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Abstract. Finitely ramified fractal lattices show anomalous diffusion with rHoc?H, There
is a hierarchy of transit times which are shown by Monte Carlo simulation to satisfy
{r.)oca" for large n, where o = b/ and b is the base of the lattice. The lattice resistivity
scales with size as p «CR" where R is characteristic of the lattice. Exact renormalisation
group methods vield & and R analytically and verify the Einstein relation for fractals
a=RN,

The main reason for investigating transport properties on fractal lattices (Mandelbrot
1982) is that solution of many important equations of physics on these lattices adds
to our understanding of the geometric and topological properties that are relevant to
modelling the corresponding physical processes. We develop and test an especially
simple fractal form of the Einstein relation between the transient or diffusive and
steady-state or conductive solutions of the potential equation on these lattices. This
report extends and illustrates some ideas that have been developed in a study of
conduction and diffusion in random networks such as percolation clusters (see the
‘ant in the labyrinth problem’ in de Gennes (1976), Straley (1980), Mitesku e al
(1979), Roussenq (1980), Vicsek (1981); see also Gefen et al (1981), Ben-Avraham
and Havlin (1982), Angles d’Auriac et al (1983), Alexander and Orbach (1982),
Rammal and Toulouse (1983)). The same diffusion properties are verified here for
a class of deterministic fractal lattices.

Figure 1 depicts the generators of the fractal lattices we consider, and table 1 lists
their geometric and physical properties, determined both analytically and by Monte
Carlo simulation. All these lattices are constructed by hierarchical extrapolation. Each
stage of construction takes N copies of the order-n lattice, reduces them in the ratio
r =1/b, where b is an integer called the base, and connects them following a ‘generating
tie scheme’ (see figure 2).

The profound qualitative differences between fractal lattices of finite and infinite
ramification (Mandelbrot 1982, ch 16, and Gefen ef al 1980) also prove critical to
diffusion, hence infinitely ramified fractals are not treated in this paper.

In Monte Carlo simulations of random walks on fractal lattices, a starting point
was selected at random, and each trial proceeded either until a prescribed number of
steps was reached, or until the walk reached an absorbing boundary. The lattice size
and the number of steps satisfy two goals. (1) The average walk diffuses long enough
to be affected by the lattice structure (tremas or water sheds) over several levels of
the fractal hierarchy. (2) A negligible fraction of the walks are absorbed by the
boundary. By construction, any lattice vertex lies in a nested sequence of successively
higher-order copies of the lattice. The corner vertices of an order-n lattice lie a
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Figure 1. Generators (atoms) of our lattices.

Table 1.
H H
Base « R N (calc) (McC)
Plane-filling ‘Phi lattices’ (e.g. figure 1{A))
3 117/5 13/5 9 0.348 46 0.352
5 7175/87 _287/87 25 0.364 75 0.367
7 897925/4901 18 325/4901 49 0.37345
9  329.148 4.0636 81 0.379 06
11 522.878 4.3213 121 0.38309
13 765.1965 4.5278 169 0.386 27
21 2270.200 5.1478 441 0.39398
Sierpiriski gaskets (e.g. figure 1(B))
2 5 - 5/3 3 0.4307 0.431
3 90/7 15/7 6 0.4302
4 1030/41 103/41 10 0.430 0265
5 8315/197 1663/591 15 0.430 0306
Plane -filling ‘X-lattices’ (figure 1{C))
2 8 4 1/3 0.333
2 44242 1 +J' 2/2 4 0.3608 0.365
2 7.2769 1,8192 4 0.3492
3 22457 2495 9 0.3531
‘X-lattice'; checkerboards; Peano curve (figure 1(D))
3 15 : 3 . 55 0.40568
3 15 3 5 0.405 68
5 51.54 3.96 13 0.4082 0.407
3 81 9 9 0.250 0.250
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Figure 2. To construct our fractal lattices, copies of  Figure 3. Construction of the renormalisation group
the initiator ‘atom’ are connected according to the for resistivity calculations; copies of the order-n
generating tie scheme to yield the second-order universal graphare connected using the generating tie
lattice. scheme. The (n +1)-order universal graph is then
required to have identical two-point resistances.

distance och” from an arbitrary vertex and serve as gates which must be crossed in
order to diffuse further. Define the order-n transit time 7, to be the first passage time
to the corners of the ordér-n lattice from a random starting point inside it. Monte
Carlo simulations show that {r,,} = K a" + K, where the ‘transit time’ « is a characteris-
tic of the lattice. Renormalisation group arguments yield K, and K, analytically and
prove that differently defined transit times show the same scaling behaviour. The
simplest ansatz consistent with the observed scaling for the 7,, is () =" with

H =log b/log a and o = lim (r,.1)/{7). (1)

If the Einstein relation holds for self-similar structures, then (Gefen ef al 1983)
¢=—"2+1/H=t/v—-8/v (2

relates the exponents describing the power-law dependence on scale length L of the
conductivity ~L ™" and the diffusion coefficient ~L ™, Here (Gefen et al 1983)

B/v=2-D=2—-logNflogh, t/v=log R/log b, (3)

where we define R by assuming that for large n the two-point resistance of an order-n
Iattice of unit resistors is o R". Substituting (1) and (3) into (2) yields

a =RN, (4)

which we call the fractal Einstein relation.

Using exact renormalisation group methods, we obtain exact values for « and R,
although for convenience we sometimes use instead an iterative form of our renormali-
sation group which is easily adapted to computer solution and will also be presented.
We model an order-n fractal lattice with a universal graph having a vertex for each
gate of order # and identical physical properties. Linear equations are solved to yield
recursively effective parameters for the equivalent universal graph. This procedure
will be illustrated for figure 1(C2). Due to its Z, rotational symmetry, two effective
parameters suffice to match either the resistivity or diffusion properties of the order-n
lattice. The equivalent resistors connecting adjacent and diagonally opposite vertices
will be denoted by R, and Ry. The order-(n + 1) lattice connects copies of this graph
according to the generating tie scheme of the lattice. The R} and R} of the resulting
graph are then functions of R, and Ry:

R, =R.2R4+R,)/(R4+R,),
R} =R.2R4+RI(BRs+R.)/(Rs+R.).
The unique positive fixed point yields R.,/R, =Ri/Rs=R =(1+ \/5/ 2). To calculate
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a, the order-r lattice is modelled by a universal graph with bonds connecting each
pair of gate vertices and effective transit ‘step times’ T.(resp Tq) to an adjacent (resp
diagonally opposite) gate vertex. Copies of this graph are connected to model random
walk on the order-(n +1) lattice. Average transit times to the corners of this lattice
are then used as step times in the next-order universal graph. The relative probabilities
of adjacent and diagonal steps on these equivalent graphs must also be calculated
because they vary with n. Denote by 4P, the probability that the next order-n gate
is reached via sideways transition, and by 2P, =1-4P, the probability that the next
gate is reached via diagonal transition. Recursions for the corresponding order (n +1)
probabilities are obtained by using the Markov nature of these random walks to relate
the conditional probabilities Py, P4, for walks starting at any vertex in the graph to
those for walks starting at its neighbours

;k'__PaZP;i'l'PdZP:ajs P::lk=PaZPt’:li+PdZ_P:ij, (6)
i i i 1

sums over i, / being respectively those over adjacent and diagonal neighbours of vertex
k. For this example
P, =Pi(4P2 -1)(2Ps+1)/A, P4y =—2P2(2P% + P))(2Ps+1)/A, 7
with

A=P;(16P;—56)+P2(8P5 —28P4+16)— (2P3—1)°.
Eliminating P4 using the relation 4P, +2P, =1 yields P, = (2P, +1)/(4P,+6), with a
single positive fixed point at P,=(v¥2-1)/2=0.207 107. (In the above, a matrix
whose elements depend on two variables was inverted using the IBM symbolic
calculation program SCRATCHPAD.) The expressions (7) for P,, Pq are generating
functions for random walks from a gate vertex to an adjacent, resp diagonally opposite,
order-(n + 1) gate vertex: the coefficient of the term P; Pg yields the number of walks
of this type consisting of m adjacent and n diagonal steps. Thus, defining Q =
T.P.3/3P,+TsP13/3P4, we have T, =(1/P,) QP; and T4 =(1/P})QP}. The ratio
of these equations yields the positive fixed point T4/T.=(8+ 10\/5)/17, hence the
asymptotic scaling behaviour T,/T,=T4/Tq=4+ 2+/2. The fractal Einstein relation
is exactly verified.

In general, given limit values for P, and P,, the scaling parameter « for the diagonal
and adjacent step times in the nth order universal graph is obtained non-iteratively
by solving the Markov equations for (n + 1}-order conditional transition times to a
diagonally opposite gate vertex, similar to those for P, and Py:

T} =4Pa( > (T +Ta)/); 1)+2Pd(§ (T +T,,)/; 1).

(The diagonal transition time from any vertex is a weighted average of those of its
neighbours.) The solution for « is noniterative because the only independent transition
time in the equations, Taver = 4P, Ta+ 2P4 Ty, enters linearly and the diagonal transition
time, which is one component of their solution, is T giag = 11—2P)Ther

Figure 1(C3) is a lattice whose generator lacks Z, symmetry (k is the number of
corner vertices)t, The recursion for the two independent resistor ratios (figure 4) is:
7 If the renormalisation group is constructed by our scheme for a lattice having a general anisotropic
three-corner atom and the tie generating scheme of figure 2(b), the only non-trivial fixed point corresponds
to the Sierpiniski gasket. The same is true for arbitrary values of the base 5. This explains why this family
of fractals attains scaling behaviour immediately. See Rammal and Toulouse (1983).
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(r1 +r2}(3r1 +2."1 +2f2 +3r1r2)
5r1 +2r5 +Trira+ 903+ 5r2r + 41202’

ri

ra(ri+ 1){3r1 + 272+ 3r1r2)
4r3 +2r2 +5rr0+ riry+ Trir + 5r3r%°

ra

where r1 = Rg/Rp and r; = Rv/Rp. This renormalisation group, again, has only one

non-zero stable fixed point in the physical regime: (r;, ;) =(0.575 458, 0.426 970).
It yields R =1.8192.

R
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Figure 4. Universal graph for the asymmetric lattice C3.

The Markov equations for relative transition probabilities were iterated on the
computer to yield Py=0.17104, P,,=0.23053, P;=0.098 43, where 2Py+2Pv+
2P5=1. The equations for a contain only one independent transition time

Tav — 2PHTH‘+' 2PvTv + 2Pde,

and are solved non-iteratively as before via the diagonal transition time and the
relation Ty, = (1 —2Px)(1-2P)T5/(1+2P4). In this case, o = T4,/ Ty =7.2769.

Note added in proof. Mandelbrot (Proc. Stat Phys. 15 to appear in J. Stat. Phys.) is relevant to the discussion
in this paper, because it advances a formalism that applies both to diverse fractal diffusions in Euclidean
spaces and to diffusions restricted to fractals. In this formalism, 1/H (as defined in this paper) is the
diffusion’s ‘latent fractal dimension’ and DX H (a ratio of latent dimensions) is the ‘latent fractal co-
dimension’ of the instant when the diffusion recurs to its points of departure.

The examples in Table I all lie in the plane, d =2. Comparing the diverse phi-lattices, the diverse
Sierpinski gaskets, and the X-lattices of bases 3 and 5, we see that in each series taken separately H is
nearly, but not quite, independent of the base.

References

Alexander § and Orbach R 1982 J. Physique Lett. 43 1625

Angles d’Auriac J C, Benoit A and Rammal R. Preprint

Ben-Avraham D and Havlin S 1982 J. Phys. A: Math. Gen. 15 1691
Gefen Y, Aharony A and Alexander S 1983 Phys. Rev. Leit 50 77

Gefen Y, Mandelbrot B B and Aharony A A 1980 Phys. Rev. Lett. 45 855
de Gennes P G 1976 La Recherche T 919

Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman)
Mitesku C D, Ottavi H and Roussenq J 1979 AIP Conf. Proc. 40 377
Rammal R and Toulouse G 1983 J. Physique Lett. 44 113

Roussenq J 1980 Thesis, Université de Provence

Straley J P 1980 J. Phys. C: Solid State Phys. 13 2991

Vicsek T 1981 Z. Phys. B 45 153



