References

Style of reference and books referenced by italic capitals

References to serials are scattered through the paper at the proper places. The
books are denoted by letters suggested by various mnemonic devices: initials of the
author or the titles or (in the case of Selecta) the initials of economics, noise, Hurst,
and chaos.

FM  Frame, M. and Mandelbrot, B.B. 2002, Fractals, Graphics and Mathe-
matics Education. Mathematical Association of America and Cambridge
University Press.

FGN  Mandelbrot, B. B. 1982, The Fractal Geometry of Nature, W. H. Freeman
and Co., New York and Oxford. The second and later printings include
an Update and additional references. Earlier versions were Les objets
fractals: forme, hasard et dimension, Flammarion, Paris, 1975 (fourth
edition, 1995) and Fractals: Form, Chance and Dimension, Freeman,
1977. There are innumerable translations, for example, the 1975 book
was translated into Basque.

SE Mandelbrot, B. B. 1997E, Fractals and Scaling in Finance: Disconti-
nuity, Concentration, Risk (Selecta, Volume E) Springer-Verlag, New
York.

SN Mandelbrot, B. B. 1999N, Multifractality and 1/f Noise: Wild Self-
Affinity in Physics. (Selecta, Volume N). Springer-Verlag, New York.

SH Mandelbrot, B. B. 2002H, Gaussian Self-Affinity and Fractals: Global
Dependence, R/S, 1/ f, Rivers & Reliefs. (Selecta, Volume H). Springer-
Verlag, New York.

SC Mandelbrot, B. B. 2004C, Fractals and Chaos: the Mandelbrot Set and
Beyond. (Selecta, Volume C). Springer-Verlag, New York.

ST Mandelbrot, B. B. 2004T, Thermometry and Thermodynamics: Foun-
dations and Generalization. Webbook.

33



quantitative measure for it was a challenge that defied an easy answer. Science
was powerless to tackle roughness until I found that in many cases it obeys diverse
geometric scaling rules that can be accounted for by a dilation invariance. Fractures
of metals are iconic from that viewpoint, as pointed out in Section 1.4.

Three forms of dilation invariance stand out. A fractal whose detailed structure
is a reduced-scale image of the overall shape (perhaps statistically deformed), is
called “self-similar.” When the reduction ratios are different in different directions,
the fractal is “self-affine.” When the reduction ratios vary from point to point, one
deals with “multifractality” (Section 3.3)

A first key continuing part of fractal geometry consists in identifying and clas-
sifying cases ruled by some form of dilation invariance.

A second key continuing part of fractal geometry results from the fact that
dilation invariance provides the study of roughness with an increasing number of
intrinsgic quantitative tools — beginning with several distinct flavors of fractal di-
mension. That is, dilation invariance is the ingredient that makes roughness man-
ageable. This is also why fractal geometry is a very broadly useful first approxi-
mation. Rough aspects of mathematics, nature, and culture come together because
they can be studied by closely related tools, and progress in each aspect benefits
from progress in the others. But unity stops at a certain point: each example has
specific features that must eventually be acknowledged.

In 1975, having conceived and began to develop systematically a nascent ge-
ometry of roughness, I turned to the Latin adjective for “rough and broken up,”
namely factus, and coined for this geometry the term fractal.

Let me now restate the key scientific claim I put forward increasingly forcibly
and continue in buttressing. A workable path towards rational rugometry has now
been identified as being made of rough shapes that are dilation invariant. They are
the fractals.

1.8 Explanatory background in older sciences thal study other sensations of
Man

It is good to keep in mind that the earliest sciences started as ways to organize
substantial collections of messages that Man receives from the various “senses.”
The complexity of most messages is such that a science can take off only after it
identifies “representative” special cases to be studied first.

For acoustics, an important step consisted in recognizing that chirps or drums
are very diflicult to handle, but idealized vibrating strings or pipes lead to periodic
sums of sinusoids. That is, acoustics became quantitative when it managed to
define “pure sounds” and measure their pitch by a frequency. As had to be the
case, this quantitative measure is consistent with “intuition” and the extensive
earlier knowledge manifested, for example, in music. The limitations of acoustics
continue to be notorious, but do not prevent it from being extraordinarily useful.

Similarly, the theory of heat became quantitative when Galileo devised the
thermometer and measured hotness by a temperature. Here too, a limitation must
be recognized: far from equilibrium, the theory of heat continues to struggle.

In the same vein, the examples of real rough curves or surfaces that are usefully



close to being self-similar or self-affine allowed me to define “pure” or “perfect”
roughness as analogous to the classic concept of “perfect gas in equilibrium.” The
latter is invariant by translation of time, the fractals — once again — by dilation.

Like pure sound or pure elliptic motion under gravitation, pure roughness is
an abstraction and fractal geometry cannot address roughness that is far from
being dilation-invariant. But dilation-invariant roughness is useful: its scope is
considerable and must be expanded before facing further tasks.

1.4 Fractal dimension as the first intrinsic and quantitative measure of
roughness; metal fractures and a conjectured fundamental universality

As first measures of pure roughness, I proposed notions that were known but viewed
as esoteric: fractal dimension or Hélder exponent or codimension. It was necessary
to first reinterpret these notorious concepts as being numerical characteristics of
an invariance (self-similarity, self-affinity, or multifractality) and then expand their
study, both concretely and intuitively.

From the preceding viewpoint, particular iconic immportance attaches to a study
by myself, Passoja & Paullay (Nature, 308 (1984) 721-2). We found metal fractures
to be dilation invariant with a dimension that exceeds 2 — the dimension of smooth
surfaces — by 1/3. This property has been confirmed by extensive later work that
went beyond metals to glasses and covered sizes covering five decades at least.
The range is sometimes even broader, but may be limited by the nature of the
data. Fractality is the special ingredient making it possible to measure roughness
intrinsically by what is now often called the “roughness exponent.”

This discovery of the “universal” excess dimension 1/3 has provided the nascent
rational rugometry of metal fractures with a broad and fundamental observation.
It defines a “macroscopic” aspect of the study of fracture that must be added as
conjecture to the more prevalent “microscopic” approaches.

An invidious claim one hears is that fractal geometry has solved or advanced
no existing problem in physics. This claim is, among others, contradicted in the
contexts of metal fractures and turbulence. But it may be true that the more visible
role of fractals in physics has not been directed to what already existed but to the
future. The very fact of proposing a quantitative measure of roughness has raised
thoroughly new problems of all kinds. Several have already been solved, for example
problems concerning the fractal dimensions of two very distinct kinds of physical
clusters, examined in Sections 2.6 and 6.3. Other new problems remain wide open
and there is no reason to expect them to be easy.

1.5 A fundamental formal kinship between the nascent “rational rugometry”
and thermometry

The suitable measure of roughness having been found in previously esoteric notions
of mathematics, rugometry might have developed in ways quite distinct from the
sciences based on previously quantified “sensations.” But in important cases fractal
dimension takes the form Yplogp, which is an “information” hence a further link
with thermodynamical entropy. This resemblance is far from complete but brings a
high level of formal unity and suffices to allow many questions concerning roughness
to



1.6 Regrettable “centrifugal” tendencies splitting the fractal synthesis. The
many historically separate notions of “scaling”

Today — to my great regret — “centrifugal” developments affect several “chapters”
of my work that arose in the 19508 and 1960s. All had been slow in acquiring a
broad following until they were empowered by being subsumed in fractal geometry.
Now they have taken off and tend to develop on their own. Some are commented
upon in suitable sections of this paper. One is the study of Zipf’s and other “power
laws” and Lévy stable distributions, which I began in the 1951. Another is “econo-
physics,” which I originated in 1962 without giving it any specific name. A third
is the study of metallic fractures and the like. If these developments “dismember”
the fractal synthesis, the resulting fragments would all be harmed.

Neither is it helpful to replace the term “fractal” by “scaling.” That replace-
ment is sometimes formally correct but is invariably misleading because scaling
has multiple meanings — related but not identical. Scaling occurs in probability
theory since Cauchy (1853) and P. Lévy (the 1920s). It occurs in turbulence since
Richardson (the 1920s) and Kolmogorov (1941). It occurs in increasingly geometric
fashion in my work, since 1951 for Zipf’s law, and already very explicitly in 1956.

Finally, scaling occurs in different parts of “core physics,” especially in the
physics of criticality since K. Wilson in 1972. Criticality had the largest number
of practitioners and tempts other investigations to use its terminology. However,
criticality is a very specific situation. The study of critical shapes like clusters have
been greatly helped by fractal tools but there was no significant influence in the
opposite direction. Not only criticality played no role in originating the chapters of
fractal geometry mentioned early in this subsection, but it evolved no tools to help
their study. For example, it had no use for Lévy stable distributions. Therefore,
thinking in terms of criticality did not and does not bring any benefit.

Added to other reasons, the preceding comments make it useful to ponder the
broader issue of the place of fractals within physics. I think of fractality as related
to the emergence of a new stream of thinking sketched in Section 1.1. Being con-
cerned specifically with roughness in all its forms, it can be viewed as providing a
generalized physics. The dream of generalizing physics in this fashion is an ancient
one but had long been thwarted as long as overly specific features of existing physics
were preserved too faithfully.

1.7 The role of fractal geometry in pure mathematics: renewed key role played
by the “material” world and the examination of fully-fledged pictures

Another invidious claim one hears is that fractal geometry has solved no existing
mathematical problem. This claim has no merit, either, but it is true that I provided
few difficult proofs but many separate conjectures of all kinds. Each turned out to
be difficult and opened a new field that continues and prospers long after I move
to other concerns. Notable examples will be mentioned in Section 7 devoted to the
Mandelbrot set, Section 2 devoted to the dimension 4/3, and several subsections
throughout devoted to multifractality. Other conjectures are scattered elsewhere
in this text.

The perceived importance of those contributions to pure mathematics varies



but a common feature is that they did not arise from earlier mathematics but in
the course of practical investigations into diverse sciences of nature or of culture,
some of them old and well-established, others newly revived, and a few altogether
new. Some branches of mathematics agree that physics, numerical experimentation
and geometric intuition are very beneficial but other branches proclaim physics as
irrelevant, computation as powerless, and intuition as misleading — especially when
it is strongly visual. A well-known irony is that history consistently proves that,
as branches of mathematics develop, they suddenly either lose or acquire deep but
unforeseen connections with the sciences — old and new.

As to numerical experimentation — which Gauss had found invaluable, but
whose practice was long interrupted — it has seen its power multiplied thanks to
computer calculations, and later, to computer graphics. This allows my practice
to be dominated, in mathematics as in the sciences, by the role played by fully-
fledged pictures that are as detailed as possible and go well beyond mere sketches
and diagrams.

This feature destroyed a belief that was near-universal among pure mathemati-
cians around 1980, that a picture can only lead to another, and never to fresh
mathematics. Hence, my work bears on an issue of great consequence. Does pure
(or purified) mathematics exist as an autonomous discipline, one that can — and
ideally should — adhere to a Platonic ideal and develop in total isolation from both
“sensations” and the “real” world? I believe, to the contrary, that the existence
of totally pure mathematics is a myth — a useful one on occasion, but not on the
long run.

My 1982 book The Fractal Geometry of Nature, FGN, was meant above all to
be a “manifesto” in praise of the trained eye. I believe that computer graphics has
changed the iconoclastic (anti-pictorial) dogma that prevailed in mathematics and
physics into a serious liability. In search of always fresh evidence for this belief, 1
looked for new facts that the standard pictures leave hidden. The pictures’ original
goal was modest: to gain acceptance for ideas and theories that I had managed to
develop without pictures and whose acceptance was reluctant and slow because of
cultural gaps. To begin with, the pictures did indeed lead to acceptance, but then
they went on to help me and many others generate new ideas and theories. The
input of mundane questions gradually grew and became far more ambitious than
originally intended or recognized.

Norbert. Wiener once described his key contribution to science as bringing to-
gether — starting from widely opposite horizons — the fine mathematical points
of Lebesgue integration and the physics of Gibbs and Perrin. Similarly unlike
“parents” characterize the theory of fractals, which is arguably a multiple second
flowering of Wiener’s Brownian motion. Also (like Poincaré) Wiener was very com-
mitted (and successful) in making frontier science known to a wide public.




1.8  The unexpectedly long history of fractals began well before nineteenth
century mathematics; fractals have now been traced back to art since time
immemorial

Anticipating the difficult conjectures mentioned in Section 1.7, the early pictures
I drew of old standbys like the Koch or Peano curves and the Cantor set were
precise, and as a result they became inspiring. They sufficed to thoroughly disprove
the previously held belief that those sets are “monsters.” Quite to the contrary,
they were turned around into unavoidable “cartoons” of reality. For example, I
“demoted” Peano “curves” from being counter-intuitive monsters to being nothing
but motions that follow plane-filling networks of rivers.

More profoundly, giving concrete uses to mathematics allowed it to be compared
on more equal terms with other human activities and allowed fractals’ history to
slowly reveal itself as having been long and varied.

In art and decoration, they have been known since time immemorial, all over
the world. I noted a few examples in FGN but new examples reveal themselves
continually.

Far better known is the already mentioned second broad stage in history: a
century ago, fractals entered the purest of mathematical esoterica and a “Polish
school” of mathematics viewed itself as devoted exclusively to Fundamenta, added
mightily to the list of monster shapes. It greatly contributed to the deep and long
— but inevitably of finite duration — estrangement of mathematics from physics.

Specifically ironical, therefore, is that in a third stage my work, that of my
colleagues, and now that of many scholars, made those monster shapes, and new
shapes that are even more “pathological,” into everyday tools of the sciences of
nature and culture.

This subsection must end by a call for balance. 1 always agreed with John von
Neumann that “a large part of mathematics which became useful developed with
absolutely no desire to be useful... This is true for all science. Successes were largely
due to... relying solely on... intellectual elegance. It was by following this rule that
one actually got ahead in the long run, much better than any strictly utilitarian
course would have permitted... The principle of laissez-faire has led to strange and
wonderful results.”

1.9  The beauty of fractals

Fractal pictures have become ubiquitous. Many strike everyone as being of excep-
tional and totally unexpected beauty. Some have the beauty of the mountains and
clouds they are meant to represent; others are abstract and seem wild and unex-
pected at first, but after brief inspection appear totally familiar. In front of our
eyes, the visual geometric intuition built on the practice of Euclid and of calculus
is being retrained with the help of new technology.

Hence a different philosophical issue arises. Is there any relation between the
beauty of these mathematical pictures and the beauty that a mathematician rooted
in the twentieth century mainstream sees in his trade after long and strenuous
practice? My lectures often underline these questions, by showing in full colors
what certain mathematical shapes really look like.



1.10  General references

Due to space restrictions, this survey is extremely sketchy and centers around my
own contributions. As the field grew, early versions appeared in 1984, 1999, 2000,
and 2001. Each in turn was made obsolete by the continuing development of the
field.

On fractals overall, the basic reference remains my 1982 book The Fractal Ge-
omelry of Nature, already referenced as FGN. As explained at the end of the paper,
suitable other initials in italics will reference other books, some printed and others
only available (now or shortly) on my web: www.math.yale.edu/mandelbrot. More
specific references are made part of the text.

Alternative surveys include a) a text T wrote with M.L. Frame for The Ency-
clopedia of Physical Science and Technology in Fifteen Volumes (San Diego CA:
Academic), third edition (2001): 6, 185-208, b) the Overview chapter of SH, and ¢)
several chapters of book MF. A useful commentary on the mathematics is provided
by the Foreword Peter W. Jones contributed to SC.

2 Complex Brownian bridge; Brownian cluster and the dimension
4/3 of its boundary; the self-avoiding plane Brownian motion

The sequence of examples in this paper follows little order. As mathematics goes,
the iconic Mandelbrot set is only mentioned in Section 7. The present Section 2 is
concerned with an example that is far less widely known but is easy to understand
and of greatest current interest. It provided mathematicians with difficult conjec-
tures and a unifying theme. It provided physics with a new cluster having special
virtues discussed in Section 2.5.

2.1 A historically incorrect and continwing misleading “streamlined” story

The story of the “4/3 conjecture” was exemplary by the standards of my work and
this paper but very atypical by the customary standards of mathematics. Therefore
it is often replaced by the following grossly “streamlined” account.

Somehow, Mandelbrot had the idea that in the plane the boundary of Brownian
motion is a curve of Hausdorff-Bescovitch dimension 4/3. The conjecture attracted
wide attention but turned out to be very challenging. The proof took time and
came in two stages.

A “field-theoretical” physical argument has been provided by B. Duplantier,
Phys. Rev. Lett: 82, 1999, 880; 82, 1999, 3940; 84, 2000, 1363.

A proper proof has been provided by G. Lawler, O. Schramm & W. Werner,
much of it is only available on the Web (xxx.lanl.gov/abs/math.PR/0010165) as a
series of preprints totaling over 100 pages, the first of which has been accepted by
Acta Mathematica. According to a newsweekly (Science, 8 December 2000, pages
1883-4) it “drew rave reviews” at an important meeting and was hailed as “one of
the finest achievements in probability theory in the last 20 years.”

Between 1982 and 2000, a dozen or so scattered technical conjectures in math-
ematical analysis had been shown to be equivalent to that “4/3." Therefore, all
have now been proven as corollaries and together provide an element of unity that
co



2.2 Preliminaries to the historical sequence of events. Definitions of the
Brounian cluster and of self-avoiding Brouwnian motion

The actual history of the 4/3 is more interesting. The key discovery reported in
1982 — FGN, Plate 243 — relied on a novel processing of Brownian motion B(t)
in the plane. This very old shape is, of course, a random process whose increments
B(t + h) — B(t) are two-dimensional Gaussian random variables with mean 0 and
variance k, and are independent over disjoint time intervals. It is well-known that
B(t) is statistically self-affine in the sense that

Pr{B(t + h) — B(t) < b} = Pr{B(s(t + h)) — B(st) < /sb},

and the same is true of joint probability distributions for all finite collections of
time intervals h;.

Assuming B(0) = 0, a Brownian bridge Bpriqge(t) was defined by N. Wiener as
the periodic function of ¢, of period 27, that is defined for 0 <t < 27 by

Bb'r?ﬁd_r;e(t) = B(t) - (f/Q?T)B(QTT)

In distribution, Bh,..i(,gge(t) is identical to a sample of B(¢) conditioned to return
to B(0) = 0 for t = 2r. Wiener wrote Biridge (t) as a trigonometric series whose
nth coefficient is G,,/v/n, where the G, are independent reduced Gaussian random
variables. Combining two statistically independent Brownian bridges yields the
complex function Byyiage(t) = By(t) + iB,(t).

The Brownian plane cluster Q is defined in FGN, Plate 243, as the set of values
of Biridge(t). This is the (non-traditional) map of the time axis by the complex
function Byrigge (). The classical map of the time axis by B(f) is everywhere dense
in the plane, and the map of a time interval by B(t) is an inhomogeneous set. In
contrast, conditioning the origin £ of the frame of reference to belong to @ makes all
the probability distributions concerning ¢ independent of €2. Therefore @ (see SN,
Chapters 8, 9 and 10) T called @ a conditionally homogeneous set. This property is
not only aesthetically attractive, but, as will be seen, proved inspiring.

The self-avoiding planar Brownian motion Q. This random object is defined in
FGN as being the closed set of points P in @) accessible from infinity by a path that
does not intersect Q — P. This Q is also conditionally homogeneous.

2.8 Steps that led to the Brownian cluster being defined

Today, after the fact, the boundary of Brownian motion or cluster seems a “natural”
notion. After all, the overall appearance of planar Brownian motion is known at
least since J. Perrin, as evidenced in FGN, Plate 13. It inspired Norbert Wiener in
the 1920s, then pictures’ evocative power was exhausted. In the absence of suitable
“graphic rendering,” the earlier pictures of samples of B(t) did not highlight a
boundary. Worse, they gave no hint of anything worth studying.

This boundary came up during a “fishing expedition,” an aimless search moti-
vated by the feeling that a careful fresh look at B(t) using better tools may lead
to new insight. Plate 242 of FGN exemplifies the finite duration samples of B(t)
with which I began; those pictures “did not talk to me.” I figured that those finite
samples’ non-homogeneity may overwhelm and hide interesting facts. When the eye



Figure 1. This is Plate 243 of FGN, representing the original sample of Brownian cluster.

is to be trusted, it is good practice to help it and in particular to avoid burdening
it by extrancous complications — such as non-homogeneity.

To the contrary, the Brownian cluster is homogeneous by design. Therefore, T
asked my assistant to produce a Brownian cluster and also to “paint” its interior
in order to enhance the graphics.

The outcome became Plate 243 of FGN, reproduced here as Figure 1. It trig-
gered an “euréka” moment. With no prompting, what I saw looked to me like an
island with a clearly visible and especially wiggly coastline. Hence visual intuition
nourished by experience in geomorphology suggested D ~ 4/3. This value was
confirmed by my direct numerical tests.

2.4 Comment on the relation between the dimension 4/3 and self-avoidance

Originally, the term “self-avoiding Brownian motion” came to my mind because Q
is a shape related to Brownian motion and does not self-intersect. The term be-
came strengthened because I recalled the dimension 4/3 found in the plane for the
self-avoiding random walk (SARW) on a lattice. The value 4/3 for SARW is un-
questioned but physicists obtained it by analytic arguments that are geometrically
opaque; its interpretation as a dimension implies yet another unproven conjecture,
which no one doubts.



2.5 Differences between the self-avoiding Brownian motions defined it the
cluster and via the “streamlined” account

The mathematicians who take the “shortcut” described in Section 2.1 define “self-
avoiding Brownian motion” as the boundary of a finite sample of Brownian motion.
The same Hausdorff Besicovich dimension of 4/3 holds for two clearly distinct
fractal curves. I suspect that the cluster boundary is the more interesting topic.

This ambiguity recalls one that specialists in SARW on a lattice have observed
long ago: a standard definition and a “true” one had vied for attention. This topic
is interesting but space lacks to develop it.

2.6 Brownian clusters, as compared to the clusters of statistical physics

Section 5 will survey several major clusters in statistical physics: percolation, Ising,
DLA. All belong to physics on a prescribed lattice. Contrary to fractals, their
construction does not proceed by an interpolation that converges strongly to a
limit, but by extrapolation.

It is the case that down-scaled versions of those physical lattice clusters, converge
weakly to fractals? This is what I conjectured and precise forms of the conjectures
are widely believed and studied. For DLA (Section 5.3) the issue is murky.

By contrast, Brownian clusters did not originate in physics but have a special
asset they follow an explicit definition and involve no conjectural limit process.

2.7 Squigs and a wide open issue that combines fractals and topology

Being obtained by extrapolation, SARW is difficult to study. In the spirit of Section
2.6, FGN (Chapter 24) introduced recursive alternatives to SARW, called squigs,
that create self-avoidance by interpolation. For the simplest squig my heuristic
argument yielded the dimension log, 2.5 & 1.3219... This value was confirmed by
J. Peyriere, C.R. Acad. Sec. Paris: 286A 1978, 937 and Ann. Institut Fourier:
31, 1981, 187. The discrepancy between 4/3 and log, 2.5 clearly follows from the
fact that only the squigs not the clusters involve a discrete and recursive
subdivision of the plane into triangles, squares, or other indefinitely interpolable
tessellations. Viewing this discrepancy as of secondary importance, I suspect that
self-avoidance is linked in a profound and intrinsic way to the dimension 4/3. The
nature of this link is a mystery and a challenge.

3 Explosive multiplication of new fractal constructions, dimensions
(including negative ones), and Hélder exponents

Until fractal geometry became organized, the numbers of distinct fractal construc-
tions and of distinct definition of fractal dimension were both very small. Moreover,
the values of distinct dimensions used to coincide, except for contrived “counterex-
amples.” As fractals became common tools in the sciences and favorites in computer
graphics new constructions multiplied. Moreover, differences between the values of
distinct dimensions ceased to be exceptional; in many contexts they became the
rule with every variant contributing its share to an overall description. Fractional
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Brownian motion and multifractal measures led to a rich mathematical literature
that is exemplified in SH and SN, respectively. Other new constructions are less
well known. Section 3.1 describes one example. The remainder of the chapter
tackles the multiplicity of dimensions.

3.1 A promising but little-explored novelty: embedding the stable processes
and fractional Brownian motions in a the broader class of functions: the
fractal sums of pulses

Brownian motion was generalized in two deeply different ways by the introductions
of Lévy stable processes (LSM) and fractional Brownian motions (FBM). The LSM
depend on a parameter o, with 0 < o < 2 and a = 2 yielding the Brownian as a
limiting case. They are investigated, among many other places, in SE. The FBM
depend on a parameter H, with 0 < H < 1 and H = 1/2 yielding the Brownian
as a critical case. They are investigated, among many other places, in SH. By the
definition of By (t), the increment By (t) — By (t') 1s a Gaussian random variable
of expectation 0 and standard deviation |t — /|,

Numerous formal analogies exist between the respective studies of LSM and
FBM. Those analogies changed from surprising to very natural when I imbedded
both families in a far broader family, the “fractal sums of pulses” (FSP). The FSP
also allow a variety of additional behaviors that are useful in science and may be
of mathematical interest. The latest reference is my contribution to Long-Range
Dependent Processes (eds. G. Rangarajan and Ming Ding) Springer 2003, pp. 118-
135.

3.2 Multiplicity of alternative definitions of dimension

Linearly self-similar sets are iconic but exceptional. For them, the many definitions
of fractal dimension yield identical values. A set S is self-similar if it is constructed
recursively and its generator consists of N copies of itself, the ith copy S; being
obtained from S by a similarity with contraction factor r;. The calculation of the
fractal dimension D is relatively simple. Under a mild condition (the “open set”
condition), D is the solution of the Moran generating equation

Z rf =1,
where i ranges from 1 to N.

The original Hausdorfl-Besicovitch dimension invoked in Section 2 remains es-
sential in mathematics despite the fact that its value is often hard to obtain. But
in the sciences, Dgy is impossible to measure because its definition contains the
operation “inf.” (In the case of self-similar or self-affine shapes, the operation
“limit” poses no problem.) Far more important is the fact that self-similar sets
are a special case. Purely mathematical needs demanded concepts of dimension
distinet from Dy p and contrived “counter-examples” showed that, in the absence
of self-similarity, those dimensions can take distinct values. More recently, concrete
needs forced fractal geometry to alternative definitions that led to values other than
Dyp. Often, considering those values together helps describe an object’s geometry.
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3.8 Self-similar multifractal measures

The random multiplicative singular measures that I began to construct around 1970
are described in papers from 1968, 1972, 1974 and 1976 collected in SN. They are
now called multifractal. They were not intended to become a new kind of esoterica
but a model in turbulence and (near immediately after) in finance. The conjectures
1 put forward created an active and prosperous subbranch of mathematics and —
today — the main branch of statistical modelling of the variation of financial prices.

The topic is too rich to be dwelt upon here, but it is useful to note that a
multifractal measure is, above all, described by a function f(«a) of the parameter a.
My original 1974 paper dealt with multiplicative multifractals (see Section 3.5) and
deduced a function equivalent to f(a) from the Cramer theory of large deviations.
Since they mvolve a function f(«), multifractal measures involve an infinite number
of parameters.

3.4 Negative dimensions as measure of the newly introduced notion of
quantitative measure of emptiness

The value of f(a) can be either > 0 or < 0, hence a fundamental distinction enters
inevitably. When it is positive, f is a suitable set’s fractal dimension, for example
in the sense of Hausdorfl Besicovitch. When it is negative, f takes an altogether
different new role, as a measure of “degree of emptiness.” (Mandelbrot, .J. Fourier
Analysis and Applications (Kahane issue), 1995, 409-432; J. Stat. Physics, 110,
2003, 739-777). Negative dimensions amply deserve closer study.

3.5 Multiplicative multifractals: microcanical, canonical, and products of
pulses or other functions

Multifractals’ self-affinity can be approximate or exact. Numerous approaches,
some heuristic and some mathematically rigorous, apply under quite general condi-
tions but, as unavoidable counterpart, they are not very specific. Beginning in my
pioneer papers, I have taken a different tack and deliberately focussed on multifrac-
tals that — in a statistical sense — are exactly self-affine. They are less general but
perspicuous and continue to yield very specific and varied results one can “tune”
by changing the process.

Step by step, the constraints were made less and less strong and immensely
richer structures arose. In 1974, T moved the construction from microcanonical to
canonical products (J. Fluid Mechanics 62, 1974, 331-358 and CR (Paris) 278A;
1974, 289-292 & 355-358). Recently, the construction moved further to products
of pulses and of other kinds of functions (Barral and Mandelbrot Proba. Th. and
Related Fields 124, 2002, 409-430, J. Math. Pures et Appl. 82, 2003, 1555-1589 and
contributions to the book Fractals (ed. M. Lapidus) Am. Math. Soc., 2004.)

3.6 Self-affine sets

When the transformation of S into S; is an affinity, the evaluation of Dyp was
successful in a surprisingly small number of cases. Contributors include McMullen,
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Bedford, Falconer, Peres, Kenyon, Lalley, and Gatzouras.

Furthermore, the many alternative definitions of fractal dimension yield values
that differ from Dpyp and from one another. In particular, my contribution to
Fractals in Physics (E. Pietronero & E. Tosatti, eds.) 1986 (reprinted in SH as
Chapters H22, H23 and H24) introduced the concepts of local and global dimension.
They coincide in the self-similar case but greatly differ in the case of self-aflinity.
The global notions of dimension pose many open mathematical issues.

All these computations suggest that, while the notion of fractal dimension can
be defined under wide conditions, its “natural domain™ of practical relevance centers
around self similarity.

3.7 The many forms of the Hélder (and Hurst) exponent

In the case of the graph of a self-affine function, the most “natural” quantitative
description of roughness is not provided by a dimension, but by diverse forms of an
exponent introduced in the 1970s by the mathematicians by Holder and Lipschitz
and in the 1950s by the hydrologist H. E. Hurst. The variable o in the multifractal
function f(«) is a Holder exponent. Chapter E6 of SE and Chapter N1 of SN show
that the original definitions have, in response to concrete needs, branched in diverse
directions.

3.8  The exponent yielded by a generalized Moran equation

As discussed in SE and mentioned in Section 10.3, T put forward the fractional
Brownian motions of multifractal “trading time” as models of price variation. In-
stead of a Holder-Hurst exponent, they involve “H” exponents of particularly great
variety.

Denoting the A F; the increments of such a function over arbitrarily chosen time
increments At;, the sum |AP;| has no upper bound, hence P(t) is called a function
of unbounded variation. More generally, define the gth variation by starting from
the formula for the ordinary variation and replacing |dP| by |dP|?. If the gth
variation is infinite for ¢ < 1/H and vanishes for ¢ > 1/H, the value ¢ = 1/H is
“critical” and defines the tau dimension ;. (The tau dimension is independent
of the trading time and concern a projection along the time axis of a complex-
valued “completion” of the function P(t).) The inverse 1/D, is yet another form of
Holder’s exponent. It generalizes to all processes and in many cases the equation
vielding D is a generalization of Moran’s equation of Section 3.2.

This is, for example, the case for the “cartoons” that I described in Quantitative
Finance, 1, 2001, 427-440.

The properties of D, and of the “non-Hoélderian™ 1/D, deserve careful mathe-
matical study beyond what is already known.

4  Tools of fractal analysis other than the dimensions: ramification
and lacunarity

Careful analysis brings in many fractal tools, some new, other old but obscure, that
are neither dimension-like nor Holder like exponents.
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4.1 Sierpinski curves and Urysohn-Menger ramification

As seen in FGN, Sierpinski’s investigations in the 1900s built on two ancient dec-
orative designs: one became known as the “carpet,” and the second I called the
“gasket.” The Sierpinski carpet shows that a plane curve can be “topologically uni-
versal,” that is, contain a (homeomorphic) transform of every other plane curve.
The construction starts with a square, divides it into nine equal subsquares and
erases the middle one, which I call a “trema” (7pnua is the Greek term for “hole”).
One proceeds in the same fashion with each remaining subsquare, and so on ad
infinitum. The Sierpinski gasket is a curve with branching points everywhere. The
construction starts with an equilateral triangle, divides it into four equal subtrian-
gles and erases the middle one as trema. One proceeds in the same fashion with
each remaining subtriangle, and so on ad infinitum.

During the 1920s, the distinction between the carpet and the gasket became
essential to the theory of curves. Piotr Urysohn and Karl Menger took them as
prime examples of curves having, respectively, an infinite and a finite “order of
ramification.”

FGN quotes influential mathematicians for whom the “gasket” gave prime evi-
dence that geometric intuition is powerless, because it can only conceive of branch
points as being isolated, not everywhere dense. In fact, Gustave Eiffel himself
wrote (as I interpret him) that he would have made his Tower lighter, with no loss
of strength, had the cost of finer materials allowed him to increase the density of
double points. From the Eiffel Tower to the Sierpinski gasket is an intellectual step
that one’s intuition is easily trained to take.

The theory of curves that studies carpets, gaskets and the order of ramification
became a stagnant corner of mathematics. Where can one find the latest facts
about these notions? The surprising answer is that, after I introduced them in the
statistical physics of condensed matter, physicists came to view these notions as
“unavoidable.” Once ridden of the cobwebs of abstraction, they prove to be very
practical and enlightening geometric tools to work with. Physicists make them the
object of scores of articles, and invent scores of generalizations that mathematicians
did not need in 1915.

4.2 Ramification’s key role in diffusion on fractals

Early on in the study of fractals in physics (in the wake of Gefen et al Phys.
Rew. Lett.: 45, 1980, 855) we had to investigate random walks on lattices that
approximate fractals. We found that a key role is played by those fractals’ order
of ramification. The theory was easy for R < oo (for example for the Sierpinski
gasket). But for R = oo (for example, for the Sierpinski carpet), exact theory is
impossibly difficult and we had to resort to possibly dubious approximations.

The theory of diffusion on fractals has grown into an active field of mathematics.
For R < oo, our heuristic arguments have been given a sound basis but the case
R = inf continues to be very problematic.
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4.3 A non-dimensional and non-topological fractal tool that begs to be studied
further: lacunarity

The well-known standard construction of a Cantor dust proceeds recursively as
follows. The “initiator” is the interval 0, 1. Its first stage ends with a generator
made of N subintervals, each of length r. In the second stage, each generator
interval is replaced by N? intervals of length r2, etc. The resulting limit set arose
in the study of trigonometric series, but first attracted wider interest because of its
topological and measure-theoretical properties. From those viewpoints, all Cantor
dusts are equivalent. Hausdorft’s and every other definition of dimension yield
D = log N/log(1/r). The value of dimension splits the topological Cantor dusts
into finer classes of equivalence parameterized by D.

Fractal geometry showed those classes of equivalence to be of great concrete
significance. In due time, the needs of science, rather than mathematics, required
an even finer subdivision. To pose a problem, consider the Cantor-like constructions
stacked in Figure 2. In the middle line, N = 2 and r = 47%; k steps below the
middle line, N = 2% r = 47% and the generator intervals are uniformly spaced; k
steps above the middle line, N = 2% » = 47%_ again, but the generator intervals
are crowded close to the endpoints of 0,1. The Cantor dusts in this stack share
the common values 1) = 1/2, but look totally different. The Latin word for hole
being lacunae, motion down the stack (or up) is said to correspond to decreasing
(increasing) lacunarity.

Challenge. As k — oc, the bottom line becomes “increasingly dense” in 0,1,
and the top line “increasingly close to two dots.” Provide a mathematical charac-
terization of this “singular” passage to the limit.

Second challenge. FGN, Chapters 33 to 35, and my contribution to Fractal
Geometry and Stochastics (ed. C. Bandt et al) Birkhiuser 199, 12-38 describe and
illustrate several constructions that allow a control of lacunarity. However, for
the needs of both mathematics and science, the differences between the resulting
constructs must be quantified. The existing studies of this quantification show that
it is not easy and also not unique. Identical reduction ratios, like in Figure 2, create
special complications.

Of the alternative methods investigated in the literature, one is based on the
prefactor relation M(R) = FRP that yields the mass M (R) contained in a ball of
radius R.

Another method is based on the prefactor in the Minkowski content.

A third method has the advantage that defines a neutral level of lacunarity that
separates positive and negative levels.

On the line, this level is achieved by any randomized Cantor dust S with the
following property. Granted that any choice of origin €2 in S divides the line into
a right and a left half line, lacunarity is said to be neutral when the intersections
of § by those half lines are statistically independent. Increasingly positive (resp.
negative) correlations are used to express and measure increasingly low (resp. high)
levels of lacunarity. These notions will be used in the sections that follow and in
Section 6.3.
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Figure 2. A stack of Cantor sets of equal dimension D = 1/2, whose lacunarity changes from very
low at the bottom to very high at the top of the stack.

4.4 Actual geometric implementation of the formal fractional-dimensional
spaces that are useful in statistical physics

The physics of criticality is very successful with spaces whose properties are ob-
tained from those of Euclidean spaces by interpolation to “noninteger Euclidean
dimensions.” The dimension may be 4 — ¢ or 1+ ¢, where ¢ is in principle infinites-
imal. Formal calculations are carried out, including expansions in €. Then the
final stage sets the “infinitesimal” e to e = 1. Mathematically, these spaces remain
unspecified, yvet the procedure turns out to be extremely useful.

Mathematical challenge: Show that the properties postulated for those spaces
are mutually compatible, show that they do (or do not) have a unique implemen-
tation; describe their implementation constructively.

Very partial solution: A very special example of such space has been imple-
mented as a limit (FGN, second printing, p. 462; Gefen et al, Phys. Rev. Lett. 50,
1983, 145). We showed that the postulated properties of certain physical problems
in this space are identical to the limits of the properties of corresponding problems
in a Sierpinski carpet whose “lacunarity” is made to converge to 0, in the sense
that it tends to 0 as one moves down the stack on Figure 2.
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5 Fractality of the major fractal clusters in statistical physics

While Brownian motion is fundamental in physics as well as in mathematics, the
Brownian clusters of section 2 are recent, perhaps only a mathematical curiosity.
However, their property of fractality is shared by all the major real clusters (turbu-
lence, galaxies, percolation, Ising, Potts) and all the major real interfaces (turbulent
jets and wakes; metal and glass fractures discussed in Section 1.4; diffusion fronts).
Each of these categories raises numerous open mathematical questions, of which a
few will be commented upon.

5.1 Percolation clusters at criticality

Take an extremely large lattice of copper or vinyl tiles. Fach tile is chosen at
random: with the probability p, it is made of vinyl and with the probability 1 — p,
of copper. Allow electric current to flow between two tiles if they have a side in
common. A “cluster” can then be defined as a collection of copper tiles such that
electricity can flow between any two of these tiles. The basic reference is D. Stauffer
& A. Aharony. Introduction to Percolation Theory. Second edition. London: Taylor
& Francis, 1992.

For an alternative, but equivalent, construction, define at the center of every
tile a random “relief function” R(p) whose values are independent random variables
uniformly distributed from 0 to 1. If this relief is flooded up to level p, each cluster
stands out as a connected “island.” Physicists conjectured, and mathematicians
eventually proved, that there exists a “critical probability” denoted by pc, such
that a connected infinite island, or connected infinite conducting cluster, almost
surely exists for p < per, but not for p > pe.

The geometric complexity of percolation clusters at criticality is extreme, and
many of the basic new conjectures did not arise from pure thought, but from careful
examination of computer-generated clusters of unusually large size.

Open conjecture A. Take an increasingly large lattice and resize it to be a square
of unit side. At pc, the infinite cluster converges weakly to a “limit cluster” that
is a fractal curve.

Conjecture B. The fractal dimension of this limit cluster is 91/48. This value was
first obtained numerically, then confirmed by den Nijs, from a partly heuristic “field
theoretical” argument that yields characteristic exponents, finally made rigorous by
S. Smirnov.

Conjecture C. Figure 3 shows that, depending on the definition of the boundary
of a percolation cluster, its fractal dimension is either 4/3 or 7/4. These con-
jectures began with experiments (Grossman and Voss, respectively) and rigorous
mathematical proof have been provided by S. Smirnov.

It may be worth mentioning that proofs concerning fractal dimensions have at-
tracted wider interest among mathematicians than the rigorous proofs of previously
known facts about percolation.

Open conjecture D. Linear cross-sections of the limit cluster are Lévy dusts,
as defined in FGN. Experimental evidence is found in Mandelbrot & Stauffer, .J.
Physics: A 28,1995, L 213 and Hovi et. al. Phys. Rev. Lett.: 77, 1996, 877.

Open conjecture E. The limit cluster is a finitely ramified curve in the sense of
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Figure 3. This figure (drawn by Bernard Sapoval for a different goal) helps explain why the critical
percolation clusters have two sharply distinct boundaries. One is the curve drawn in white. It
is the common boundary of the black and grey areas that it separates. It is very convoluted
but without self-contact and its fractal discussion is 7/4. But there are many points where it
nearly self-contacts so that it creates “pores,” and plugging the pores one defines a “boundary of
boundaries” of dimension drastically reduced to 4/3.

Urysohn-Menger.

5.2 The Ising model of magnets at the critical temperature

At each node of a regular lattice, the Ising model places a spin that can face up
or down. The spins interact via forces between neighbors left to themselves, these
forces create an equilibrium (minimum potential) situation in which all the spins
are either up or down. However, a second input is added: the system is in contact
with a heat reservoir, and heat tends to invert the spins. When the temperature
T exceeds a critical value T, heat overwhelms the interaction between neighbors.
For T' < T, local interactions between neighbors overwhelm heat and create global
structures of greatest interest.

My work touched upon several issues in the shape of the up (or down) clusters
at criticality.

Long open implicit question: Beginning with Onsager, it is known that in Eu-
clidean space R the necessary and sufficient condition for magnets to exist is that
FE > 1. There are innumerable mathematical differences between the Rg for £ =1
and E > 1. Identify differences that matter for the existence of magnets.
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Partial answer: The specific examples of the Sierpinski curves and of related
fractal lattices suggest that magnets can exist when and only when the order of
ramification is infinite. FGN, p. 139; Gefen et al, Phys. Rev. Lett.: 45, 1980, 855).

Conjecture: The above answer is of general validity.

Unanswered challenge. Rephrase the criterion of existence of magnets from the
present and highly computational form, to a direct form that would give a chance
of proving or disproving the preceding conjecture.

5.3 The ever-mysterious clusters of diffusion-limited aggregation (DLA)

A DLA cluster is generated by allowing an “atom” to perform Brownian motion
starting far away until it hits an initial “seed.” In Figure 4, the seed is the (opened
up) bottom of a half cylinder. When the atom and the seed hit, they are “fused,”
and a fresh Brownian atom is launched against the enlarged target.

Overwhelming evidence from computer simulations shows that the arrival of
many atoms transforms the seed into a cluster that shows about the same high
degree of complexity at all scales of observation. Hence any mathematical definition
of the concept of fractal must be constrained to include DLA.

The simplicity of the growth rules the DLA and its basic role in understanding
many physical phenomena have motivated extensive quantitative studies. However,
a full theory even a more informal understanding of the resulting complex structure
are lacking. Over many orders of magnitude, the circle of radius R centered on the
original and contains a mass M (R) =~ R” with D = 1.715. But there are definite
divergences from strict self-similarity — as seen for example in my paper in Physica
A 191, 1992, 95-107 and my paper with Kol and Aharony in Phys. Rev. Lett. 88,
2002, 055501-1-4.

At an early stage, those deviations were thought to be no worse than those
relative to critical phenomena. The latter has a well-developed theory, and it was
hoped that a theory of DLA could be achieved in the absence of a careful and
complete description. This optimistic view is no longer widely held, and a careful
description cannot be neglected.

6 Interrelations between fractality and smooth variability: some
cases may have a common origin in the usual partial differential
equations

6.1  An apparent quandary: are smoothness and fractality doomed to coexist
with no interaction?

To establish the presence of fractals in nature and culture was a daunting task to
which a large portion of FGN is devoted. New and often important examples keep
being discovered, but the hardest present challenge is to discover the cause, or more
probably, the causes of fractality.

Some cases are reasonably clear. Thus, in the case of the percolation and Ising
clusters in Section 5, fractality is the geometric counterpart of scaling and renor-
malization, that is, of the fact that the analytic properties of those objects follow
a wealth of analytic “power-law relations.” Many mathematical issues, some of
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Figure 4. Reproduction of Figure C19-2 of SC. A smallish sample of plane DLA, called “cylin-
drical” because it is grown from the bottom of a half-cylinder (opened up). This DLA is small
enough to compute the Laplacian potential and draw its isolines. The latter are a graphic device
but also much more: an essential tool of study. A curious visual resemblance is thereby created
between DLA and the Mandelbrot set. Of the two, DLA has proven the more resistant to analysis.

them already mentioned, remain open, but the overall renormalization framework
is firmly rooted.

Renormalization and the resulting fractality also occur in arguments that involve
the attractors and repellers of dynamical systems in a phase space. Best understood
is renormalization for quadratic maps. Feigenbaum and others considered the real
case. For the complex case, renormalization establishes that the Mandelbrot set
(see Section 7) contains infinitely many small copies of itself.

Unfortunately, the usual renormalization fails — even in principle — to account
for the diffusion-limited aggregates (DLA) and additional examples of fractality.

Yet another class important occurrences of fractality, to which we now proceed
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is linked to partial differential equations in real space. It is universally granted
that physics is ruled by diverse partial differential equations, PDEs. Those of
Laplace, Poisson, and Navier-Stokes will be referred to as “basic.” All differential
equations imply a great degree of local smoothness, even though closer examination
shows isolated singularities or “catastrophes.” To the contrary, fractality implies
everywhere dense (or at least widespread) roughness and/or fragmentation. This
is one of the several reasons why fractal models in diverse fields were initially
perceived as being “anomalies” that stand in direct contradiction with one of the
firmest foundations of science.

6.2 A congecture stated and defended in FGN: the solutions of PDEs can be
fractal

This is no longer a conjecture, insofar as many specialized PDEs have been solved
and found to create fractality. To eliminate the appearance of contradiction between
smoothness and fractality, FGN conjectured that the same is true of the “basic”
equation. This implies that fractals arise unavoidably in the long time behavior
of the solution of very familiar and “innocuous”-looking equations. In particular,
many concrete situations where fractals are observed involve equations having free
and moving boundaries, and/or interfaces, and/or singularities.

As a suggestive “principle,” FGN (Chapter 11) described the possibility that,
under broad conditions that largely remain to be specified, these free boundaries, in-
terfaces and singularities converge to suitable fractals. Among equations examined
from this viewpoint, this paper will limit itself to two examples of critical impor-
tance. In the case of DLA (Section 5.3), this argument supports self similarity,
hence is disappointing, thus far.

6.3 The large scale distribution of galaxies: Newton’s law as a possible
sufficient generator of fractality

Background. The near universally held view is that the distribution of galaxies is
homogenecous, except for local deviations.

In the past, however FGN, Chapter 9, Y. Baryshev & P. Teerikorpi, Discovery
of Cosmic Fractals Singapore: World Scientific 2002) a number of philosophers or
science fiction writers have played with the notion that stars (galaxies were not
known) follow a hierarchical distribution patterned — long in advance! — along
a spatial Cantor set. Those models are excessively regular and necessarily imply
that the Universe has a center assuming hierarchies leads to no prediction, that is,
implies no property that was not put in beforehand, and raises no new question.
For them and other good reasons, hierarchies were dismissed as unrealistic and
largely forgotten.

Congecture that the distribution of galazies is properly fractal. FGN, Chaps. 9,
33, 34, and 35.) Granted that the distribution of galaxies certainly deviates from
homogeneity, existing improvements took two broad approaches.

One consists in correcting for local inhomogeneity by using local “patches.”

My next simplest approach acknowledges that one must exclude strict hierar-
chies as being both physically unrealistic and in conflict with widely held principles.
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But I also contend that the specific details of the hierarchical arguments are unim-
portant. What matters is the underlying fractality, which must be recognized as
being of central importance and broad scope. To dismiss fractality with the hier-
archies amounted to throwing the baby with the water.

To buttress this belief, I performed detailed mathematical and visual investi-
gations of sample sites generated by two concrete constructions of random fractal
sets. The details are given in FGN.

The first construction is The Seeded Universe that I based on a Lévy flight.
Its Hausdorff-dimensional properties were well-known. [ observed that its corre-
lation properties (Mandelbrot, C. R. Acad. Sec. Paris: 280 A, 1975, 1075) are
nearly identical to those of actual galaxy maps. The second construction is The
Parted Universe, which is obtained by subtracting from space a random collection
of overlapping sets, tremas.

In a statistical model, the self-similarity ratio is not restricted to powers of
a prescribed rg. That is, a hierarchical structure is not a deliberate and largely
arbitrary input. Quite to the contrary, either of the above constructions yields
sets that are highly irregular and involve no special center, yet exhibit a clear-
cut clustering that was not a deliberate input. They also exhibit “filaments” and
“walls,” which could not possibly have been imputed, because I did not know that
they had been observed.

Congecture: could it be that the observed “clusters,” “filaments” and “walls,”
need not be explained separately, but necessarily follow from “scale free” fractality?
This would mean that all those structures do not result from unidentified features
of specific models but are unavoidable consequences of random fractality as
interpreted by a human brain.

The preceding paragraph is deficient insofar as the word “conjecture” cannot be
given a strict mathematical meaning, unless a mathematical meaning is advanced
for the remaining terms.

Lacunarity. A problem arose when careful examination of the simulations re-
vealed a clearly incorrect prediction. The original Seeded Universe proved to be
visually far more lacunar than the real world, in the sense mentioned in Section
4.3. This means that the holes are larger in the simulations than in reality. The
Parted Universe model fared better, since its lacunarity can be adjusted at will and
fitted to the actual distribution.

A lowered lacunarity is expressed by a positive correlation between masses in
antipodal directions. Testing this specific conjecture is a challenge for those who
analyze the data.

Conjectured mathematical explanation of why one should expect the distribution
of galazies to be fractal. In a cubic box in which opposite sides are identified to
form a three-dimensional torus, consider a large array of point masses subjected to
Newtonian attraction. The evolution of this array obeys the Laplace equation, with
an essential novelty: the singularities of the solution — which are the positions of
the points — are movable. The numerous simulations I know of (beginning with
those performed at IBM around 1960) all suggest the following. Even when the
pattern of the singularities begins by being uniform or Poisson, it gradually creates
clusters and a semblance of hierarchy, and appears to tend toward fractality. It is

22



against the preceding background that I conjectured that the limit distribution of
galaxies is fractal, and that the origin of fractality lies in Newton’s equations.

6.4  The Navier-Stokes and Euler equations of fluid motion and the
conjectured fractality of their singularities

Background. The first concrete use of a Cantor dust in real spaces is found in a
1963 paper on noise records by Berger & Mandelbrot (reprinted in SN), a work
near simultaneous with Kolmogorov's work on the intermittence of turbulence.
After numerous experimental tests, designed to create an intuitive feeling for this
phenomenon (e.g., listening to turbulent velocity records that were made audible), T
extended the fractal viewpoint to turbulence, and was led circa 1964 to the following
conjecture.

Conjecture concerning the geometric nature of “turbulently dissipative” parts of
spaces. Dissipation should be viewed as occurring, not in domains in a fluid with
significant interior points, but in fractal sets. In a first approximation, those sets’
intersection with a straight line is a Cantor-like fractal dust having a dimension in
the range from 0.5 to 0.6. The corresponding full sets in space should therefore be
expected to be fractals with Hausdorfl dimension in the range from 2.5 to 2.6.

Actually, Cantor dust and Hausdorff dimension are not the proper notions in
the context of viscous fluids, because viscosity necessarily erases the fine detail that
is essential to Cantor fractals. Hence the following weaker conjecture.

Conjecture: FGN, Chapter 11 and Mandelbrot, C. R. Acad. Sc. Paris: 282A,
1976, 119, translated as Chapter N19 of SN). The dissipation in a viscous fluid
occurs in the neighborhood of a singularity of a nonviscous approximation following
Fuler’s equations, and the motion of a nonviscous fluid acquires singularities that
are sets of dimension about 2.5 to 2.6.

Open mathematical problem: To prove or disprove this conjecture, under suitable
conditions.

Comment A. Several numerical tests agree with this conjecture (e.g., Chorin,
Commun. Pure and Applied Math.: 34, 1981, 853).

Comment B. I also conjectured that the Navier-Stokes equations have fractal
singularities of much smaller dimension. This conjecture has led to extensive work
by V. Scheffer, R. Teman and C. Foias, and many others, but is not exhausted.

Comment C. As is well-known to students of chaos, a few years after my
work, fractals in phase space entered the transition from laminar to turbulent flow,
through the work of Ruelle and Takens and their followers. The task of unifying
the roles of fractals in real and phase spaces is not completed.

7 Tterates of the complex map 22 + ¢. Julia and Mandelbrot sets

The study of iterates of rational functions of a complex variable is an old topic
of pure mathematics that reached a sharp peak circa 1918 with Fatou and Julia.
Those authors succeeded so well that — apart from the proof of the existence of
Siegel discs — their theory remained largely unchanged for sixty years. A more
recent sharp break began in 1980 and has become iconic since most “ordinary”
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people seem to have heard of the Mandelbrot set: it is arguably the only tangible
proof known to them that mathematics is alive and well. The beginnings are now
fully documented in SC therefore a bare sketch will suffice here.

7.1 The J-set or Julia set

The Julia set is defined as the repeller of rational iteration. For the quadratic map
z — z% + ¢, a more direct definition is available: the filled-in Julia set of a given ¢
is the set of points that the map does not iterate to the point as infinity, and the
Julia set is the boundary of the filled-in Julia set. With few exceptions, it is fractal:
a nonanalytic curve or a “Cantor-like” dust. Julia called these sets “very irregular
and complicated.” The computer — which I was the first to use systematically —
led to beautiful wildly colorful displays that must now be familiar to every reader.
To associate forever the name of Fatou and Julia, the complement of the Julia set
is best called the Fatou set and its maximal open components, Fatou domains.

Starting with the quadratic map, I explored numerically and graphically how
the value of ¢ affects the dynamics and the shape of the Julia set.

7.2 The set My and the Mandelbrot set

The My set. Of greatest interest from the viewpoint of dynamics, hence of physics,
is the set M of those values of ¢ for which the map z — 2% + ¢ has a finite stable
limit cycle. This set having proved to be hard to investigate directly, I moved on
to the computer-assisted investigation of a set that was easier to study and seemed
closely related.

The M set. The set of those parameter values ¢ in the complex plane, for which
the Julia set is connected, was called the p-map in FGN (Chap. 19), but Douady
and Hubbard called it the Mandelbrot set.

The Mandelbrot set proved to be a most worthy object of study, first for “ex-
perimental mathematics” and then for mathematics, and it also gave birth to a new
form of art! It is so well and so widely known, that no further reference is needed.
But it is good to mention that the M set is a universal object. Curry, Garnett, and
Sullivan (Commun. Math. Phys.: 91, 1983, 267) discovered that M arises also in
Newton’s method for cubic polynomials, a dynamical system significantly different
from 2z — 22 + ¢. Following this, Douady and Hubbard (Ann. Se. Ec. Norm. Sup.
(Paris): 18, 1985, 287) developed the theory of quadratic-like maps and showed the
M set arises for a wide variety of functions, and in this sense is a universal object.

Also, the study of z — 22 + ¢ naturally suggested the study of similar questions
for other polynomials. But even the generic cubic, z — 2% 4+ az + b, has proved
soberingly difficult. Intense study by extremely powerful mathematicians still leaves
many questions unanswered.

7.3 Relations between My and M the incredibly stubborn conjecture that M

is the closure of My; “MLC”

Jomputer graphics approximates My by a smaller set and M by a larger set. Early
on, extending the duration of the computation seemed to make the two represen-
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tations converge to each other. Furthermore, when ¢ is an interior point of M,
not too close to the boundary, it was easily checked that a finite limit cycle exists.
Those observations led me to conjecture that M is identical to M, together with
its limits points.

In terms of its being simple and understandable without any special preparation,
this conjecture comes close to the “dimension 4/3” conjecture about Brownian
motion, discussed in Section 2. Again, I could think of no proof, even of a heuristic
one. More significantly, the conjecture remains unanswered.

The MLC conjecture. Many equivalent statements were identified, the best
known being that the Mandelbrot set is locally connected. This statement was given
a “nickname,” MLC. It has the great advantage of being local and was proven for
a very large subset of the boundary of M — earning J. C. Yoccoz a Fields medal.
But, compared to the original form, MLC has the great drawback of being far
from intuitive. (For the generic cubic map, the corresponding local connectivity
conjecture was proved to be false.)

8 Limit sets of Kleinian groups

A collection of Mébius transformations of the form z — (az + b)/(cz + d) defines
a group that Poincaré chose to call Kleinian. With few exceptions, their limit sets
S are fractal. For the closely related groups based on geometric inversions in a
collection C', Cs, ..., C, of circles, there is a well-known algorithm that yields
S in the limit. But it converges with excruciating slowness as seen in the top
panel of Figure 5. For a century, the challenge to obtain a fast algorithm remained
unanswered, but I met it in many cases as seen in the middle panel of Figure 5.
For details, see Chapter 18 of FGN and Mathematical Intelligencer: 5(2), 1983, 9,
both reproduced in SC.

An interesting contrast. By leading to the 4/3 conjecture, fractal geometry
opened a brand new mathematical problem and gave it a very active constituency;
but it failed to contribute to solving it. With inversion groups, fractal geometry
dealt with a very old problem long viewed as so difficult that it had long to have
an active constituency. Not only was the problem solved to a significant degree,
but it was made, in a literal sense, childishly easy: it is a nice example used in the
high school classes examined in this paper’s Section 11.

The fast algorithm first described in FGN and illustrated in Figure 6. The limit
set of the group of transformations generated by inversions covers the complement
of S by a denumerable collection of circles that “osculate”™ S. The circles’ radii
decrease rapidly, therefore their union outlines S very efficiently.

When S is a Jordan curve (as on Plate 177 of FGN), two collections of osculat-
ing circles outline 5, respectively, from the inside and the outside. They are closely
reminiscent of the collection of osculating triangles that outline Koch’s snowflake
curve from both sides in a construction that is described in Plate 43 of FGN and
dates to the 1900s. Because of this analogy, the osculating construction appears,
after the fact, to be entirely “natural.” But this appearance is thoroughly mis-
leading, as proven by the gap of roughly hundred years that elapsed before it was
discovered. It was not obvious at all because of the mood of mathematics: even
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Figure 5. This is Figure C16-2 of SC. It elaborates upon Plate 199 of FGN and page 129 of SN.
The “generator” part of the diagram consists in six circles filled in gray. The inversions with
respect to those circles, when combined with prescribed probabilities, define a *decomposable
dynamical system” also called IFS. The limit set is a self-inverse fractal for which I discovered
a new algorithm using the diagram’s remaining cight bold circles. The decorative “Pharaoh
Breastplate” represents four of those circles and their successive inverses represent by four kinds
of “semi-precious stones.”

after computer graphics had become available, it continued to scorn pictures. The
algorithm did not start to be viewed as natural until it literally burst out after
respectful examination of pictures of many special examples.

A particularly striking example is seen in Figure 5, called “Pharaoh’s breast-
plate,” a black-and-white rendering of Plate 199 of FGN, of the cover of SN and
of a figure in SC. A more elaborate version of this picture appears on the cover of
SN. This is the limit set of a group generated by inversion in the 6 circles drawn
as thin lines on the small accompanying diagram. Here, the basic osculating circles
actually belong to the limit set and do not intersect (each is the limit set of a Fuch-
sian subgroup based on three circles). The other osculating circles follow by all
sequences of inversions in the 6 generators, meaning that each osculator generates
a “clan” with its own color.

By inspection, it is easy to see this group also has three additional Fuchsian
subgroups, each made of four generators and contributing full circles to the limit
set.

Pictures such as Figure 5 are not only aesthetically pleasing, but they helped
breathe new life into the study of Kleinian groups, recently exemplified by the book
by Mumford, Series, & Wright: Indra’s Pearls (Cambridge University Press, 2002)
Thurston’s work on hyperbolic geometry and 3-manifolds opens up the possibility
for limit sets of Kleinian group actions to play a role in the attempts to classify 3-
manifolds. The Hausdorff dimension of these limit sets has been studied by Sullivan
Canary and others.
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Figure 6. This is Figure C16-1 of SC and a composite of page 173 and Plates 177 and 43 of FGN.
The two top panels represent two constructions of the limit set of a group based on inversions.
The top panel shows the slowly converging classical construction (Poincaré). The middle panel
shows my fast-converging proposed alternative. The latter recalls the Cesaro construction of the
Koch snowflake that is shown in the lower panel.

Challenge. Incorporate lacunarity and multifractal measures into the study of
3-manifolds through these limit sets.
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9 The study of power law probability distributions and the notion
that variability and randomness can fall into distinct “states,”
ranging from “mild” to “slow” and “wild”

9.1 The evolution of power-law probability distributions, from a neglected
periphery of statistics to a central position in fractal geometry and the
topic of active interest on its oun

The most widely known analytic tool of fractal geometry consists in power-law
relations and power-law probability distributions. They are ancient since Ohmori
discovered such a law for earthquake aftershocks in 1894, predating even the Pareto
law for the distribution of personal income which was discovered in 1896. Around
1950, however, power laws were viewed by statisticians and scientists alike as scat-
tered anomalous. They were often arbitrarily replaced by the lognormal distribu-
tion, or otherwise questioned and played down. When I explained and demystified
the Zipf law of word frequencies (CR (Paris) 232, 1951, 1638-1640 and 2003-2005),
the situation changed completely. To bring power laws together credibly I devoted
papers too numerous to be listed. References, reprints, and expositions are found
in my Selecta books. In many sciences, those papers moved power laws to the
forefront, interpreting them as evidence of the broad geometric scaling property of
invariance that led to the concept of fractal.

9.2 A basic distinction between “mild” and “wild” “states of variability:”
practical aspects

My early investigations of turbulence and price variation arose in the 1960s and
used closely related procedures, thus confirming the saying that the Stock Market
is as unpredictable and irregular as the weather. The analogy has gone much farther
than one may have expected.

It led to general considerations about randomness that converged in Chapter 5
of SE to a distinction that may seem philosophical but is in fact very practical. In
principle, Kolmogorov unified probability theory by providing unquestioned foun-
dations. But in practice it is best to consider a function as belonging to one of sev-
eral distinct “states of variability and/or randomness.” Among random variables,
iconic examples are the Gaussian distribution for the mild state, the power-law
distribution for the wild state, and the lognormal distribution for a slow state in
between.

The key underlying fact contradicts a widespread but unfounded belief. The law
of large numbers and the central limit theorem are not universal truths that one can
blindly rely upon in model making. They are special properties that characterize
cases of exceptional simplicity that define mild or slow randomness. The contrary
is true of all the stochastic processes I used in investigating turbulence, finance and
other fractal phenomena. All are examples of “wild” randomness.

This distinction deserves further discussion from the mathematical viewpoint
and is bounded to play an active role in physics as well. The power-law long tails
and/or dependence that rule all fractal phenomena are clear-cut symptoms of wild
variability.
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In many cases, the fractal or multifractal models that I put forward have been
subjected to counter-claims. Alternative models put forward satisty all the usual
central limit theorems and appear to avoid both the formal mathematical diffi-
culties and the “uncomfortable” consequences of wild randommess. Some of those
models do not try hard and are content truncating the fractal models. Central limit
behavior is thereby saved but only in an asymptotic sense that is useless because it
is not reached in practice. Others proceed more indirectly but amount to the same
thing.

9.3 A small purely mathematical aspect of the mild-slow distinction. The
boundary between these states provides the classical moment problem of
classical analysis with a new wrinkle that originated (of all things!) in
Jinance

This subsection brings us back from finance to the purest mathematical analysis
that flowered from stieltjes in the 1890s to the 1930s.

The boundary between the wild and slow states involves the classical central
limit theorem, a key idea of probability theory. To the contrary, the boundary
between the mild and the slow states is not at all traditional but marked by what
I call the criterion of short-run inequality. Let P{x) be the tail probability of X
and Py (x), the tail probability of the sum of N independent variables having the
same distribution as X. Then, for fixed N and x tending to infinity, FGN, Chapter
5 showed the importance of the criterion that Py (z) behaves like N P(x).

That very simple criterion entered my work in 1960 for very practical reasons.
But it turns out to run close to several complicated criteria that occur in the
“moments problem” and the theory of quasi-analytic functions. This opened up
a very interesting issue: could it be that time has come to study again those old
topics once classical but lately very much out of fashion?

10 The variation of financial prices

Historically, my investigation of roughness was comparatively late in turning to
physics and mathematics. It began in the early 1960s with investigations in eco-
nomics that amounted to characterizing the roughness of financial charts. In the
1990s, this work became the foundation of “econophysics.” No other application il-
lustrates more vividly the potency of the notion of fractal geometry as the beginning
of a science of roughness.

In 1800, Louis Bachelier invented Brownian motion as a model of the variation
of financial prices. Even before this model became widely accepted in academia,
mine was the first voice to warn against its pitfalls. I pointed out that its two key
features are thoroughly unrealistic, hence unacceptable. Having discovered that
each involves an empirical power law distribution, I modelled both, first separately
(Sections 10.1 and 10.2) and then jointly (Section 10.3), on the basis of the emerging
concept of fractality. Under the term “scaling in finance,” this concept is the
topic of Chapter 38 of FGN. Scaling became important in finance before it became
important in the physics of criticality.
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10.1  The essential importance, even in a first approzimation, of large sudden
price discontinuities

I was the first to argue that the neglect of discontinuities in the Brownian model
is unjustified. They are not “outliers” one can safely disregard or study separately.
To the contrary, I argued in 1963 (see SE) that their distribution is much more
important than that of the “background noise” constituted by near Brownian small
changes.

I followed this critique by showing that the big discontinuities and the small
“noise” fall on a single power-law distribution and represented them by a scenario
based on Levy stable distributions. Howard Taylor and I introduced in 1967 the new
notion of intrinsic “trading time.” The originality of this work had been recognized
all along. In 1964 P.H. Cootner called it “revolutionary.” Cootner also raised many
questions that have all been answered. Forty years later, the “revolution” is bearing
fruit in many diverse ways. Fractal trading time and my 1963 model have gained
wide acceptance.

10.2  The fact that the “background noise” of small price changes is of
variable “volatilily”

That the so-called “price volatility” is itself “volatile” could not be denied but was
ordinarily viewed as a symptom of non-stationality that must be studied separately.
To the contrary (see SE), | interpreted this variability in 1965 as indicating that
price changes differ from being statistically independent. In fact, for all practical
purposes, their interdependence should be viewed as extending to an infinitely long
term. Indeed, it too follows a power-law dependence. In particular, it is not limited
to the short term that is studied by Markov processes and more recently ARCH or
GARCH and its variants. I followed this critique and illustrated long dependence
by introducing a process called fractional Brownian motion which has become very
widely used.

10.3  Multifractal models of price variation

I introduced multifractility (minus the term) in 1968 in the context of turbulence
(see SN). But I immediately observed and pointed out in 1972 (see SE and SN)
that — because it combines long power-law tails and long power-law dependence
multifractility also apply to finance. I also introduced “cartoons” that realize long
tails and long dependence and a very simple process understandable to experts and
beginners alike.

Fractional Brownian motion in multifractal time, and its use in financial mod-
elling. One half of SE is made of reprints of previously published works of mine,
but Chapter 6 consists in material never previously published. It advances a new
model of variation of prices that is further explored in many publications of mine,
in particular, in Quantitative Finance: 1,2001, 113-123, 124-130, 427-440, 641-649,
and 558-559.

This model represents price as a fractional Brownian motion By, that, instead
of the clock time, t, is followed in a “trading time,” 8. Those two times are related
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by a multifractal function 8(t) that is the integral of a random multifractal measure.
That is, P(t) = Bg[0(t)]. At this early stage of the theory, I assumed the functions
By and 6 to be statistically independent. This process is specified by the properties
of By, primarily its exponent H (a Holder exponent) and the properties of 8(t),
beginning with its f(a) spectrum. This process was found to fit diverse financial
data very well. From most other viewpoints, it is wide open for exploration.

11 The directly useful fractal

Early on, I used to point out a striking contrast: in raw nature smooth shapes
are rare exceptions but in manufactured goods they were the near-universal rule.
Tables are meant to be horizontal planes with near-linear or circular edges. Walls
are meant to be vertical planes.

My early standard of fractality, the Eiffel Tower, was not accepted as coun-
terexample: it remains a masterpiece of engineering but one never meant to be
useful. Engineering seemed to be a systematic reaction against the roughness of
raw nature.

An invidious claim added to those voiced in Sections 1.4 and 1.6 was that fractals
have not contributed to any existing engineering problems.

All this initially led to a question “Did I expect fractals to become practically
useful, and, if so, how soon?” T used to recommend patience, recalling the fate of
astronomy: while every stage in its development had immediate users who helped
support it, all those users were astrologers.

In due time (and with no direct help from me) fractals have indeed become
widely useful. Too bad that each real use hits only a specific group of users, so
that hardly anyone notices. The following list, very schematic and incomplete, can
only touch fields that allow open publication. This excludes finance where what is
published may never reflect what is actually used.

Traffic on the internet. Early efforts to squeeze the traffic’s extreme variabil-
ity into the familiar Poisson process soon failed. The multifractal model is now
generally acknowledged as being the best and it is the topic of intense study.

Road traffic. The data are less abundant but one often needs multifractality.

Antennas. Stick antennas’ properties are easy to analyze mathematically but
inadequate and for antennas made of even a few sticks the mathematical analysis
rapidly becomes very complicated. The properties of fractal antennas are both far
better and easily calculated.

Capacitors. 'To achieve one farad, flat capacitators need a very large area and
a little folding makes the mathematical analysis very complicated. Fractally folded
one-farad capacitors are easy to calculate and fit on a pinhead.

Sound-absorbing road barriers. Houses close to roads want to be protected from
traffic noise. Early on, flat protection panels simply reflected noise. Incoming
panels with a fractal pattern are noise-absorbent.

Chemical engineering. When two gases are meant to react, it is best to control
the surface of reaction. This is achieved by bringing one reactant in the midst of
the other with the help of a spatial tree. The reaction is faster and cleaner with
fewer impurities.
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12 Fractals in the college and school classroom

Several examples in this paper share a very nice feature that is also very unusual.
Among fields of research, fractal geometry may well exhibit some of the shortest
distances and the greatest contrasts between a straightforward core and multiple
new frontiers. The latter are filled with major difficulties of every kind, including
conjectures that everybody can understand but no one can prove.

Starting with FGN, the core has by now become widely known, even to children
and adult amateurs. This has opened a wonderful new opportunity that deserves
brief mention all by itself.

At issue is the abyss between mathematics and a wider community. Its story is
old but in the 1960s and 1970s the “new math” fad made it deeper. I think that no
one benefits from this abyss, vet some continue to welcome it, and many more can
think of no suitable bridge and view the abyss as inevitable. Therefore, it persists.
M.L. Frame and I have convinced the Mathematics Department at Yale University
that, in fact, a strong bridge can be based on fractal geometry.

The upshot: for the last several years, Yale has been offering an undergraduate
course and associated summer workshops that teach fractals to several groups of
non-mathematicians. Their attractiveness to students depends heavily on three
assets.

One is the already mentioned unusually short distance from the simple to the
complex and even the impossibly difficult. To the contrary, from the viewpoint of
mathematics education, one of the worst features of most topics is that prerequisites
are interminable. They are unavoidable but respond to needs that do not become
compelling until the ends of long paths that allow many opportunities to drop out.

A second asset is that the history of fractals reaches back for several millennia,
proving that fractality is “natural” to the culture of our species.

A third assel is, of course, that the ubiquity of roughness translates into a large
number and variety of current applications of every kind in the works of Nature
and Man.

Fourth asset: as a very valuable by-product, our course teaches the meaning
of rigor by the most efficient method: when a program is buggy, the computer
immediately screams Error! at the programmer.

The book FM explains and motivates our course and reproduces stories from
several colleagues who work along the same lines. It also refers to two items on
the web: an extensive set course-notes and a Panorama that collects innumerable
examples of fractality. Everyone is invited to add to this collection!
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The bulk of this text consists in nonsystematic sketches of the current status of
diverse very difficult questions in various mathematical sciences. All were triggered
by actual fractal pictures generated by computer. In physics some of those ques-
tions outline a nascent “rational rugometry,” involving quantitative measures of
roughness. Other questions concern diverse clusters and turbulence. In mathemat-
ics, some of those questions have been settled — one of them, the 4/3 conjecture, in
2000. Other questions, however, including a basic property of the Mandelbrot set,
resist repeated efforts to answer them. In finance, Mandelbrot’s models starting
in 1963 became the foundation of “econophysics.” In all cases, many questions on
the research frontier — solved or not — can be understood by a good secondary-
school student, which is why fractal geometry is increasingly affecting high school
teaching. All those questions involve in essential fashion some shapes long called
“monsters” and guaranteed to belong to esoteric mathematics lacking any contact
with the real world. Fractal geometry reveals them as being extremely “natural”
and also as having been familiar to artists since time immemorial.

1 Introductory comments of various kinds

1.1 Presentation

Fractal geometry ranges over many parts of the mathematical sciences but the
questions sketched in this text mostly belong to either pure mathematics or the
interfaces between mathematics and physics. Specific sections or subsections are
free-standing and do not require acquaintance with one another or with fractal
geometry as a whole.

The paper may also interest those already familiar with fractal geometry because
it includes recent developments and/or because many of my opinions have either
evolved or become more focussed. Hence — even though the overall tone is by no
means introductory — it is appropriate to begin with several separate introductory
remarks concerned, first, with science, then with mathematics.

1.2 Dilation invariance and a reinterpretation of fractal geometry, as the first
step towards a “quantitative rational rugometry”

A basic issue must be touched first: what is fractal geometry today? Largely
after the fact, it is best characterized as being the first systematic and quantita-
tive approach to the study of roughness — in both in pure mathematics and in
mathematical sciences of the “real world.” The latter includes nature (turbulence,
clusters of statistical physics, broken solids, noises, galaxy distributions, geomor-
phology) and “culture,” that is, the works of Man (finance, spoken discourse, the
internet, and even art).

Roughness is, of course, ubiquitous in the real world and has long been counted
among the basic “sensation” of Man. However, its study lagged; even finding a



