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ON THE QUADRATIC MAPPING —z’—pu FOR COMPLEX g AND ::
THE FRACTAL STRUCTURE OF ITS .# SET, AND SCALING

Benoit B. MANDELBROT

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA

For each complex g, denote by % (u) the largest bounded set in the complex plane that is invariant under the action of
the mapping z —z? — u. Mandelbrot 1980, 1982 (Chap. 19) reported various remarkable properties of the .# set (the set of
those values of the complex p for which #(p) contains domains) and of the closure .#* of .#. The goals of the present work
are as follows. A) To restate some previously reported properties of #(u), .4 and .#* in new ways, and to report new
observations. B) To deduce some known properties of the mapping f for real ¢ and z, with pe] —§, 2[ and ze] —4— L, /1 + 4y,
1+ 1/1 +4p In many ways, the properties of the transformation f are easier to grasp in the complex plane than in an interval,
(This exemplifies the saying that “when one wishes to simplify a theory, one should complexify the variables”.) C) To serve
as introduction to some recent pure mathematical work triggered by Mandelbrot 1980. Further pure mathematical work is

strongly urged.

Introduction. The illustrations are the focus of this
paper, and the text is organized around the illustra-
tions, in the form of extended comments. Addi-
tional illustrations are found in Mandelbrot 1980,
1982, 1983a, b.

1. Discussion of figs. 1a to le. Illustration of the
action of z—f(z,p)=72>—p on a large complex
circle. Sequences of algebraic curves approximating
the repeller (Julia) sets & *(u)

A transformation becomes easier to study when
one has a concrete visual feeling for its action. In
the case of z —f(z, u) = z* — u, it is known that the
point at infinity is a stable fixed point of /. Hence
it is an attractive point. In order for a circle of
sufficiently large radius r and center O to be in the
domain of attraction of oo, a sufficient condition is
r>rw =3+13/1+4Ju|. The circle of radius ry, and
center O willbe denoted by W®and called “whirlpool
circle”, and ry will be called the “whirlpool radius”,
because the orbits of all the points outside W< *“whirl
away” from O.

On the other hand, some complex z are
not attracted to co. Examples are the bounded

fixed points z'=1+1/1+4p and :z"=

1—1/1+ 4y, and their successive pre-images. Let
the maximal bounded set invariant under f(z, u) be
denoted by #(u). By definition of the whirlpool
circles, # (p) is contained within W°. Also, for every
value of k, # (p) is contained in the kth pre-image
of W under f(z), i.e., the pre-image of W under
fi(z). This last set is defined by |f,(z, u)| = ry and
willbedenoted by W ~*. Itis an algebraic curve called
“lemniscate” (Walsh 1956). The lemniscates corre-
sponding to increasing values of k& are non-
overlapping and are monotonically imbedded in
sequence. They can be called ‘“‘parallel under
Sz, 1)”. The set #(u) is the limit of these curves
plus their interiors.

Denote by #* the boundary of #. The set #*
is the limit of W ~* for k — 0. It is the repeller set
of f(z, 1) and is also called Julia set. (History: the
earliest basic facts about iteration were described
in Fatou 1906, and the bulk of the original theory
was described near simultaneously in Julia 1918
and Fatou 1919. Since the term “Julia set” has
become entrenched, I chose to honor Fatou by
denoting this set by #*))

Now for some illuminating illustrations. Figs. la
to 1d represent the interiors of W and of several
curves W~* in superposition, for four selected
values of u. The goal is to demonstrate intuitively
that the topology of # and of the Julia set #*
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Fig. la. Action of z—z? — u when the Julia set is a loop-free
closed fractal curve.

greatly depends on the value of u: in particular,
F* can be (a) a loop-free (“simple™) curve that
bounds a domain, (b) a curve with multiple points
that bounds an infinite number of domains, (c) a
tree (““branching curve without loop”, “dendrite”)
that does not surround a domain, or (d) a totally
disconnected dust. Fig. le represents an attractive
example of .Z ().

Fig. 1b. Action of z—z?— p when the Julia set is a closed
fractal curve with loops.

2. Discussions of figs. 2a to 2f. Classification of the
values of u by the topology of % (). The sets .# and
A*. Sequences of algebraic curves approximating
A*. The continent, islands, stellate structures,
devil’s causeways

This series of figures investigates in detail the set
of those values of u for which % (u) is connected.

Fig. lc. Action of z—z* — y when the Julia set is a fractal tree.

Fig. 1d. Action of z—z? — u when the Julia set is a fractal dust
(“Cantor set”).
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Fig. le. Interior of a Julia set (repeller set) of z—z%— y after two successive sixfold bifurcations.

This set is to be denoted by .#*, and .# will denote
the set of values of u for which & (i) has interior
points, that is, includes domains. On a graph, e.g.,
on fig. 2a, the .# set and the .#* set cannot be
distinguished, but they turn out to be significantly
different in structure.

Construction of the # set and of the #4* set. To
follow the method used in figs. 1a to 1d would be
cumbersome and unreliable, but is not necessary
because Gaston Julia gave the following direct
criterion. The set #(p) is disconnected if and only
if the sequence of iterates of z = 0, beginning with
—p,pt—pu and ((u*—u) —u, converges to
infinity. For this to be the case, a necessary and

sufficient condition is that \ (0, ,u)| must exceed
for some wvalue of k the whirlpool radius
rw=3+3/1+ 4|,u| derived in section 1. If |,u| > 2,
this condition is satisfied for £ = 1. Hence the .4*
set is entirely contained within the closed disc
|u| < 2. Furthermore, the program is simplified
(though the runs become a bit longer) if ry is
replaced by a uniform threshold equal to 2. For
each k, one can draw in the pu-plane the set defined
by |0, u)| = 2. As we know from section 1, such
a set is an algebraic curve called “lemniscate”.
Here, all the lemniscates include the point y =2,
but otherwise they are non-overlapping and mono-
tonically imbedded in sequence. The .#™* set is the
limit of these curves plus their interiors.
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Fig. 2a. Overall view of the .#-set of z—z% —pu.

Fig. 2b. Detail of an .#-island: the “speck™ to the right of fig. Fig. 2c. Detail of an .#-island: the “speck™ at the bottom of
2a. fig. 2a.
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As is known, p is called superstable of minimal
period k if f.(0, u) =0 but f,(0, u)#0 for every
h < k. Tt follows that £,.(0, u) = 0 for every integer
n, hence all superstable u’s fail to iterate to
infinity, meaning that they belong to the .#* set.
Walsh 1956 reports that a lemniscate cannot con-
tain a loop within a loop: it is necessarily either a
single loop, or a finite union of loops with non-
overlapping interiors. It turns out that in the
present case, all the lemniscates are single loops for
all values of k, hence .#* is a connected set. But
before we tackle this point, other features of the
A* set must be considered.

The continental subset of .#. For reasons that will
transpire momentarily, the structure of fig. 2a is
clarified by positioning the grid of u’s so that real
valued p’s are not tested. A first glance reveals that
the great bulk of the black points lie in a large and
very highly structured “continent”. It has a strik-
ing “cactus tree” structure, which I propose to
describe as a “molecule” made of an infinity of
“atoms”. At the center is a “‘seed atom”, which has
the shape of a cardioid, and contains all the u’s for
which f(z, ) has a single stable limit point besides
20. The exactly circular atom straight to the right
from the cardioid contains all the u’s for which
f(z, ) has a stable cycle of period 2, and the near
circular atoms that follow to the right correspond
to stable cycles of periods 4, 8, etc. The points
where these atoms join are the u’s corresponding
to the basic real u bifurcations. Other near circular
atoms that touch the cardioid correspond to cycles
of order k > 2.

The shape of the .#* set near the value p, at the
rightmost tip of the continental subset. Scaling
property in the plane, and its use to rederive (as
corollary) the known scaling property of bifurcations
on the real line. Consider the sequence of atoms
that converge to the tip of the continent. They
seem essentially alike, and seem tangent to two
straight half-lines that are symmetric with respect
to the real axis and converge to the value pu,
defined as the accumulation point of bifurcations.

This is a geometric property of scaling, more
precisely, of asymptotic geometric scaling.

An inferred consequence is that these atoms’
horizontal intercepts decrease geometrically at
each bifurcation. This inference is of course well-
known to be true, having been discovered by
Grossman and Thomae and by Feigenbaum.

To verify the identity of the atom shapes by a
more exacting test, .#* was redrawn by replacing
the parameter p by v =log(u — u,,). The cardioid
shaped seed atom is thereby made much smaller,
and the other atoms indeed become near identical.

The big island to the right of the continent. Other
islands. In addition to the continent, the .#™* set
contains a number of scattered specks. It is hoped
that these specks escaped the watchful eye of the
editors and the printers of the present Proceedings.
The reason why I am concerned is that their
counterparts on page 250 of Mandelbrot 1980
came to be erased, on the firm assumption that
they could only be dirt!

In fact they are very real, and it may be useful
to devote a few lines to telling how I discovered
them. Examining my first rough graph of .#*, 1
too took most of them to be dirt. But the biggest
one, positioned to the right of the continent,
looked too big to be spurious, and it was easy to
verify that it intersects the axis of real p’s along the
interval, discovered by Myrberg and Metropolis,
Stein and Stein (see Collet and Eckmann 1980), for
which f(z, u) has a stable cycle of period 3. I had
this speck examined in closeup, fig. 2b and it was
revealed to be essentially a downsized version of
the continent. Other Myrberg intervals that I ex-
amined in closeup were also revealed to intersect
very small downsized versions of the continent.

Thus, the rightmost tip of the continent con-
tinues along the real axis by a peculiar causeway.
Because of analogy with the Devil’s Staircase
(Mandelbrot 1982, page 83), I propose to call it the
“Devil’s Stepstones”. The metaphor starts with
large stones set in a stream to accommodate ordi-
nary super giants, then smaller stones are set to
accommodate ordinary giants, small giants, super-
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men, and so on down to devilishly tiny beasts.
Ultimately the stones leave no gap of positive
width, however small. The real axis runs along the
center of this causeway, in a way that is familiar to
students of the real transform f{(z, u).

At this point, I traced several puzzling obser-
vations to the same source. The first observation

g. 2d. Detail of the .#-web offshore the continent on fig. 2a.

was that for periods 1, 2 and 3, each superstable u
is the “nucleus™ of an atom known to belong to the
continent or an island off the real axis. However,
two superstable p’s of period 4 remained “‘un-
attached™, and for highér periods the number of
“unattached” superstable p’s kept increasing rap-
idly. One may have argued that some atoms con-
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Fig. 2e. The interior of the Julia set when y is near the nucleus of an offshore “island™ of .#.

tain multiple-root nuclei, or several distinct nuclei,
but these atoms should have looked different from
atoms of smallest period 1, 2 or 3, while in fact all
atom shapes fell into either of the two patterns
exemplified by the seed cardioid and the circle to
the right of it.

The second puzzling observation was that except
for the point p, . the tips of the continent gave no
evidence of being followed by Devil’s Stepstones.

The third puzzling observation was already men-
tioned; when the .#-set was traced with low pre-
cision on a medium-tight lattice, it seemed sur-
rounded by unattached specks of dirt.

A close-up view of the big speck to the right
of .4* (fig. 2c) settled the three puzzles together;
most specks did not vanish but turned out to be
islands identical to the continent in their topology
and overall form. It soon became clear that these
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Fig. 2f. Detail of the .# set of z— Az(1 — z) after inversion and
compression.

islands do not scatter around haphazardly, but
form “stellate’ arrays (see Mandelbrot 1980, 1982
for details). An array close to a point of bifurcation
of order 11 is seen on fig. 2d. Further closeups
revealed increasing numbers of increasingly small
islands between larger islands along each “‘ray”.
This was reminiscent of the above-mentioned fact
that increasingly small islands are “‘pierced
through™ by the real axis. At this point, the
growing analogy with the real axis suggested that
the islands in every ray are linked together by
curves that are counterparts of the real axis, but
could not be seen because curves other than the
axis nearly always fall between the lattice points
used in computation. This implies that the stellate
structure reflects an underlying tree structure, and
that the .#* set is connected. It may be recalled
that .#* is approximated by a sequence of lemnis-
cates, which (according to general results) might
have split into separate loops. The fact that .#*
remains connected implies that the approximating
lemniscates are single loops. This was verified to be
the case until high order pre-images of the circle
|u| =2, parts of which started falling between the
lattice points.

Needless to say, computer based observations
do not provide a substitute for actual proofs. In
some cases, full proofs bring rigor without addi-
tional insight, but mathematical study of my obser-
vations on the .4* set turned out to be fruitful and
useful, witness Douady and Hubbard 1982 and
forthcoming works. Needless to say (again) this
mathematical study could not have been under-
taken without my computer based observations.

The inverse of bifurcation: the notion of confluence.
The literature of bifurcation never seems to refer to
the opposite effect that is observed, say, when u
starts with a value in an atom other than a seed
atom, and changes continuously, without leaving
the island, until it reaches a seed atom. Mandelbrot
1980 gave to this inverse operation the name
confluence. The point is that the continent is the
domain of confluence to a stable limit point, and
each island is a domain ‘of confluence to a periodic
cycle, but not of confluence to a limit point.
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The atoms® and the islands’ intrinsic coordinates.
Homologous points. Given an atom of minimal
period k, denote by z, any point in the stable cycle
corresponding to the parameter value y. We know
that the complex number f;(z,, ¢) is less than 1 in
modulus. Its real and imaginary parts form intrin-
sic coordinates for the point p within the atom to
which it belongs. Two points having identical
intrinsic coordinates can be called homologous
within their atoms. The set of p’s for which
Sz, 1) is real will be called the atom’s “*spine™. It
runs from a point where f(z,. u) = 1 (which is a
cusp in the case of seed atoms), to a point of
bifurcation of order 2, where f(z,, u) = — .

Furthermore, each atom’s position in its island
can be identified by an “address”, namely the
sequence of integers that identify the sequence of
bifurcations that lead to this atom starting from
the seed cardioid. Each bifurcation is indeed
marked by a rational number n,/m,, with m, =2
and 0 <n, < m,. Thus, it suffices to write these n,
and m; in sequence separated by commas. One can
agree that the seed cardioid’s address is 0 (and
other addresses may, but need not, start by 0). The
combination of the address of the atom and of the
value of f(z,, ) forms an intrinsic coordinate for
a point g within the island to which y belongs. Two
points having identical intrinsic coordinates can be
called “*homologous™ within their islands.

An island’s spine combines its seed cardioid’s
spine with the spines of atoms corresponding to
bifurcation into m; = 2. Every island spine’s end-
point is homologous to the tip u, of the con-
tinental subset of the .#* set.

“Universality class™ argument to explain why the
islands are alike. Assume that u is near a super-
stable value u* of minimum period k. We wish to
determine the shape of the atom nucleated by u*.

The lowest order terms in the expansion of
filz,p) near z =0 and u = u* can be written as
Biz® + p(u — u*). Now let us state and test out a
brutal “universality class’ argument, then a milder
version of it.

The brutal argument claims that the shape of the
atom nucleated by p* depends only on the lowest

terms in the expansion of f.(z, u) near z =0 and
u = p*. If this were the case, u* would nucleate a
cardioid-shaped seed atom. This atom and the
molecule grown upon it would be identical to the
continent, except for its size being reduced in the
ratio 1/f,y.. The milder argument agrees to take
account of a few higher order terms near z = 0 and
u = p*, while continuing to disregard the behavior
of fi(z, u) far from z = 0 and pu = p*. This milder
argument suggest the following properties. A) The
atom nucleated by p* is the seed atom of a
molecule, and its shape resembles the continental
cardioid except for some mild non-linear defor-
mation. B) Other atoms obtained by bifurcation
arc arrayed around this seed as on the continent,
except again for a mild deformation.

Inspection of the actual .# set indicates that
when the prediction A) is correct, B) is also correct.
Moreover, A) can only fail by A) and B) being
replaced by the following properties. A”) The atom
is not a seed and its shape is near circular. B)
Other atoms obtained by bifurcation are arrayed
around the atom nucleated by p*, in the same way
as their counterparts are arrayed around the con-
tinent, except for a transformation that straightens
out the cusp.

Example: the superstable values for n = 2 are the
roots of pu*—p =0, that is u*=0 and p*=1.
Near p*=1, flzu)=(—pP—p=z-
2uzi4 p?—p ~ =2z + (u — 1). This suggests an
atom equal to the basic cardioid downsized in the
ratio of { and translated to the right by 1. But the
actual atom is bigger in every direction and hap-
pens to be precisely a disc.

One may expect to find that the condition of
validity of the milder universality class predictions
A) and B) is that f,y, be large.

A further universality class argument (not well
developed as yet) suggests that atoms increasingly
removed from the seed of their islands tend to the
universal shape.

“Universality class™ argument to explain the shape
of F*(u) when p* lies in an island. The brutal
universality class argument also makes a prediction
concerning # *(u): C) The Julia set F*(u*), call it
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a “little dragon™, obtains by reducing in the ratio
B, the Julia set which the full #(z, u) predicts for
the point that lies in the continent and is homolo-
gous to u, namely p’ = By (u — p*). The milder
universality class argument makes the prediction
C’) The portion of the Julia set # *(u) near z > 0
obtains by reducing in the ratio f, the Julia set
which the full % (z, u) predicts for the point that
lies in the continent and is homologous to p.

Inspection of actual sets .# *(u) indicates that
the portion of # *(u) near z = 0 is indeed the little
dragon predicted by the milder C’). But the brutal
prediction C) gives a quite incorrectly pallid idea of
the structure of the whole of % *(u). This set does
not reduce to the little dragon near z =0, but is
made up of an infinity of mildly deformed replicas
of this little dragon.

These replicas from Devil’s Stepstones with the
same structure we already encountered in the shape
of .#*. (Fig. 2e is relative to a case where y is very
close to the nucleus of the cardioid on fig. 2¢.) That
is, these replicas are strung along a tree. As to this
tree’s shape, it brings in something entirely foreign
to the universality argument. Indeed, this shape is
determined by u, and not merely by the point in the
continent that is homologous to p. This shape
varies fairly slowly with p, and is approximately
determined by u*.

To introduce an even rougher but useful approx-
imation, let us begin by bringing in the parameter
value p” corresponding to the tip of the island
containing p*. This point is homologous to the
classical real point u,. at the tip of the continent.
In the next section’s discussion of the Julia sets
F*(u), we shall see that u, is among the values
of u for which #*(u) is a tree having a real
interval as spine, and other ribs but no flesh. When
i” is the tip of an island other than the continent,
F*(u")is also a tree (though it contains no straight
interval). Now we come back to # *(u): it is found
that the replica dragons belonging to this set string
along a tree approximated by #*(u").

Rough estimates of the counterparts of the ratio &
for bifurcations of order >2. For the purpose of

this subsection, it is best to change the coordinates
by replacing the parameter p by the parameter
4=1+./1+4u This corresponds to the map-
ping z—f*(z, ) = iz(1 — z). The corresponding
transform of the .# set is shown on page 250 of
Mandelbrot 1982. The continent is no longer of the
same shape as the islands, since, instead of being
seeded by a cardioid, it is now seeded by two discs.
But this transformed shape has its own assets. A
first advantage, which had been ascertained with
pen and paper, is that the bifurcation from a stable
fixed point to a cycle of period m recurs at the
points where either 2 or 2— 4 is of the form
exp(2m in/m), with n an integer less than m.

A second advantage only transpired after the .#
set had been computed and could be examined. It
was observed that the tips of the ““major> sprouts
around the circle |2 — 2| = 1, defined as the sprouts
rooted at the points exp(2n i/m), appear to be
placed along a larger circle whose diameter begins
at A =1 and ends somewhere beyond 4 = 3. This
suggests that one perform an inversion of the .#
set with respect to A =1, with 1 =3 remaining
fixed. This inversion should yield sprouts placed
between parallel lines. Furthermore, the transform
of the root of the mth major sprout should lie at
a vertical distance from Ai=3 equal to
2tan(3n — 12n/m) = 2 cotan(n/m). For large m,
this yields 2m/n, ie., a series of equally spaced
points.

The inverted .# set shown in fig. 2f is plotted
using very different units along the two axes, so
that the graph remains legible yet covers many
values of m. The above hunch is confirmed, except
for m =2 and 3. That is, an extrapolation from
sprouts with a higher value of m would yield a
smaller sprout for m = 2. Denote by A4 the height
of the inverted sprouts for larger m. Assuming
circular atoms, these properties of inversion yield
the result that the relative linear size of the sprout
of order m is A sin*(n/m)[2 — A sin*(x/m)]~". This
is roughly the ratio of successive absolute changes
in u between bifurcations of order m, that is, the
mth counterpart of the 1/6 ratio of Grossman and
Thomae and of Feigenbaum. In fact, this ratio is
for all m close to m ~2,
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3. Discussion of figs. 3a to 3f. The repeller stack for
real y and complex z. Illustrations of the influence
of the value of p on the shape and the topology of
the repeller (Julia) set .7 *(u)

In figs. 3a to 3d, the horizontal coordinates x and
y are the real and imaginary parts of z, and the

vertical coordinate is . The figures represent a
stack of Julia sets # *(u) for u ranging from — j to
2. The goal is to show that the shape of % *(u)
varies continuously, while the topology of & (u)
moves around discontinuously. The stack was
sliced along the plane xQOy, and the two halves
have been separated.

Fig. 3b. Top portion of the “veils” within fig. 3a.
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Fig. 3c. Perspective view of the repeller stack minus the web:
outside view.

Fig. 3d. Perspective view of the repeller stack: inside cut
showing bifurcations.
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Fig. 3e. Detail of the top portion of fig. 3c: cut along the plane y = 10~* with x and  as coordinates.

Computation of the stack. The theory of % *(u)
involves two “‘proof-of-existence” constructions.
The first is used in figs. la to 1d. The second
consists in tracing the pre-images of the unstable
fixed point z'=1+1 /1 +4u This second con-
struction is efficient only if u is near 0, i.e., when
F*(u) is an uncomplicated loop. In general, either
construction requires prohibitively long computer
runs to yield an acceptable approximation. For the
sake of efficient computation, it was found best to
devise several alternative constructions and to use
them in combination. After the fact, these pro-
grams turned out to help in understanding the

facts. Fig. 3a combines some “veils” and a “‘shell”,
while fig. 3b represents the veils alone (with fewer
stages for the sake of clarity), and figs. 3c and 3d
represent the shell alone.

The ribs and veils. For each y, the backbone of the
horizontal section of the stack is the real interval
from ]—z’, z’[. The other ribs are the pre-images of
]—z’,z'[ under f(z); fig. 3b, shows them up to
order 8. Since |—2z’,z[ is well known to fail to
converge to oo under f(z), the backbone and the
ribs belong to the set # (1) and can be said to form
its “‘skeleton’. The ribs corresponding to different
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Fig. 3f. Even finer detail of the top portion of fig. 3¢: cut along the plane y = 10~ with x and p as coordinates.

w’s merge together to form a series of ““veils”. They
include a square wall in the plane y =0, and a
rounded wall in the plane x = 0. Moving through
a superstable u, the veils change from hanging on
the rounded wall to hanging on the square wall, or
from hanging on a high-order veil to hanging on
one of lower order. The pre-images of the unstable
fixed point z” are the rib tips. The precise re-
lationship between the ribs’ closure and the set
(1) depends on the value of p.

Superstable p’s. For superstable values of g, the
ribs’ closure is a domain, and is identical to % (u).
Hence, (by the same anatomical analogy) % (u)
can be said to include no proper flesh. The obvious
example is 4 =0, when #(u) is the disc of unit
radius, and the A th order ribs are segments joining
0 to the points of the form exp(2 ~*x i/n), with n an
integer and 0 <n < 2+,

Chaotic u’s. For the chaotic values of y, the closure
of the ribs is a tree, and is again identical to % (u).
The obvious example (though a degenerate one) is
1 = 2. Indeed, the set #(2) and its ribs both reduce
to the backbone [—2,2]. To obtain F(2), it is

obviously faster to draw the backbone than to use
the proof of existence construction that dots #(2)
with the dense pre-images of z = 2.

Whenever u is close to either a superstable or a
chaotic value, the maximal invariant set % (u) is
rapidly approximated by only a few levels of ribs.
Since #(0) is simply a disc and all the other
superstable or chaotic y’s fall in ]1, 2[, it was found
best to draw a few levels of ribs for every pin ]1, 2[
(anyhow the cost of “‘unnecessary’ computation is
less than the cost of determining whether or not the
computation was worth performing).

Stable but not superstable y’s. The remaining real
values of ue]—14, 2[ are the u’s for which a stable
fixed point or a finite period exists but is not super-
stable. For these values of g, the set of ribs is not
dense in a domain and does not remain a tree even
in the limit. To describe the resulting structure of
F*(u), let us mix the previous anatomical meta-
phor with a botanical one: we can say that for these
1’s, the trees” branches join asymptotically to form
a “canopy”. Clearly, an inspection of the pre-
images of the unstable fixed point z” could not
distinguish between the cases when the branch tips
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are disconnected and form dusts, and cases where
the branch tips are connected.

The shell. As already mentioned, the proof of
existence construction of & *(u) via the pre-images
of z” is efficient when % *(u) is an uncomplicated
loop, that is, for u near x4 = 0. Whenever # *(u) is
even moderately kinky, the cusp shaped kinks
remain unfilled even after other portions of # *(u)
have been covered many times over. (For the
cognoscendi: the reason is that this method recon-
stitutes the invariant measure on the Julia set, and
this measure can be extraordinarily uneven.)

An efficient graphic method is one that spends
roughly equal times on each portion of #*(u). The
shell in fig. 1 was drawn by the following shell
generator (Norton, 1982). Each horizontal plane
was covered with a square lattice and the position
of a lattice point was saved in computer memory
whenever, a), its kth iterate falls within a circle of
radius 2, and, b), the kth iterate of at least one of
its neighbors falls outside of that circle. These
points are identified by a search method that starts
with the unstable fixed point z’, and is very
efficient, because the number of wasted points
(tested but not saved) is only a small multiple of
the number of points that are saved.

Unfortunately, whenever # *(u) is very kinky, as
is the case for ue]l, 2[, the shell generator misses
many points in % *(u). It misses “A-pieces” that
(by definition) are so thin that they squeeze be-
tween the lattice points. And it misses ““B-pieces”
that (by definition) are large but connect to the
unstable fixed point z’ through A-pieces.

When the shell is examined from the inside, fig.
2d, these A- and B-pieces above do not matter,
because they would be hidden anyhow. And inclu-
sion of the ribs would hide the evidence discussed
below. When, to the contrary, the shell is examined
from the outside, Figs. 3a, b, ¢, A- and B-pieces do
matter. Luckily, many of the points missed by the
shell generator are picked up by the rib generator,
and the combination of the two yields a sensible
idea of the outside shape of the stack. (Note that
I had not originally planned to split this figure

open, but an inside view was computed by mistake,
a felix culpa.)

Basic observations. As p increases, the repeller set
varies continuously, but its topological character-
istics change back and forth. The largest invariant
set varies continuously within each Myrberg inter-
val of u. However, let u decrease through the value
—1 or through a value homologous to —1 within
an island. The result is that a continuous canopy
becomes punctured, leaving a dust and allowing
the flesh to “evaporate”. On opposite sides of a
chaotic y, the tree tips combine into canopies in
different fashions.

Near u = 0, the shell is extremely smooth. More
generally, as ¢ moves away from p =0, the un-
smoothness of #*(u) increases very slowly and
gradually. This led me to conjecture that the fractal
dimension of % *(u) is a very regular function of
u: infinitely differentiable and perhaps analytic.
This hunch was proven true in Ruelle 1982,

Interpretation of the bottom portion of the inside
view of the shell. Bifurcations. Aside from a clearly
visible circle for p = 0, the most striking feature of
this view resides in rows upon rows of pro-
tuberances. The lowest row lies at height 4 = 3. For
real u below 3, the mapping f(z), whether in real or
complex z, has a stable limit point. For u =3, this
stable limit bifurcates into a stable limit cycle of
period 2. At the same time, one sees that # *(u)
changes from being a simple loop to being an
infinitely knotted one. (The protuberances are de-
numerable, and have only two limit points: the
fixed point z” and —z’.) The next highest row of
protuberances marks the second bifurcation, and
S0 On.

The reader is surely acquainted with Robert
May’s tree diagram, May 1976, which maps the
variation with p of the values of x for all the points
in the corresponding stable cycle. Were it super-
posed on fig 2d, this tree would be rooted at the
sharp tip to the bottom left, and each branch point,
would hang on a suitable protuberance. One may
extend May’s diagram to map the variation with y
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of the “real preorbit of the cycle”, defined as the
set of real z that eventually fall exactly in the cycle.
The resulting preorbit map diagram would be
made of many trees, with a branch hanging on
every protuberance of fig. 2d.

Interpretation of the top portions of the inside and
outside views of the shell. The Myrberg intervals of
u. The top of the stack is characterized by a nearly
blank wall, which we know from the veil gener-
ating construction. However, this wall is inter-
rupted by mysterious hanging “knobs” forming
horizontal strips. Each strip corresponds to a
Myrberg interval of values of p.

Interpretation of some horizontal or vertical sections
of the stack. When y lives in a Myrberg interval, a
horizontal section of the stack is a tree formed of
Devil’s Stepstones. Since the stepstones vary con-
tinuously with y, those which intersect the plane
x =0 would form a kind of Devil’s Corduroy.

Now take vertical sections. The y = 0 section of
the whole stack is bounded to the side by the half
parabola u = x? — 2x for x >3, the half parabola
p=x>+2x for x < —3, and the segments {from
(M=—4 x==3to(u=—4 x =3} and {from
(u=2,x=-2)to (u =2, x =2)}. The bottom of
this vase-shaped outline is filled solid and the top
is surmounted by Myrberg strips.

Now consider analogous vertical sections of the
top of the shell for y = 10~? (fig. 3¢) and of a detail
for y =10"'° (fig. 3f). Here, one sees a large
number of black shapes, each of them a deformed
version of the vase shape of the overall stack.
When p is such that the iterates of f(z, u) are not
chaotic, the intersection of #*(u) and the wall
y =0 is a denumerable set. Its points of accumu-
lation number 2 when g lies in the continent, and

are themselves denumerable when y lies in an
island. When pu is chaotic, the intersection of
F*(u) and the wall is an interval.
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