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ON THE AGGREGATIVE FRACTALS CALLED "SQUIGS",

WHICH INCLUDE RECURSIVE MODELS OF POLYMERS AND OF PERCOLATION CLUSTERS

Benoit B. MANDELBROT

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 USA

Aggregation processes yield random fractals in non-recursive fashion. Polymers and percolation clusters
are also constructed non=recursively. For various purposes, it is useful to imitate and illustrate each of the
resulting fractals in a manner that is both recursive and random. The present note introduces an especially
convenient class of such illustrations, using the vocabulary of aggregation, and serves as extended legend to

several illustrations.

1. INTRODUCTION

A very versatile recursive and random illustration
of various forms of fractal aggregation is provided
by a class of fractals which | introduced in 1978 and
which has recently begun to attract attention (1, 2,
3, Chapter 24, 4, 5, 6). The word “'squig” | later
gave to these shapes refers to their “squiggly’” ap-
pearance. Among the thoroughly studied examples
of squigs, the simplest are called fractal “intervals’,
a more precise synonym of ‘‘non-branched
fractals”’. (The idea is that a generalized interval is a
shape that can be put in continuous one-to-one
correspondence with an Euclidean interval.) The
squig intervals may provide a model for non-
branched polymers. The next simplest are fractal
trees; they were originally meant to be plane-filling
and to model river networks, but they can readily be
modified to model non-plane-filling branched po-
lymers. The latest thoroughly studied squig is a
fractal cluster. An investment in the study of squigs
(analogous to the study of the Sierpinski gasket) is
likely to be of high yield. While their constructions
are fully described elsewhere, it is appropriate to
restate them here using the vocabulary of aggrega-
tion.

The process that generates a squig always be-
gins with a lattice, whose cells collect in super-cells
of size b, where b (the base) and k are integers.
The lattice tiles may be bounded either by broken
lines or by fractals. The construction is recursive,
which allows renormalization group arguments to be
carried out in mathematically rigorous fashion.

2. SQUIG TREES AND INTERVALS, AND MODEL-

ING OF POLYMERS (1, 2, 3)

When the lattice is triangular and b = 2, squigs
are drawn on the “dual’” hexagonal lattice of
“potential bonds”’, obtained by linking the centers of
the ““neighboring cells’”” in the original lattice, that is,
of cells that share a side. Some bonds are then

deleted at random, in recursive fashion, using one of
two distinct processes: ‘‘decimation” and
"‘separation’’. The remaining bonds are called
"activated”’. The construction is tractable because
the processes of decimation and separation are
made to be statistically independent.

The first construction stage takes 4 triangular
lattice cells C{0) of linear size 1 that fit into a trian-
gle C(1) of linear size 2, and activates all the 4
bonds between neighboring C{0)'s. The result is a
small Y-shaped tree. The second construction
stage takes 4 copies of C(1) that fit together in a
triangle C(2) of linear size 4. The boundary between
any two neighboring C(1) within one C(2) is crossed
by 2 potential bonds; one of them is activated and
one is decimated. The k-th stage takes 4 statisti-
cally independent replicas of C{k—1) to make a tri-
angle C(k) of linear size 2. The boundary between
any two neighboring Clk—1) is crossed by 2k=1 po-
tential bonds; one of them is activated, and the oth-
er 2k-1_1 are decimated. One can think of the
above process as a recursive aggregation of increas-
ingly large aggregates: at each stage, only one of
the many links between two aggregates is chosen at
random to be "‘activated’’.
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FIGURE 1: SQUIG TREE AND INTERVALS
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The final outcome is a connected fractal, a
"“squig tree’’, that can be said to fill the whole plane,
hence is of dimensionality D = 2. An example of
such a tree is found in (3) page 227. To avoid du-
plication, Figure 1 gives a different example, which
is relative to a square lattice and involves not only
decimation but a form of the “'separation’” intro-
duced in Section 3.

The shortest path between two points in a fractal
tree is called a '‘fractal interval’’. An alternative
interpolative construction is illustrated in the color
Figure C1. Here, the fractal dimensionality is D =
log,2.5 = 1.3219, and other squig intervals
(constructed on different lattices) invariably yield D's
close to 4/3.

As this readership knows well, the fractal dimen-
sionality D = 4/3 also characterizes the self-
avoiding random walk and the non-branching po-
lymers in the plane. The latter may be usefully imi-
tated and illustrated by squig intervals.

3. SOUIG CLUSTERS AND MODELING OF PERCO-

LATION (4, 5, 6)

The process that generates squig clusters begins
with the Sierpinski carpet of base b = 3. The carpet
is obtained by dividing a square into 9 smaller
squares then deleting the middle one, and continu-
ing recursively. The limit's fractal dimensionality is
log, 8~1.8928, a very acceptable value for percola-
tion clusters in the plane; unfortunately, the carpet is
not at all suitable as a model of percolation clusters
since—unlike percolation clusters—it has no dan-
gling bonds and is infinitely ramified (3, Chapter 14).
The idea of the squig construction is to leave the
carpet’'s dimensionality unchanged, while either
bonds or sites are deleted recursively.

Again, the construction works with the carpet's
“dual”. After midsquares of every order have been
removed, a finite approximation to the carpet is a
collection of squares, each bounded by four of the
usual bonds. The dual sites are centers of these
squares, and the dual bonds join the centers of
squares that share a side. The approximate dual
carpet is the sum of 8 subcarpets, each linked to
two neighbors by very many bonds (which is why
the carpet is infinitely ramified). To achieve finite
ramification, my squig construction “‘decimates”
these bonds, in the sense that it deletes all but one,
then continues recursively. The nondeleted bond
may be either the central one (half-random version),
or selected at random (random version).

Next, the squig construction creates dangling
bonds via a different rule, ‘separation’”’. The al-
ready decimated carpet is made of 8 subcarpets,
plus 8 bonds linking neighboring subcarpets. To
perform random bond separation is to delete a non-
decimated bond with prescribed probability s, which
is the only adjustable parameter in the model. One
proceeds in the same way with each part. The case
s = 1 yields a tree. The construction is illustrated in
(5) Figures 3 and 4. Further information is provided
by the color Figure C2.

By design the cluster’s topology is finitely rami-
fied and with dangling bonds, but the overall dimen-
sionality remains log; 8. Furthermore, the dimen-
sionalities of the parts of the squig clusters
(backbone, links, etc.) were computed (5) and found
to be very close to those of 2D percolation clusters.

It is easy to restate this construction in terms of
aggregation of square cells. The first stage begins
with 8 cells C(0) getting together into a square ring.
With the probability 1—s, any two neighboring cells
C(0) are bonded together, while with the probability
s, a bond arises only between 7 of the 8 cells. The
k-th stage begins with 8 cells C{k—1) getting to-
gether into a square ring. With the probability 1—s,
any two neighboring cells C(k—1) are bonded to-
gether at only one of the numerous potential bonds,
while with the probability s, such bonds only arise
between 7 of the 8 cells.
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FIGURE C1. Interpolative construction of a
squig interval. The black line in the center is
obtained via a sequence of increasingly narrow
strips, each of uniform width. The alternative
interpretation described in the text involves
extrapolative aggregation.
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FIGURE C2. The squig clusters contained
within a square include a large one, a second
smaller one positioned in the large cluster’s
tremas, and so on. This figure shows the
biconnected portion.of these various clusters:
the largest is shown in white, the 2nd largest in
bright vyellow, the 3rd in dull yellow, and
successively smaller clusters are shown in
shades varying from orange to red to light blue.



