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0. Introduction

While the terms "chaos" and "order in chaos' prove extremely valuable, they
elude definition and it remains important to single out instances when the
progress to planar chaos can be followed in detailed and objective fashion.
This paper proposes to show that an excellent such example is provided by the
iterates of the map z-g(z) = A(z+1/z), when z and A are both complex.
This map is touched upon in [1], but only on page 465, which was added in
second printing. Therefore, the present paper is self-contained.

The map g(z) was singled out because of its valuable properties. A)
Within a broad domain of As, there are two distinct limit cycles, symmetric of
each other with respect to z = 0. B) Suitable changes in A cause both cycles
to bifurcate simultaneously into n>2 times larger cycles. C) The chaos which
prevails for certain A extends over the whole z plane. These features A), B)
and C) all fail to hold for the complex map z-f*(z) = z2—pu (e.g. [1], [2], [3],
[4]). Indeed, for every u, one of the limit cycles of f* reduces to the point at
infinity; this point never bifurcates; and chaos, when it occurs, consists in
motion over a small subset of the z-plane.

1. Summary. Relativity of the Notion of Chaos

The bulk of this paper consists in explanations for a series of figures that
illustrate, for diverse A, the shape of the Julia set &*, that is, of boundary of
the open domains of attraction of the stable limit points and cycles. Different
sequences of figures follow different "scenarios" of variation in A, and yield
maps that transform gradually from linear chaos and planar order, to either
questionable or unquestioned planar chaos.

In order to put these illustrations in perspective, the paper includes
comparisons with the polynomial maps. To begin with, the special map
z—+2z2-2 restricted to the real interval [—2,2] is called thoroughly chaotic.
However, the very same map generalized to the complex plane should be
called almost completely orderly, since all z, that are not in the real interval
[-2,2] iterate to . As is well-known [5], there are many other p’s for which



-2

the maps z-+z2—p are chaotic on a suitable real interval. But the very same
maps are least chaotic in the plane, in the sense that the domain of exceptional
z, that fail to iterate to cc is smaller for a chaotic p, than for any of the
nonchaotic p that can be found arbitrarily close to p,.

Thus, there is a clear need for an objective measure of the progress
towards chaos. An obvious candidate for measuring orderliness is the fractal
dimension D of the Julia set #*. This paper finds that D is indeed appropriate
for some scenarios, but raises very interesting complications for other scenar-
ios, when &* involves more than one shape, hence more than one dimension.

The best known scenario, pioneered by J. Myrberg and very well explored
in many contexts [5], proceeds from linear to planar chaos by an infinite series
of finite bifurcations of arbitrary order. When this scenario is applied to g(z)
(Section 5), #* remains a fractal curve whose D grows from 1 in to 2, hence
its codimension 2-D is indeed an acceptable measure of orderliness.

In one alternative scenario, which can be credited to C. L. Siegel, D also
varies steadily from 1 to 2, but intuition tells us that the limit is very incom-
pletely chaotic in the plane. The key of this paradox is that the corresponding
F* involves two different shapes, hence two distinct dimensions.

In the third scenario to be examined, planar chaos is approached without
bifurcation, and D tends to 2.

2. When |A|>1 or A are real, Iteration is Orderly Except on &*

For A = 0, all points other than 0 and « move in one step to 0, henceforth the
motion is indeterminate. For |A|>1, there is an attractive fixed point at e,
which contradicts our requirement A).

For real A>0, the map g(z) preserves the sign of Re(z), and for real
&la<O, the iterated map g,(z) preserves Re(z). More generally the Julia set is
the imaginary axis for all real A # 0.

3. Non-real A’s that Satisfy [A [ <1

For these A, the Julia set #* is either the whole complex plane or a fractal
curve. In the latter case, #* has the following properties.

F* is (obviously) symmetric with respect to z = 0, and is self-inverse
with respect to the circle |z| =

&* includes z = 0 and is unbounded. This is obvious when the fixed
points z = +vVA/VI—AX are stable: if z, iterates to one of the fixed points, —z,
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iterates to the other fixed point, hence the circle of radius mod(z,) must
intersect #*. (The origin z = 0 must be added because #* is a closed set.)

F* is asymptotically self-similar for z-c. Indeed, if |z|>>1 and Zg
iterates into some cycle, A(z+1/z)~Az iterates into the same cycle. Since F*
is self-inverse, it also follows that #* is asymptotically self-similar for z-+0.
When &* is topologically a line, it winds around a logarithmic spiral for z—
and for z+0. These spirals wind in the same direction, but are nor the contin-
vation of each other, because scale invariance fails near |z| = 1.

We wish to start with a real A for which #* is a straight line, and then to
change A and follow &™* as it changes from a straight line to an increasingly
wiggly curve. This requires drawing the semi-open variant of the -set
(""Mandelbrot set') as defined in MANDELBROT [2].

Fig. 1. Largest -molecules in the upper right

quarter of the semi-open #-set of the map .
z-+A(z+1/2z). The two empty white discs

are the atoms |A|>1and |A=1/2]|<1/2. }
They are white (instead of black) for clarity 71
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The semi-open #-set is the maximal set of A’s, such that the iteration of the
map has a finite limit cycle. Its closure of is the ordinary .#-set. The semi-
open #-set of z=A(z+1/z) is shown on Fig. 1 (reproducing Plate x of [1],
second and later printings. Note that p. 465, which explains Fig. x of [1]
omits to say it is the semi-open .#-set, and replaces z by iz.)

Inspection shows that the semi-open #-set is made of #-molecules, each
made of #-atoms, both shapes being the same in the case of the map
A(z+1/z) and in the deeply studied case of the maps zZ2—p [2, 3, 4].

The present study is concerned with three different scenarios that start
from the extreme order represented by A’s in the real interval ]0,1[—hence a
Julia set identified with the imaginary axis—and end in planar chaos. We
focus on the #-molecule that includes the disc-shaped .#-atom
IA=1/2]<1/2. It is easy to see that this atom collects all A’s for which the
iteration of f(z) has 2 limit points, z = +VA/VI=A.

Hokusai (1760-1849) (Fig. 2)

For all A in the disc |A=1/2|<1/2, the Julia #* is topologically a straight
line that winds for z-=0 or z-« around logarithmic spirals symmetric of each
other with respect to 0. The spirals are both nicest and most educational when
they are neither too loose not too tight. Let us therefore scatter a few param-
eter values, well within the .#-atom |A—1/2|<1/2, between A = 1/2 and
the neighborhood of 1/2+i/2. To deemphasize the non-spiral complications
near |z| = 1, the window (portion of the complex plane that is shown) is 200
units wide, and the #*-sets are rotated to become easier to compare. The
F*-sets show as the boundaries between black "water" and white "air'"", which
are the domains of attraction of two limit points. As intended, the first part of
Fig. 2 evokes a completely flat black sea, hence planar order. And the figures
that follow counter-clockwise evoke increasingly threatening black waves.

In parallel, the fractal dimension D of #* increases. In this context, D
tells how many decimals of z;,, in the counting base b, are needed to know
whether z is attracted to vA/VI=R, or to —vA/vI—A. To establish this fact,
draw on our window a collection of boxes of relative side r; = 1/b. Roughly
bP of these boxes intersect F*. Write 8 = bP~2, and choose = Xy +iyg at
random in the box. With the probability 1—p8, the first b-decimals of x; and
yo suffice to determine where z; is attracted. More generally, the first k
b-decimals of x; and y, suffice with the probability (1-B)B*~! « bk(D-2)
rkz‘D. On the average, the number of b-decimals needed to determine the
limit is 1/(1—B). When 2-D is small, the expected number of base e
"decimals' needed to determine the limit is log, b/(1-B) ~ 1/(2-D).



Fig. 2. Examined counterclockwise from .
here, Julia * sets of z+=A(z+1/z)
for several selected values of A.
"From a Flat Sea to a Great Wave".
Homage to Katsushika Hokusai
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5. First Path Beyond the Great Wave. The Myrberg Scenario of Bifurcations

Figure 3 represents the #*-sets for two values of A. In the top graph, A lies
past a bifurcation into 4, close to (but short of) a second bifurcation into 3.
In the bottom graph, A is reached by two successive bifurcations into 4,
followed by a bifurcation into 3. Thus, the first A lies off the center in an
M -atom off the atom |A—1/2| <1/2. And the second A lies near the nucleus
in a small #-atom off a small #-atom off a small .#-atom attached to the
AM-atom |A—-1/2]<1/2. (A fourth X is seen p. viii of [1], second printing.)

The first bifurcation forms 'white water" through the breakdown of
connected water and connected air into larger drops, some of them quite large.
The bifurcations that follow break these drops into smaller ones, without end.
It is clear that one watches a gradual progression towards the ultimate replace-
ment of separate black water and white air by something that is neither water
nor air. One cannot help evoking the critical temperature of physics.

The fractal dimension D of #* tends toward 2 as planar chaos is ap-
proached, and the factor B tends to 1.

6. Second Path Beyond the Great Wave. A Scenario of Spiraling Towards
Chaos (Fig. 4)

Now select A to be within the atom |A—1/2] <1/2 but extremely close to A
= 1. The * set is illustrated by Fig. 4. It is clear that, as A—=1, D-2, hence
B-1, and that chaos is approached without bifurcation. The facts are perhaps
easier to visualize in terms of the parameter p = 1/A and the variable u =
1/z. This change of variable does not change #*. For |u| <1, there is one
limit point at u = 0. As p crosses 1, this limit point bifurcates into two limit
points that coexist in a chaotic situation.

7. Third Path Beyond the Great Wave. The Siegel Scenario

Figure 5 represents the #*-set for a value of A within the atom
IA-1/2|<1/2, but very close to a point on boundary, namely Ag =
1/2+(1/2) exp(2wiy), where vy is the irrational number (<1) whose continued
fraction expansion is (4,1,1,1,... ad infinitum).

This path is interesting because its limit is hard to label as chaotic or
non-chaotic. One can understand the difficulty and the opportunity by view-
ing the boundary between colors on Fig. 5, first, as an approximate #* set for
A = Ag and, next, as an approximate #* set for A just short of Ag on the way
from A = 1/2. The same figure can serve two purposes because the differ-
ences between the corresponding exact figures are erased by the inevitable
limitations of actual computation. Furthermore, the roughly circular white



Fig. 3. Julia sets for
two A that yield near
totally chaotic maps
g(z), along the
Myrberg scenario of
repeated bifurcations
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spots do not contribute to *, because they too are computation artifacts: the
values of z, that had failed to converge to either limit point after 3000.

The behavior for A = Ag is known from a theory due to SIEGEL [6].
Focus on the "cracks' that seem to separate the black wave into roughly
circular black discs, and imagine that these cracks converge and join. It
follows that water—and air also, by symmetry—becomes separated into discs
attached to each other by single punctual bonds. Two of the discs include the
points t\/‘X/ v 1=\ and are called Siegel discs; let the remaining discs be called
Siegel pre-discs. At each inter-disc bond, air and water cross each other but
over most of the plane they are clearly separated by #*. Not unexpectedly,
the fractal dimension of #* takes a value of Dg that is unquestionably less
than 2. One needs on the average ~1/(2-Dg) decimals to determine whether
a point z; is black or white. Incidentally, there is no limit point or limit cycle,
but the iterates of the z,’s in the white (black) Siegel pre-discs end up in the
white (black) Siegel disc. On the scale of the 200-wide window of Fig. 3, the
Siegel discs are so small that the Siegel regime looks like convergence.

Next, in order to achieve an idea of how #* looks for A just short of Ag,
it is necessary to know that Siegel discs are created when a curve #* that is
topologically a line folds up and becomes domain- or plane-filling, as described
and illustrated in [4, Paper VII]. When A is just short of Ag, the cracks in-
voked in the preceding paragraph have not converged and joined. Instead, the
interior of each of the black discs is partly split by many (here, 157) very
narrow 'fjords', that penetrate deep into the white domains, without quite
meeting, but coming close to meeting near the center of a spurious white spot.
In symmetric fashion, one must visualize black fjords thrusting into the white
domain.

Since the boundaries of both white and black fjords are part of #*, the
curve F* is very close to filling the whole plane. Its dimension being arbitrari-
ly close to 2 tempts us to conclude that the corresponding map g(z) is com-
pletely chaotic. But it is not. In fact, the Siegel scenario reveals an important
and subtle point: We need a close look at the factor 8. For very tiny values of
the cell side r,, we find B « r,2~P. However, as long as r, >¢, with £ a func-
tion of 2-D, we find B = 1. Thus, the smallness of 2-D expresses that every
cell of side >£ will be intersected by #*. But this does not say anything about
the relative proportions of black and white in the cells >¢. In the present
case, the fjords are so narrow that a cell >¢ is mostly black or mostly white,
depending on whether it is in a domain that Fig. 5 shows as solid black or
solid white. The expected number of decimals of base b depends upon wheth-
er one wants to know the color of z, precisely, or with high probability.
Absolute precision requires 1/[1—bP=2] decimals, high probability requires
only 1/[1—bDs=2],
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Fig. 4. Julia set for a'
A that yields a near
totally chaotic map
and is attained by
yet another scenario.
Topologically, this
curve is a straight line|

>

b-d

Fig. 5. Julia Set for 'ﬁh“

A that yields

a questionably
chaotic map g(z),
and is attained by
the Siegel scenario
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In other words, the overall appearance that computer limitations give to
Fig. 5 is not misleading at all. In fact, it helps reveal a basic truth. When A is
very near Ag, the shape of #* is ruled by rwo distinct dimensions: its own and
that of the #* corresponding to the nearest Siegel value of A.

We must agree that near-complete planar chaos should require that all
small cells a) intersect #* and b) be about half black and half white. Under
these conditions, a nearly space-filling #*-set of dimension nearly 2 is not
sufficient for complete chaos. The presentation of further results on this topic
must be postponed to a later occasion.

Acknowledgement

The illustrations were prepared by James A. Given, using computer programs
by Alan Norton.

References

1. B. B. Mandelbrot: The Fractal Geometry of Nature (W. H. Freeman, New
York 1982).

2. B. B. Mandelbrot: Fractal aspects of the iteration of z-=Az(1—2z) for
complex A and z. Non Linear Dynamics, Ed. R. H. G. Helleman. Annals of
the New York Academy of Sciences, 357, 249-259 (1980).

3. B. B. Mandelbrot: On the quadratic mapping z—z2—p for complex p and z:
the fractal structure of its .#-set and scaling. Physica 7D, 224-239 (1983);
also in Order in Chaos, Ed. D. Campbell (North Holland, Amsterdam).

4. B. B. Mandelbrot: On the dynamics of iterated maps 1II: The individual
molecules of the #-set, self-similarity properties, the N—2 rule, and the N—2
conjecture. IV: The notion of "normalized radical" @ of the .#-set, and the
fractal dimension of the boundary of &. V: Conjecture that the boundary of
the .#-set has a fractal dimension equal to 2. VI: Conjecture that certain
Julia sets include smooth components. VII: Domain-filling ("Peano') se-
quences of fractal Julia sets, and an intuitive rationale for the Siegel discs.
Chaos, Fractals and Dynamical Systems, Ed. P. Fischer and W. Smith.
(Marcel Dekker, New York 1984).

5. P. Collet and J. P. Eckmann Iterated Maps on the Interval as Dynamical
Systems (Birkhauser, Boston 1980).

6. C. L. Siegel: Iteration of analytic functions. Annals of Mathematics 43,
607-612 (1942).




