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An infinite sequence of moments is needed to describe a fractal
measure. This fact is widely known today, largely thanks to several
speakers at this conference, who elther refer to it, or push well
beyond. Here, I propose to sketch the extensive early background in my
work (before 1968) on the theory of turbulent intermittency. This old
story matters, because my general procedure also brings forward a
number of topics that have not been duplicated, and calls attention to

interesting open issues.

1. TWO MAIN TRUNKS OF DEVELOPMENT AND BRANCHES: AN OUTLINE
Having discovered the need for an infinite sequence of moments shortly
after the 1966 Kyoto Turbulence Conference, I reported it at the 1968

Brooklyn Sympesium [1l]. Recently, the telling term "multiplicative
chaos'" has been attached to the procedures that generate the fractal
measures I studied, as well as variants, old or new. This explains the
term "M-measure" to be used here.

Two "trunks" separated immediately. The first [2] involves
discrete cascades, and fractals that are exactly renormalizable,
because of an underlying hierarchical grid. The moments of orders 2/3,
2 and 4 were stressed in Orsay [3], and everything was summarized in
Haifa [4]. The second trunk, involving continuous cascades, started at
La Jolla [5].

A mathematical branch of the first trunk started in 1974 [6]. Some
of my conjectures and theorems were proven or extended by J. PEYRIERE
and J. P. KAHANE [7], which triggered other mathematics. Recently,
KAHANE [8] proved corresponding conjectures in the second trunk.

The next major event was the rediscovery of results on M-measures
by HENTSCHEL and PROCACCIA in 1982 [9], and the many rich developments

that followed and are mostly beyond our scope here. Suffices to say
that the growth of the main trunk has resumed [10,11]. PARISI and his
coworkers [11] call the M-measures "multifractals", but multi is

redundant, since all fractals involve a multitude of dimensions, with
the exception of the strictly self-similar sets.
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2. ONE PARAMETER MODELS AND WOULD-BE CLASSES OF UNIVERSALITY
The models of intermittency available in 1968 seemed to manage with

only one parameter, and to fall into two classes of universality:

"all-or-nothing"” and "lognormal™.

The first models, independent of each other, were by KOLMOGOROV

[12] and by BERGER and MANDELBROT [13]. My work concerned noise, but
was soon modified to concern turbulence [14]. Then came NOVIKOV and
STEWART [15]. The latter performed a recursive interpolation in a

hierarchical cubic grid, hence involved self-similarities restricted to
ratios the form bk. with b an integer base b. The parameter b is not
of immediate importance. Kolmogorov and I required no grid and allowed
self-similarity of arbitrary r>0.

The parameter I featured was the fractal dimension D of the
support of dissipation in fractally homegeneous turbulence. Novikov-
Stewart featured the correlation exponent Q of the turbulent
dissipation; their model being fractally homegeneous, this is the
fractal co-dimension of the support of dissipation. Kolmogorov used
one parameter 4, which specifies a log-normal distribution. In my

"Kolmogorov-related" models, u/2 was to become the fractal co-dimension

of the set on which dissipation concentrates. An excellent expository
paper [16], which had the great merit of bringing my work to a wide
public, stresses a parameter B, which again is not of immediate

importance, but led to the term "g-model” often attached to fractally

homogeneous turbulence.

Kolmogorov s model was enormously influential. Unfortunately, I
found lognormality +to be wuntenable as he stated 1it. (The words
"Possible refinement..." in the title of [5] only reflect the

difficulty then facing a negative comment on a parcel of Kolmogorov's
work.) When a very great scholar stumbles in this way, something
subtle is involved.

His basic idea is unchanged to this day: the idea of replacing
sums of random processes by products that illustrate the notion of
cascade. A physicist expects sums of random variables to be in the
"domain of universality" of the Gaussian. So it seems safe to expect
products of well-behaved strictly positive variables to converge to the
lognormal, and this was proposed by GURVITCH and YAGLOM [17] to justify
Kolmogorov’ s lognormality on very small scales. However, a step that
seems harmless is incorrect in this instance: when a random variable x
tends to a Gaussian, the moments of exp(x) need not tend to the moments
of exp(G). This is a clear failure of universality, and its

consequences are very interesting.
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3. MULTIPLICATIVE CHAOS: MICROCANONICAL AND NONRANDCM

The M-measures are "singular"” measures, i.e., continuous measures that
fail to have a derivative. Examples of strict conservative M-measures
abound in pure mathematics, and the new developments since 1968 resided
in their use in science, and in their characterization by moments. I
also introduced "mean conservative" M-measures; this concept raised
altogether new issues.

A cascade process starts with a uniform measure. When the stages
are discrete, the k-th stage multiplies the (k+l)st approximate measure
by the k-th perturbation Py(x). Therefore, the k-th approximate measure
of a domain a is uk(A)=IAHh=1kPh(5)d§, and one is interested in the
limit p(a)=limy,qup(a). The case Py (x)>0 is best understood (which is
why - Section & - the most interesting new problems arise when Py (x)<0
is allowed.) When the cascade proceeds in a grid of base b, the
perturbations are called strictly conservative if Py(x) is constant

over grid cells of side b_k, and IAPk(i)dizl- with A any cell of side
bk,

The B-measure of Besicovitch. This is my term for the special M-

measure on a grid obtained when the perturbations are non-random, and
Pk(bk_1§)=P1(£), independently of k. P;(x) 1is the generator
="perturbator”?) of the measure. On the line, the generator is built
from b "probabilities"” Pg, satisfying zpﬁ=1, and Py (t) equals bpt(1)+1
if t£=0.t(1)t(2)...t(k) in base b. Other perturbations at time t are
Pk(t)=bpt(k)+1. The integral Fk(t)=I°tHh=lkPh(s)ds is monotone non-
decreasing, and is obtained by recursive interpolatioen. And
F(t)=limy  ,Fi(t) is a self-affine non-random function of t. That Iis,
the portion of F(t) over the interval [(8-1)/b, 8/b] is obtained from
the portion F(t) over [0,1] by changing t in the ratio 1/b, and F in
the ratio Pg>» then translating. Reductions with unequal ratios are not
similarities, but affinities [18], and F(t) is fully determined by the
collection of affinities under which it is invariant. A generator for
these affinities is a nondecreasing broken line with breaks located at
multiples of 1/b. While "self-affine function” is a term used in my
books, an explicit study is very recent [18] and it provides the proper
framework here.

The Hentschel-Procaccia Measures. For many readers of this book,

the first contact with the complexity of fractal measures came through
[9], where HENTSCHEL and PROCACCIA introduce self-affine non-random
fractal measures more general than the B-measures. In the 1-d case,
the novelty is that the generator is a non-decreasing broken line with
breaks located at arbitrary values of t, instead of multiples of 1/b.
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The infinity of exponents. The averages of the quantities uh(a)
over all subcells A of given size need not be derived in this section,
because the argument is identical for the expectations of uh(A) in the

random measures in Section 4. In particular, the Hentschel-Procaccia

measures inveolve nearly the same degree of generality as described in

Section 4 for random weights in a hierarchical grid.

4. MULTIPLICATIVE CHAOS; MICROCANONICAL lﬁ é GRID AND RANDOM.
The simplest random M-measure is obtained by randomizing, within each
cell of side b'k, the positions of the bX values of Py (x).

"Microcanonical"” M-measures [2]. The perturbations are

conservative, self-affine and stationary within cells. That is, the
values of Py (x) within different cells of side b~k-1 are identically
distributed random variables whose sum is 1. It is easiest to start
with a random "weight" W satisfying W >0 and <W»>=1, and to impose upon
the weights wﬁ in different cells the condition that they must satisfy

zwﬁb'd=l, i.e., EWB=bd. The resulting conditional weight will be
denoted by W(gq). The values of Py(x) in cells of side b=k-1,  taken
jointly, are sample values of this w(d). Observe that w(d)<bd and
<H(d)>=1.

The randomized B-measure is the microcanonical M-measure
corresponding to Wg having bd possible values of the form bde, with
Epﬁ=l and Prob(w,_.1=bdpﬁ)=1:»‘d for all g. (Strictly speaking, the
assimilation requires that the relation EinB=1, with iﬁ integer >0
must be impossible unless iﬁ=1 for all 8.)

The infinity of exponents. Pick a cell of side b X at random.

For all h>k, the measure u,(a) satisfies <uh(A)>=b'tk= lal, where |A]|
is the measure of A. Not unexpectedly, all the other moments <ukh(a)>
are powers of |A|. Their exponents, which I evaluated, are m(h)=

-1ogb<wh> + dh

Their being highly non-universal is well known today, but was a
surprise in 1967. To evaluate the fractal dimension of the support of
this measure, I intreduced a procedure that was new at that time. I
observed that a proportion of the measure between 1 and 1-¢ becomes,
after sufficiently many stages k{(e¢), carried by a self-similar fractal
set of codimension arbitrarily close to a quantity independent of ¢,
namely c(l)=<WlogpW>.

This may be called the "e¢-box dimension”, the term "box dimension"
itself denoting the classical form of fractal dimensions that part of

our profession confusingly calls "capacity".
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For the randomized B-measure,
<WlogyW> = 2(1/bd)bdpjlogbbdpj = d + Jpylogypy = d-I;.

Hence, the ¢-box dimension of this measure is I,, which is the
entropy-information of the Py- It was already well known, however
[19], that I; is also the Hausdorff-Besicovitch dimension of the set of
t’s for which the frequency of the digit g is pB+1. This set |is,
loosely speaking, the support of most of Besicovitch measure. This
made me conjecture that <WlogpW> is a Hausdorff-Besicovitch codimension

for every M-measure, and indeed it is [7].

5. MULTIPLICATIVE CHAOS: CANONICAL. THE LITTLE KNOWN ROLE OF C(h) AS
A CRITICAL CODIMENSION. CONTINUGUSLY PERTURBED MULTIPLICATIVE CHAOS
The relations of conservation, 2W=bd, make a further detailed study of

microcancnical cascades very cumbersome. Assuming that conservation
only holds on the average makes everything simpler mathematically, and
we shall see it yields a richer topic, worth of study on its merits.
Anyhow, a low-dimensional cut through a microcanonical M-measure is
characterized by partial, not strict, conservation. The reason is that

overall conservation expresses that Ew(d)=bd. the sum being carried

over bd variables, but a cut picks only bd among these bd variables.
Call these new conditioned variables W(d'). When d '<d, the H(d—) are
much less strongly correlated than the H(d). Thus, the model that

picks uncorrelated weights and allows the W to be unconditioned and
unbounded illustrates a cut through a microcanonical measure of
extremely high dimension.

When W>0 and <W>=1 is all that is assumed about W, the measures
ur(a) are no longer constructed by recursive interpolation. I showed

that strange things may happen. For every domain A and k <o, the k-the

approximate measure uk(A) satisfies <pp(a)>=lai. However, the
seemingly obvious inference that <limy ., ui(a)>=]a| need not held. It
does hold when <WlogpW> <d, but does not hold when <WlogpW> >d, and
also [7] does not hold when <WlogpW>=d. In fact, <WlogpW> >d is the

necessary and sufficient condition for the cut toc be empty almost
surely. This result means that a question that seemed a contrived case
of mathematical hairsplitting can sometimes become practical. After
concrete application has retrained intuition, "hair-splitting” changes
to "obvious". In the present case, 1t suffices to argue as if the
measure reduced exactly to being supported by a fractal set of co-
dimension <WlogpW> in some high-dimensional space. There is a well-
known rule about the effect of intersection upon dimension. Here, this

rule shows that d=<WlogpW> is a "critical” dimension: it separates the
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dimensions of spaces that almost surely miss our fractal, from the
dimensions of spaces that hit it with positive probability.

What about the moments of ujy(A) when it is non degenerate? I
discovered that they may »o as k»*o. For each space dimension, there is
a '"critical moment"”, and for each moment there is a critical space

dimension,

C(h)=(h-1)"llogy<wh>,
such that moments are finite for C(h)>d and infinite for C(h)<d.

Generalization. Once strict conservation has been abandoned in

favor of mean conservation, the perturbation function Py(x) need no
longer be constant over cells, hence need not be discontinuous. It can
be any random function whose correlation range is bk, Moreover, the
base b itself need no longer be an integer. For example, Py (x) may be
the convolution of a white noise with a kernel having a typical radius
of bk, The effect of this function upon the "texture" of a M-measure

very much deserves to be investigated.

The 1limit lognormal processes of La Jolla [5]. Finally, mean

conservation allows the perturbation index k to be made continuous.

This was the point of the second trunk of early development mentioned

in Section 1. I made logPy(x) a lognormal process, as near as logic
allows to Kolmogorov’'s original idea. There is a sketch in my 1982
book [p. 379]. I showed that u/2 is the e¢-box codimension. Recently

[8], it has been shown that the Hausdorff-Besicovitch codimension is
also u/2.

The term "Schutzenberger-Renyi Informations.” 1In the special

cases of the Besicovitch measure and of related nonrandom fractal

measures,
(h—l)'llogb<wh> becomes d-Ip, where Iy = (h-l)'1 logbzpjh.

Doyne Farmer noticed - after re-deriving I - that A. Renyi had

called it a ‘'"generalized information". A precursor was M. P.
Schutzenberger. There is a book that shows rigorously that Iy
satisfies axioms that justify calling it "information”. However, I

happen to subscribe to Lebesgue s wariness of notions that serve no
purpose besides being defined. Claude Shannon was not the first to
write I;, but the first to encounter I in unexpected inequalities that
inject entropy into the study of communication. In the study of fractal
measures, I; was first encountered as a Hausdorff-Besicovitch dimension
by Besicovitch and his students [19]. But there was no early

counterpart for other Ih's.
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On the scope of the term "fractal dimension". ™"Fractal dimension”

should now be a generic notion, special cases of which are the box
dimension ("capacity"), Frostman's capacity dimension, the e-box
dimension, the similarity dimension, the gap dimension, the Hausdorff-
Besicovitch dimension, etc... However, some ©papers on M-measures
follow a usage that restricts the generic term to the fractal dust that
supports the M-measures. I feel the usage is misleading.

6. MULTIPLICATIVE CHAOS WITH WEIGHTS OF EITHER SIGN, AND A SURROGATE
FOR BROWNIAN MOTION.

Open problems concerning multiplicative chaos are most numercus and
obvious 1in the case when the weight W can take either sign. One new
example [18] gives the flavor. On the line, one needs, in addition to
the base b, a second base b">0 such that b-b">0 and is even; we shall
write H=logpb" so that O<H<l. The weight W will be two-valued:
W=+b/b". Strict conservation (cf something like electric charge rather
than mass!) 1is achieved by setting W=+b/b" over (b+b")/2 cells of
length b~1 and W=-b/b" over the remaining ones. The sequence of + and
- forms the generator. It may be fixed, yielding a non-random M-
measure, or chosen each time at random under the above constraint,
yielding a microcanonical M-measure. The functions Fy(t) are no longer
nondecreasing, and F(t)=1limy ,Fyp(t) 1is shown in [18] to be a self-
affine function, whose increment over an interval b~X in the grid is

|aF| = tiAt|H, exactly. Similarly, fractional Brownian motion By(t)
(Wiener s Brownian motion if H=.5) satisfies laBnlwlatIH. However, the
distribution of AF is not Gaussian but binomial. This makes F(t) a

useful surrogate of By(t). The exponent of the h-th absclute moment of
AF is m*(h)=-logy<|W|P> + h = hH.

It is linear in h, which is the simplest possible behavior. (In
the case of positive M-measures, m(h) linear in h corresponds to the M-
measure that is homogeneous on a fractal dust). The critical exponent
is the wvalue of h for which m*(h)=hH=1 is 1/H. To explore its
significance, consider the h-variation of F, defined by Iiaf|h =
|At|hH"1, and let At»0.

When h>1/H, I|¢F|h+0, but when h<l/H, f|AFlh+m.

IlAF|+m expresses that F is not of bounded variation. With respect
to IlAFlh, F(t) behaves like By(t). Observe that divergence occurs here
below the critical h, and concerns the microcanonical case, while for
the positive M-measure we know divergence occurs above the critical h,
and is found only in the canonical case.
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The corresponding canonical M-measure is obtained when W is
binomial, with Pr(W=b/b")=(b+b")/2b and Pr(W=-b/b")=(b-b")/2b. Now, AF
is no 1longer binomial. Its h-th moment is finite when h<l/H, but
infinite when h>1/H. (For example, moments of order h>2 are infinite
when H takes the Brown value 0.5.) ©On both counts, the canonical
version is very different from Bgx(t). But it is an exciting object for
study, and I expect it to be useful; the little I know of its properties

will be reported on elsewhere.
In the space of d>1 dimensions, we write H=logyb"/d, and we select

W=1bd/b"=ibd(1_ﬁ). Strict conservation now requires W>0 over (bd+b")/2
cells and W<0 over the other cells. Again, microcanonical M-measure of
a cell A, of side b_k and of content |a|, satisfies lug(a)l = p~Hkd =
IAIH, and the critical value for the divergence of the h-variation is

h=1/H.
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