢,= 1. The classical method of Lagrange multipliers intro-
duces a multiplier g, with — o0 < g < o0, and yields-

bq logymg

mg
Pp= qulogbmn i ng ;

pla)  f(a):D, slope=1
Dy
slope slope=q'
=q /
0; Do - 'rg (e
D1 =04
Dq
0
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Figure 5. A multifractal diagram. The ordinate scale to the left shows
p(e) = lim,_,(1/k) logs (probability) versus the Hélder a = — (1/k) log,
(measure). The ordinate scale to the right shows the function
fle) = p(a) + D,. It is well-known that g = f'(a) and — 7(g) is the ordinate
of the intercept of the tangent of slope g by the vertical axis. Let us
add the observation that D, is coordinate of the intercept of this
tangent by the main bisector of the axes.



Define the quantity 1(g) = —log,>mg3, which the mathematical statisticians call
“cumulant generating function.” In terms of 1, the Lagrange multipliers determine g
and f(«) from o by

d
o= — Z(pﬂ logpymp = — a_q Iogmeg;

Z(q log,my — logbzmﬁ)mg

max ¢ = fla) = —
q
Z””ﬁ
That is,
ot(q) 7
o= 3q and fla) =g 3q —T=Qqo0—T1.

Figure 4 is now replaced by its upper boundary, which is the graph of a function f(«).
Clearly, « >0 and § >0, hence f(a)>0, o,,>0, fa,,)=0 and 7'(x,,) = oo, and
Omax < 00, H00) =0 and f'(o,.) = — oo. Multifractals that are not multinomial, yet
posses these properties we call “pseudo-multinomial.”

Formally, g = inverse temperature, t = Gibbs free energy, and f = entropy.

5.4.4. The term “multifractal formalism” and the question of actual computation. The
equations a=1" and f=go — t are the “multifractal formalism.” Frisch and Parisi
1985 and Halsey et al. 1986 obtain the same result via a steepest-descent argument,
which experts will recognize as identical to the Darwin-Fowler justification of the
Lagrange multipliers procedure. This is nof the right way to proceed, just as no one
will think of teaching thermodynamics by describing the Darwin-Fowler method di-
rectly, without first presenting the Lagrange multipliers. Therefore, Section 5.4.3 has
taken the path towards the same formalism that involves the least effort and the full-
est understanding. Section 5.5 describes the next simplest generalization.

A considerable literature has developed around ways of using this formalism. This
literature is, obviously, unaffected by a change in the foundations.

55. THE RANDOM 1974 MULTIFRACTAL MEASURES

5.5.1. Generalization of the multifractal formalism by an application of Harald
Cramér’s theorem on large deviations. Now we proceed to the exactly renormalized
“1974 multiplicative multifractals™ introduced in Mandelbrot 1974. First observe that
the f(«) of a multinomial measure is unchanged if the indexes of the masses m, are
shuffled at random before each stage of the cascade that distributes mass. Next,
suppose that b = Bf, with positive integers B and E. With no change in the algebra, the
multinomial measure with random weight assignment can be interpreted as spread
on cells in a E-dimensional cube of base B. The weights in the cells inject a random
multiplier M that can take the values m’,, with the probability 1/b for each value. In
a cost-free generalization, consider a random multiplier satisfying only M >0 and
(M) =1/b.

Clearly, the mass u(dx) in the b-adic cube of side B %, starting at x=0.57,1, . . . #,,
is



p(dx) = Mn M4, n5) - M, o) -
Here, the successive M are identically distributed and independent. Hence
a=—(1/K[ logyM(n,) + logyM(i4, 15) . . . ]

is the average of k independent random variables. To tackle the distribution of «,
“large deviations theorems” of H. Cramér are available “off-the-shelf” (a pleasant
surprise); see Book 1984, Chernoff 1952, Daniels 1954, 1987. These theorems estab-
lish that, as kK — oo,

(1/k) log, (probability density of ;) converges to a limit, to be denoted as p(x).

The quantities (1/k) log, (probability of values > o > {a)) (resp., of values < a < {a})
converge to the same limit. It is easily shown that

f(oe) = p(a) + E = p(«) 4- dimension of the measure’s support.

It is a noteworthy fact that in the generalized Gibbs formalism resulting from the
Crameér theorem, different M's yield different f{e)’s, and conversely.

Obviously, Cramér-type theorems extend to the case when the factors M are
weakly dependent or weakly non-identical.

5.5.2. Comments concerning lognormality. Section 5.5.1 may surprise those many
readers who know the literature to the effect that log,M(#,) + log.M{(n,, 1) + ... is
asymptotically Gaussian, so that o is asymptotically lognormal. These assertions re-
sult from the application of a different renormalization, one that leads to the classical
central limit theorem. It is indeed correct that the central limit theorem yields some
information about the multiplicative multifractals. Also, this information is universal,
but it is of very limited scope. It only implies that p(«) and f(«) are parabolic near their
maximum. Away from the maximum, the behavior of p{oa) and f(«) is riot universal.

There is a seeming paradox here. On the one had, the probability outside of the
central bell tends to 0 as k — on, meaning that the tails become thoroughly insignif-
icant. In the limit & — co, the most probable value, the expectation and the other
usual parameter of location all converge to each other. On the other hand, those
“negligibly” few values in the tails are so huge that their contributions to all the mo-
ments of order g # 0, and to 7(g), are predominant. Moreover, the moments and
7(q) depend on the exact f(«), that is, are non universal.

In any event, the functions (p)o and f(«x) are not like those from the lognormal M,
except if the M are lognormal. Furthermore, lognormal M’'s require very special
precautions. (Mandelbrot 1974 shows that the “principle of lognormality” claimed in
1962 by Kolmogorov is logically untenable. Frisch and Parisi 1985 have noted that,
while their approach stemmed from Mandelbrot 1974, it was less general because it
did not accommodate the lognormal.)

5.5.3. The meaning of negative dimensions. The special “pseudo-multinomial” situ-
ation requires Pr{M,} = b ' and Pr{M .} = b-". But a first feature of our 1974 multi-
plicative  measures is that they allow «,,=0 and o,,=oc0 and
f(etrn) = log,LPr{M,,} ] +1 <0 and f(a,,) <0.



When f(«) is viewed as a fractal dimension, f(a) <0 is impossible. However, in
numerous applications, the restriction to f(a) > 0 leads to self contradiction, or is
otherwise not acceptable. However these applications involve either of the following
two possibilities: a) the possibility of investigating the measure within the inter-
section a multifractal by a line (i.e., a thin cylinder) or by a plane (i.e., a flat pancake},
and b) the possibility of taking successive independent samples from a population.
Neither of these possibilities occurs in astronomy, hence it is safe to keep to f(a) = 0

5.5.4. The quantities D, = 1(q)/(q — 1) are “critical dimensions.” For 1974 measures,
D, is a critical dimension for the moments of order g, as shown in Mandelbrot 1974.
However, the task of proving this property exceeds the space available here. It suf-
fices to point out that the proof relies upon on of the most interesting aspects of the
1974 theory, namely on the study of low dimensional cuts of higher dimensional
multifractals; see Mandelbrot 1989.
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Question by Valérie de Lapparent: Analysis of the recent CFA redshift survey shows
that the galaxy distribution is characterized by well defined scale lengths: for example
the thickness of the sheets and the mean separation of the galaxies with sheets are
nearly constant throughout the observed region. This result seems difficult to rec-
oncile with a self-invariant description of the galaxy distribution.

Reply by Benoit Mandelbrot. Thank you for the information you report, and allow me
to respond by making two points.

The first point concerns method. Nowhere do my papers or books claim that a
fractal description of a phenomenon in real space applies in pure mathematical rigor.
To the contrary, | have always stressed that every real space model is an approxi-
mation that requires corrective terms, for example, cross-overs or cut-offs. (Let me
add also that “pure fractals” are indeed often found in phase space.)

| have also stressed that the model one should prefer as a best first-order ap-
proximation should be the model that requires the smallest amount of second-order
corrections. Therefore, even if the discrepancy you describe were fo be confirmed,
it would not by itself suffice to discard the fractal model as a first approximation valid
within range of distances that is sufficiently broad to matter. Your earlier data sug-
gest that its limit may not have been reached.

The second point concerns data analysis. The prowess of the observational as-
tronomers never cease to amaze the mere theoreticians. But | am on the record as
being less uniformly impressed by the methods used to analyze the resulting data.
In fact, successive analyses of the same body of observations have often yielded
contradictory results. New analyses will surely be made of the most remarkable
empirical findings that you have reported a few years ago. Let us wait for the results
before we rush to conclusions.

Question by P.J.E. Peebles: As you know, | argued in my book, Large-Scale Structure
of the Universe, that the observations contradict the assumption that the galaxy dis-



tribution in the visible part of the universe is a bure scale invariant fractal. Nothing
in the observational developments since then has caused me to change my mind.

Reply by Benoit Mandelbrot. Thank you for this opportunity to state my side in the
friendly but inconclusive dispute we have been carrying on for a long time.

As | say in response to Valérie de Lapparent, “pure fractals” can be found in
phase space, but | would not be completely surprised if they can never be found in
any phenomenon in real space. Therefore, a lawyer may argue that we agree.

In any event, | am pleased that you do not specifically disagree with my minimal
thesis, that an “impure fractal” model applies to galaxies, at least up to some cross-
over.

Now to the statement of some of our disagreements. In order to be used to con-
tradict a theoretical model, observations must be subjected to careful analysis. This
includes statistical analysis, and we certainly disagree on, a) which statistical tools
are appropriate for the galaxy data and, b) what to do when one finds oneself beyond
the range of applicability of statistics. Statistics tends to be a boring subject, but we
agree that it does matter (though | have less confidence in it than you may have).
By using the standard methods of statistical analysis, as you do, it may be true that
one must indeed reach your conclusions, but | believe that your statistical methods
grossly prejudge the issue, and are not applicable here. You are doubtless aware
of the dispute that has recently pitted Pietronero et al. against Davis et al.. |tend to
side with Pietronero, or — at worst — from our viewpoint to conclude that if the data
are so poor as to demand brutal correction before analysis, one cannot conclude
much on the basis of these data. ,

Second point. My criticism of your measure of the crossover has been countered
by friends of yours, who assert that it does not matter whether the figure is 5 or 50,
as long as the same definition is used throughout. | might perhaps have agreed, if
the model being tested were characterized by a single crossover. (Possibility 4 in the
terminology of Section 1.2.) But it appears that your account of the existence of the
voids must accept the existence of an intermediate range of distances in which the
correlations are negative. Therefore, you make an assumption that requires at least
two crossovers. (Possibility 6 in the terminology of Section 1.2.) If so, the lower
crossover, which | call R,..,., to avoid ambiguity, might conceivably describe the point
when one moves beyond the fractal range. But homogeneity would only be estab-
lished after a much longer distance R,,,.,, which need not bear any simple relation to
Rpeeves- This R, is by far the more relevant notion, but it remains to be estimated.
The evidence you provide does not exclude that R,,,., = oo, which would mean that
the distribution beyond R,,.... is neither fractal nor uniform, but a mess. Maybe this
is the case, but we should do our best to avoid this conclusion, and find order in the
large scale structure.



