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Abstract

One striking aspect of the orderliness of chaos is that many of its
geometric aspects are governed by fractals, and that many of its physical
aspects are governed by its fractal geometry. The present work reports
several observations concerning the dynamics of a continuous inter-
polate, forward and backward, of the quadratic map of the complex
plane. In the difficult limit case |A| = 1, the dynamics is known to have
rich structures that depend on whether Arg A/2n is rational or is a Siegel
number, This paper establishes that these rich structures have counter-
parts for |A\| < 1. The observations concern an intrinsic tiling that covers
the interior of a J-set and rules the Schroder interpolation of the forward
dynamics, its intrinsic inverse, and the periodic or chaotic limit proper-
ties of the intrinsic inverse.

1. Introduction

One striking aspect of the orderliness of chaos is that many of
its geometric aspects are governed by fractals, and that many of
its physical aspects are governed by its fractal geometry. The
present work reports several observations on the fractal geo-
metry of the dynamics of iterated maps.

This paper is number IX in a series that stretches over the
years [1], but if the results needed from previous Parts are re-
stated. The iteration of rational maps of the complex plane was
studied actively circa 1918. Since 1980, special interest attaches
to families of rational maps parameterized by complex numbers.
Blanchard [2] gives a nice survey with an extensive bibliography.
Two fractal sets play an essential role here: The J-ses (Julia
1918, Fatou 1919) in the z-plane, and the boundary of the
M-set (Mandelbrot 1980 [1, Part I, 3]) in the parameter space.
A map’s J-set is the closure of the unstable fixed points and
fixed cycles, and the M-set is the set of parameter values for
which the J-set is connected. To simplify the statements while
enhancing the credit due to P. Fatou, the complement of the
J-set is called F-set in [2]; here, the maximal open components
of the F-set will be called F-components.

To simplify this paper, the discussion will be limited to the
inexhaustible quadratic map written in the form z —f(z) =
Az —Az%; it reduces to z > f¥(z)=z%—u, with u=2Y4—
M2, by a linear change of z. F-components are defined for
parameter values in the M°set (a subset of M), ie., the set of
parameter values such that the map f(z) has a finite limit cycle
(plus the usual limit point at infinity). The advantage of the
form f(z) is [1, PartsI or II, 3, p. 188 and 189] that the disc
AI<1 belongs to M°, and that for [A\| <1 the limit point is
z = 0 and the multiplier at the limit point is X itself.

This paper reports on new structures that apply for [A\| <1,
and are dominated by the argument 6 = Arg A. It is known that
when |A| =1 the arithmetic properties of 8/27 determine such

structures as bifurcation and the *petal” [2, p. 101], or Siegel
discs. It is shown in this paper that generalizations to the above
structures are already present when |A| <1.

These structures were observed thanks to the fractal geo-
metric intuition attained while illustrating (apparently, for the
first time) the behavior of the solutions of the Schroder
equation, and deducing an intrinsic tiling of the F-.components.

The main observation is a “‘universality’’ result: The topo-
logical structure of the intrinsic tiling depends solely on 8 and
not on |A|l. Hence, this topological structure can be directly
inferred from the bifurcation/petal or Siegel disc structure
that corresponds to the same 6 in the limit case |A\| = 1.

A corollary is that the fractal dimension of the J-set varies
smoothly as [A| = 1 while 0 is fixed. This may account intuitively
for certain theorems I have heard sketched by N. Sibony.

These and related observations touch upon a topic that has
aroused a little interest for a long time, and is mentioned in
the title because of its attractiveness. The iterates z4,z, =
fzo) ..., 2y = F(Z-1) = fu(z), which form a sequence with an
integer index k, can be embedded intrinsically into a sequence
z; = fy(zo), where t is real, by solving the “Schrider equation”.
When z, is in the fundamental tile of the intrinsic tiling, the
continuous time can, moreover, be inverted, so that z; = fi(z,)
becomes defined for positive and negative reals. The forward
motion is very plain when [A| <1, since there is a stable
attractor point, but the arithmetic properties of 6/2m are
essential to the dynamics of the backward motion.

It cannot be excluded that some observations reported here
are known, but were reviewed as non-intuitive, hence had
remained obscure. While I have been spared such rediscoveries,
thus far, they have been all-too-common in the study of
iteration!

2. The Schroder function

General values of A €EM° will be considered in Section §, but
elsewhere we suppose for simplicity that A 0 but [A\| < 1. The
J-set is then a Jordan curve whose interior — which is the
bounded F-component — is the domain of attraction of z; = 0.
To each point in this interior, Schroder long ago (circa 1870)
attached the function o(z)= limy . X\ *f,(z). This function
satisfies the Schroder functional equation o[ f(z)] = Ao(z).

The Figures give, for various values of A, the approximate
maps of the function o(z), in the form of a fan of curves of
constant argument, and also, in some cases, of curves of con-
stant modulus. To construct them, cut slices of pie fanning from
zy, alternatingly colored in black and in white, and separated by
equidistant half-lines. Then draw an annulus around z; =0,
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whose outer radius is some small p* > 0. When f(z,) first falls
within the disc | fx(zo)| < p*, check whether X" *f,(z,) falls on
a black or a white point, and color z, accordingly. This yields
black strips whose boundaries approximate the isolines of the
argument of 8(z). To cut these black strips by white pieces of
curves that outline approximate isolines of |o(z)l, do not color
z, if the first fi(z,) of modulus < p™ is of modulus > p*(1 — ¢€),
with a suitable small € >0. As p*—>0, the approximation
improves, and the spurious pattern near z = O ebbs away.

3. The intrinsic tiling
It is clear by inspection of the Figures that the Schroder func-
tion defines an intrinsic tiling of the bounded F-component.
The tiles’ boundaries are smooth curves, except for a countable
number of 90° kinks. The tile that contains z; is to be called
the fundamental tile, and every other tile is a pre-image of this
fundamental tile.

(There is a resemblance with the hyperbolic tiling developed
by H. Poincaré and F.Klein for Kleinian groups of fractional
linear maps of the complex plane.)

4, Schréder interpolation of Az(1 — z) to continuous time,
in the fundamental tile

In terms of the Schréder function o(z), the interpolation of
f(z) in the fundamental tile simply amounts to using a logarith-
mic spiral to interpolate a sequence of points known to lie along
this spiral. In terms of o, this intrinsic interpolation is continu-
ous and invertible, both forward, between z, and the forward
attractor z¢ =0, and backwards, between z, and a backward
attractor B, which is a subset of the J-set to be discussed
in Section 6. In terms of z, however, the interpolation
is not continuous, except when A is real and positive.
Otherwise, this interpolation is continuous in the dis¢ around
z; =0, in which the leaves of the fundamental domain
are attached to each other. In the remainder of the funda-
mental tile, where the leaves are split, the interpolation is
discontinuous.

(In addition to the above “fundamental”, one can define
“harmonic™ and “subharmonic” interpolations. Given an integer
h, the harmonic interpolation is the map of the curve o(z;) =
(A\YMto(z,), and the subharmonic interpolation is the map of the
curve 0(z;) = (\")*0(z,). The harmonics contain all the points
0(z) = N¥0(z,), but the subharmonics do not.)

(An alternative interpolation, in terms of the ‘Poincaré func-
tion” was advanced by S. Lattés in 1917; Dubuc [4] compares
the two interpolations.)

5. Dependence of the intrinsic tiling upon A

A striking observation is that the intrinsic tiling topology only
depends on @ = Arg A and not on [A], and is a sharply discon-
tinuous function of & (Figs. 1 and 2). This is a noteworthy
result, because the J-set that wraps up the tiling varies continu-
ously with |\| and 6, as long as A € M°.

Interesting consequences follow, concerning the intrinsic
interpolation of f(z) as function of time and of A. The forward
motion from a given z, is continuous in § and [A|. The back-
ward motion is continuous in [A|; its dependence on 6 becomes
discontinuous after a long enough time, but for a short time it
may be continuous.
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Fig. 1. Intrinsic tiling for A real € ]0, 1[.

6. The backward attractor B, intersection of the J-set with the
boundary of the fundamental tile, and the leaves of the
fundamental tile

The set B is of course invariant but unstable under the action of
f(z). Tt will be called the fundamental invariant set of J.

The rational case. If 6/2m =m/n, the set B contains n
points, each of them being invariant under the action of f,(z).
The direct map f(z) has a fixed point as attractor, hence a cycle
of size 1. However, the intrinsic determination of the multi-
values inverse map /", identified as lying in the fundamental
tile, has a limit cycle of size n, namely B.

To each point of B corresponds an interval of values of
Arg [0(z)] of width 27/n, which reduces to an interval of values
of Arg z near z = 0. Each interval defines a “leaf” in the funda-
mental tile. The leaves are attached to each other in the neigh-
borhood of z; =0, but they split as one moves away from zg,
and are separate in the neighborhood of the J-set. Each leaf
should be viewed as made of two half-leaves, separated by a
“rib” that bisects the leaf in terms of Arg [a(z)].

It is known that the J-set can be mapped intrinsically upon a
circle, hence each point of the J-set can be given an intrinsic
argument ¢. Each point of the B-set has an argument ¢ and an
interval of arguments Arg [o(z)]. The action of f(z) replaces ¢
by 2, and replaces Arg [0(z)] by Arg [o(z)] + Arg . The mis-
match between these two operations is the reason why the
study of iteration is rife with fractals.
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Fig. 2. Intrinsic tiling for a A near theinterval ]0, 1[. A small change in
A, compared to Fig. 1, changes the tiling drastically.
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Fig. 3. Intrinsic tiling for A real€ ]— 1, O

Observation. The ¢ arguments of the points of the B-set are
identical to the ¢ arguments that the point z; = 0 takes in the
limit case when A is replaced by the parameter X' = A/[A| and
bifurcation occurs. In other words, the ¢ arguments of the n
points of B only depend upon A via the value of 6.

On the circle, when the point of argument ¢ is invariant
under the map 6 — 279, the ratio y/2n is represented by a
sequence of binary digits that is periodic with the period 2.
There are 2%/k cycles, many of them being reducible to each
other. There is a rule for determining the special invariant un-
stable set that maps upon B.

The irrational case. If 0/2n is irrational, B is a Cantor set
(fractal dust). In order to become convinced that such invariant
Cantor dusts exist, it suffices to take on the circle a point for
which /27 is an infinite sequence of binary digits such that 0
is never followed by 0. The points of the form 2y obviously

Fig. 4. Intrinsic tiling for ArgA/2m =m/n, with n =35, and [A] well
below 1.

share this property. (The fractal dimension satisfies 2Y =
1.618.)

When the B-set is a Cantor dust, each half-leaf is associated
with a trema of B (an open interval in the complement of 7).

However, the leaves of the fundamental tile no longer split into
two half-leaves. Stated alternatively: one of the half-leaves is

degenerate and the rib runs along the side of the leaf that is not
pointed towards the midpoint of a trema.

7. Observations relative to the limit [A| = 1, taken radially

In the limit [A| = 1, Julia and Siegel had shown it is import-

Fig. 5. Intrinsic tiling for the same Arg A as in Fig. 4, and |A| approach-

ing 1. The leaves split in an overall radial direction.
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Fig. 6. Intrinsic tiling for Arg A/1w the golden mean, a Siegel number,
and |A| well below 1.

ant whether the number 6/2m is (a) rational or (b) irrational and
a Siegel number, or (c) irrational but not a Siegel number. The
rational cases, 0/2m =m/n, correspond to AEM°, and the
topology of the J-set is determined mostly by n. When [A\| =1
and 0/2r is irrational and a “Siegel number”, the J-set is made
up of the boundary of a “Siegel disc” and of this disc’s pre-
images under f(z). The novelty reported in the present paper is
that the arithmetic nature of 6/2w is already important for
Al <1. To link the properties relative to |A|=1 and |A| <1,
let |A| ~ 1 radially, that is, with invariant 6. The J-set acquires
double points, as the points of the B-set move either toward or
around z¢ = 0.

When 6/2n is the rational m/n, (Figs. 4 and 5) the n points in
the B-set all converge to z; = 0. Each leaf splits, along its rib,
into its two halves. Thus, each tile becomes split into n pieces,
each of them made of two half-leaves, and all having equal
widths in terms of Arg[o(z)]. The fundamental tile becomes
identified with the petal [2, p. 101].

When 8 /2w is a Siegel irrational, (Figs. 6 and 7) the endpoints
of each trema in the B-set converge circumferentially to the
same point — which depends on the trema. As a result, the tiles
keep their identity as |A\| > 1. The fundamental domain tends

Fig. 7. Intrinsic tiling for the same Arg A as in Fig. 6, and |\| approach-
ing 1. The leaves do not split, rather are on the way to coalescing into a
Siegel disc.
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to become increasingly separated from the remainder of the
interior of the J-set. At the limit [A| =1, it becomes a Siegel
disc, surrounded by a fractal Jordan curve that is part of the
J-set.

The remaining case, when /2 is a non-Siegel irrational, is
known to be hard. A conjectural scenario is that every point in
the B-set again converges to z¢ = 0, and the fundamental domain
becomes split into a denumerable infinity of leaves (= half-
leaves) of unequal widths in terms of Arg [o(2)].

Thus, attainment of |A| =1 has different effects upon the
intrinsic tiling and upon its J-set wrapping. The tiling depends
discontinuously upon &, both when |A| <1 and when |\|=1.
The wrapping’s dependence upon @ is continuous when [A| < 1,
but discontinuous when |[A| = 1.

The shape of the J-set changing smoothly as [A| - 1 radially,
the fractal dimension D(A) of the J-set converges smoothly to
a limit. But for |\ = 1, the shape of J varies discontinuously
with 8. Therefore, the radial limit of D(\) seems to be an
extremely unsmooth function of 8.

8. Case when A€M but |A| > 1and |A—2|>1

For such A’s, there is a limit cycle of size N(\) and the multiplier
is some A(M) satisfying |A| < 1. To each A with |A| # O one can
associate a parameter value A’ that lies in the same atom of M°
and satisfies [AQ\)/ =1 and Arg [A(\)] = Arg [A(\)]. The
arithmetic properties of Arg [A(\')]/2n determine the tiling
structure for the parameter value A, and the limit behavior of
the intrinsic inverse of f(z).

63

9. The superstable case

For A =0, the argument 6 is not defined. This is a superstable
parameter value, the nucleus of an atom in the M-set. In that

-case, the Schroder equation is replaced by the Bottscher

equation, and each F-component — including the exterior of the
J-set — is a single tile. The discussion is reserved for a later
occasion.
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