Self-Inverse Fractals Osculated by
Sigma-Discs and the Limit Sets of

Inversion Groups

Behind the dry facade of the hard mathematical
analysis in the style of 1900 lurks a geometry of extra-
ordinary plastic beauty and suggestive power. There
was a hint of it in the great old treatise by Fricke and
Klein, “Lectures on Automorphic Functions” [1], and
it was fully revealed in [2]. The figures in [1] must rank
among the most widely known of all mathematical il-
lustrations, since they include the tessellations of the
hyperbolic plane that the non-mathematical millions
now credit to Maurits C. Escher. The present paper
explores further a small corner of this universe, the
geometry of the limit set of a special group based upon
inversions. This limit set, a fractal curve in my ter-
minology [2], was among those illustrated in [1]; it has
been reproduced on faith by several famed books,
thus helping to form the intuition of many genera-
tions of mathematicians.

Unfortunately, careful graphics performed on a
computer revealed a rich structure that proves the
Fricke and Klein illustration to be inaccurate and
misleading—the conventional algorithm used to draw
the limit set (going back to Henri Poincaré [3]) is indi-
rect and very inefficient.

Fortunately, the careful graphics also helped me to
identify a new algorithm that generates the limit set #
for many groups % based upon inversions. This algo-
rithm was first sketched in [4] and is described in [2,
Chapter 18]. Since it is not of universal validity, it
separates the groups based upon inversions into “di-
rectly osculable” and “not directly osculable” groups.
(The limit set may become osculable after a change of
basis.) The details of these new distinctions are, how-
ever, beyond the scope of this paper. Its sole purpose
is to demonstrate this algorithm and its efficiency by
describing in detail its application to the most striking
of the Fricke and Klein examples.

Given a group of geometric transformations, it is
interesting to identify the sets that are invariant under
the action of the group, and especially the smallest
among these sets. Such a question was first raised by
Leibniz, who suspected that the only shapes invariant
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under all similarity transformations of the plane are
straight lines and the whole plane (see [2], p. 419).
Under the assumptions of smoothness, he was correct:
these are the only connected and smooth invariants,
called self-similar sets. Waiving the standard condi-
tions of smoothness and restricting the similarities,
however, one finds many other self-similar sets, all of
which are not shapes from standard geometry, but
fractal sets; for example, Cantor sets (totally discon-
nected sets; dusts in my terminology [2]), the bound-
aries of Koch snowflakes (nonsmooth curves), and
Brownian motion (the best known self-similar random
curve).

The present paper is devoted, in the same spirit, to a
nonlinear group of transformations. Given M = 3 cir-
cles C,,(1 = m = M) in the plane, to be called generat-
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ing circles, we consider the group % generated by
inversions with respect to these circles. Choosing the
center of a circle C of radius R as origin, the inversion
with respect to C is described in polar coordinates as
the map (r, 8) — (R*r, 6). In what follows, the key fact
about inversions is that they map circles to circles—
provided we call a straight line a circle through the
point at infinity.

The sets invariant under the action of this group can
be called self-inverse sets under % . The closed plane,
including its point at infinity, is self-inverse under
every group. And for many groups it is the only stan-
dard solution. One notable exception—called
Fuchsian—is when all the C,, are orthogonal to a
common circle I'. In this case (which includes most
cases with M = 3), the circle I is self-inverse under & ,
since any circle orthogonal to C is invariant under in-
version in C. It is also instructive to side track to a case
excluded by the above definition. When M = 2 and
the finite discs bounded by C, and C, do not intersect,
there exist two points, vy, in the finite disc bounded
by C, and vs, in the finite disc bounded by C,, that are
mutually inverse with respect to both C; and C,. (If ' is
a circle orthogonal to C; and C, then the points y;, and
v.; can be chosen on I'.) Therefore, the set {yw,ym},
made of two points, is self-inverse. Some very special
Fuchsian groups also have a self-inverse set reduced to
2 points.

On the other hand, the first student of this topic,
Poincaré, observed a hundred years ago that waiving
the standard assumptions of smoothness can yield
strange subsets of the plane as closed self-inverse sets.
Shortly before (!) Cantor introduced his set in 1884,
and well before Koch introduced his nondifferentiable
snowflake curve in 1904, Poincaré noted that in typical
configurations of the generators C,, the self-inverse
set # can be either a totally disconnected set (“dust”),
or a curve that is nondifferentiable (either has no tan-
gent, or has a tangent but no curvature). (He com-
mented that one must assume that ““one can call that a
curve”. . . . Later studies of the concept of curve have
confirmed that one can and that one should.)

The Limit Set

How do we find a self-inverse set? The answer is that
one can start with any set 5, and enlarge it just enough
to make it self-inverse. For any set S the clan of ¥ S is
defined to be the union of all transforms g(S) for ge
% —this is usually called the orbit of S, but I prefer the
term “clan’’. Of course the closure of ¥ S is a closed,
self-inverse set. So is the subset (% S)’ consisting of all
limit points of % S. Recall that a point P is a limit point
of a set if every deleted neighborhood of P—i.e., the
neighborhood minus P itself—intersects the set; the
set of limit points is called the derived set.
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In particular, one can start with any point P,, then
form the clan & P, and take the derived set (% P,)'. The
amazing fact is that, under wide conditions, the de-
rived set is a) independent of the point P,, so that it
can be denoted by #; and b) of zero area (= planar
Lebesgue measure). The derived set ¥ has several very
important characteristic properties. Not only is it
self-inverse, but it is the minimal self-inverse set. It is
(by construction) the limit set of % . Furthermore, it is
the set on which the group ¥ is continuous, and out-
side of which % is discontinuous. We give one final
useful characterization: it is clear that % includes an
infinity of inversions in addition to its base, and that
£ is the derived set of the centers of these inversions.
To my knowledge, this last statement is not put in this
form in the literature, but it can be seen to be equiva-
lent to Poincaré’s construction of £.

What is the shape of £? Our knowledge of the Can-
tor and Koch sets benefits from the availability of a
multiplicity of direct and transparent constructions.
To the contrary, the shape of the minimal self-inverse
& has remained elusive. To close this gap, I have de-
vised a new construction which involves the self-
inverse open sets obtained as clans of open discs; I call
them “‘sigma-discs”, or “o-discs”, where the letter o
is self-explanatory; it indicates that a o-disc is the de-
numerable union of discs. The complement of a self-
inverse o-disc is also a self-inverse set, and the mini-
mal self-inverse & can ordinarily be represented as the
complement of a finite union of o-discs. Each of these
o-discs can be said to osculate #. This “osculating
o-disc” construction can be made recursive: as the
recursion advances, it tends to outline £ very
rapidly—much more rapidly than the classical con-
struction of Poincaré.

Fuchsian groups with M = 3 for which ¥ is
the circle I'

It was noted that when % is Fuchsian, the circle T is
self-inverse. A case when I is the minimal self-inverse
set occurs when M = 3 and each of three circles C,, C;
and C; is tangent to the other two (Fig. 1). By inverting
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the plane about the point of tangency vy,, of C; and C,,
one achieves the situation of Figure 2, where C; and C,
are parallel straight lines and C; is tangent to both. The
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Figure 2

group is also transformed: it is now generated by re-
flections in C, and C, and inversion in C;. It is easily
seen that % is I'.

Some Fuchsian groups with M = 3 for which
£ is a fractal dust. Osculating o -intervals

Figure 3 gives an illustrative example where M = 3
and the group is Fuchsian but # is a very small subset

Figure 3

of I': we let I be the orthogonal circle and assume that
the finite discs bounded by C,, C; and C, are noninter-
secting. It was noted that there are points vy, and s,
on I' that are mutually inverse with respect to both C,
and C,. Now invert the plane about y,,, obtaining Fig-
ure 4. Since y;, goes to infinity, the circle I' becomes a

straight line; C, and C, become two circles with the
common center ys;. It is easy to see that the half of I'
that does not include the points vy,; and <3, and the
points 3 and vyss, fails to belong to £. We use this half
line to define the open interval Jy;s, o[-

Thus, the self-inverse set & Jy2.¥21[, which is a o-
interval (a union of nonoverlapping open intervals)
lies entirely in the complement of £. The same is true
of the o-intervals @ Jy;5ysi[ and @ Jyss ys:[- Also, but
not quite so obviously, the complement of these three
o-intervals is £. It is a fractal dust of zero length (lin-
ear Lebesgue measure), and provides a self-inverse
version of the usual self-similar Cantor set.

One can delineate the shape of # with rapidly in-
creasing accuracy by injecting the intervals of the
complement of £ in order of decreasing length, or—
more simply—in order of increasing length of the
shortest words in ¥ that generate these intervals from
one of the lyy yul. Although I find it hard to believe
that the preceding algorithm is new, I do not recall
having seen it described anywhere.

(N
-/

i
3

-
7

Figure 4

Fricke and Klein: Misled and Misleading

The limit set is relatively easy to find for a group gen-
erated by inversions in three circles, but what about
larger configurations? That is the point of the new
algorithm for #. It too is so completely elementary that

! The group of Figure 2 is a special “modular” subgroup. Take the cen-
ter of C; as origin and its radius as 1. Then each real x, can be written
uniquely as i, + p,, where i, is a signed even integer and p,E lies in the
open interval ]—1,1[. Similarly, 1/p, =i, + p,. When x, is rational, every
pr 1s also rational; as k increases, the denominators of p;, decrease and
eventually, for k = K, reach p, = 0 or 1. Call K the depth of x,. For ir-
rational numbers, K = «; for integers K = 0. It is easy to prove that
every rational x, with py = 0 is the transform of x4 = 0 by a word of the
group 9, while every rational x; with py = 1 is the transform of xx =
1 when ix/4 is an integer, and of xx = —1 otherwise. Furthermore,
every x; with px = 0 is obviously the limit point of x,’s with py + 1 =
1. Conclusion: whenever the abscissa of P, is rational, the set %P, is
dense in T'.
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Figure 5

it might have been (but was not!) recognized in the
1880’s, when Henri Poincaré and Felix Klein first
tackled this topic. Hence it is best to present it against
the classic background of those illustrations in Fricke
and Klein [1] that purport to represent the limit sets &
of several special inversion groups.

The main discrepancy does not lie in the fact that the
true #’s involve detail that no one would attempt to
draw by hand. Even if detail is erased (which is best
done by stopping the new algorithm after a small
number of stages) the “old #” seems cruder: struc-
tureless and lawless.

Perhaps it is best to tackle a single example in detail
in order to illustrate my construction. Qur point of
departure is Figure 5, which reproduces the 5 circles
used in Figure 156 of [1]. Next, Figure 6 reproduces the
corresponding “old #”" as claimed by Fricke and Klein:
it consists of a wiggly curve together with a collection
of circles, shown in heavy outline. The “true £” is
shown in diverse guises in many of the later figures in
this article. On Figure 7, the true # is shown as the
boundary of a black background domain.

It now seems obvious that Figure 6 was drawn by a
hapless draftsman (legend has it that he was an en-
gineering student in Fricke’s class), who had been in-
structed how to determine a few points of # exactly,
and was then left to draw “‘some very wiggly and
complicated curve” passing through these points. As
Fricke did not know what to expect, the draftsman
received no explicit directions.

Observe that the black domain on Figure 5, viewed
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as open (not including the generating circles), splits
into three disjoint maximal open domains, to be de-
noted as & ; (a triangle), &, (a quadrilateral), and @;
(a pentagon containing the point at infinity). This
suggests that we might begin to investigate & by in-
vestigating the limit sets of two subgroups of % : first,
the Fuchsian subgroup® ; generated by the inver-
sions in the 3 circles bounding %, and second, the
subgroup?% ,, generated by the inversions in the 4
circles bounding &,. The limit set of a subgroup is,
after all, contained in the limit set of the group.

The Fuchsian Subgroup % ;

One point at which the old ¥ and the true &# agree is
that both include a large circle, to be denoted as £,
and smaller circles. The circle £, is orthogonal to the 3
generating circles C,, C3, and C; that bound the do-
main &,, and from our previous discussion it is the
limit set of the subgroup % ,.

Now suppose we take & = (%P,)’, where P, is an
arbitrary point of #;. A fortiori, we have the repre-
sentation £ = (%.%#;), which is extravagantly redun-
dant, yet very useful in describing the limit set. An
approximate idea of £ based upon this representation
is given by Figure 8. It limits itself to the elements of
% that are obtained as products of fewer than a certain
large number K of inversions.

Large circles are represented by thin curves, and
circles whose radius is smaller than the large circles’



Figure 7

thickness, are represented by points. Were the algo-
rithm pushed further, all these points would bleed
together to form an infinitely ramified curve. Had we
abstained altogether from plotting the large circles, the
result would not change perceptibly, because every
point on every circle can be obtained in alternative
fashion as the limit of points belonging to smaller cir-
cles, that is, of points which stand for small circles.
The formula £ = (% £;)' suffices to represent &, but
it is cumbersome. The sequence % x¥;, where % is
the collection of products of at most K inversions, con-
verges to £ more rapidly than the sequence % P, rela-

tive to any single point P,. Nevertheless, it converges
very slowly: without the exceptional computer
facilities marshalled for Figure 7, this algorithm would
only yield a very loose idea of #.

The Chain-based Subgroup %,

The most striking discrepancy between the old # and
the true # concerns the limit set #, corresponding to
the subgroup %, based on the 4 circles, C,, C,, C;, and
C,, that touch the domain £ 4. In the terminology of
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Figure 8

[2], these circles form a connected ““Poincaré chain”, in
which each link is tangent to exactly two neighbors.
(As a result, the limit set #, is a Jordan curve.) The old
¥4, separated from the rest of Figure 6, is shown on
Figure 9, and the true ¥,, as constructed by my new
algorithm, is shown on the back cover.

How do we determine #,? The idea is (once again)
to determine what is not in £,.

We begin with the observation that for any three
circles C;, C;, C, there is a common orthogonal circle
I';x that passes through the points of tangency of C;,
C;, and Cy. In this case the I}, are distinct; that
is, % 4 is not Fuchsian.
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Each circle I';;; divides the plane into two discs—one
bounded and one unbounded. One of these two open
discs contains no points of tangency of the four circles;
we denote it by A;,. To see this we can invert the
plane about a circle centered on the point of tangency
vi- The configuration of circles become that in Figure
10, and T';;; becomes a horizontal line: the transform of
Ay is the half-plane above or below the transform
of [yy.

Now it is not hard to see that an inversion in one of
the four circles cannot carry a point of tangency inside
Ay It follows that no transform of A;; contains a
transform of a tangent point. If we use the tangent



Figure 9
C.
Cl ] Ck
L
r.
L ij ijk
Ch

Figure 10

point y;; to compute &, then the union of all transforms
of the four discs Ay must be in the complement of £.

On the other hand, the boundary of A, (the circle
[';x) contains the limit set of the Fuchsian sub-group
generated by inversions in C;, C;, and C. Therefore,
any open disc containing A;;, must intersect £.

Now consider the 4 open discs A, and their clans
separately. One of the initiators, namely the disc A,
is unbounded, and it intersects the disc Ay3. (In the
present configuration, A3, is also unbounded—in
fact, I'y34 is nearly a straight line—but in other configu-
rations of 4-link Poincaré chains A,,, may be bounded.)
The discs Ajp4 and Ay are easily identified on Figure

11. Together, they provide a first approximation of the
outside of #,. It is analogous to the approximation of
the Koch snowflake curve ¢ in Figure 43 of [2], using
the regular convex hexagon that circumscribes 2.

The other initiator discs A, namely, the discs A
and A4, are bounded and intersect each other. They
are easily identified on Figure 12. Together, they pro-
vide a first approximation of the inside of #,. It is
analogous to the approximation of J by two triangles
forming the inscribed regular star hexagon (Plate 43 [2]).

A second approximation of the outside of &,, also
clearly seen in Figure 11, is achieved by adding to A,z
and A,y their inverses in C3 and C;, respectively. The
result is analogous to the second circumscribed ap-
proximation of 4 on Plate 43 of [2]. The corresponding
second approximation of the inside of the %, is
achieved by adding to A,,; and A,,; their inverses in
C4 and C,, respectively. The result is analogous to the
second inscribed approximation of ¢ (Plate 43[2]).

The complement of the o-disc (denumerable union
of discs) made up of the four clans % Ay, squeezes
down to the curve 4. The union of the four “initiator
discs’ alone provides a useful approximation of the
complement of £, The approximations using the
product of K or fewer inversions converge rapidly
to £,

Fractal Osculation. Osculating Discs

The fact that £, is not intersected by any of the four
open discs Ay, with indices associated with #,, but
is intersected in more than one point by the circle
bounding every Ay, suggests that £, and A, be called
osculating.

In its standard context in differential geometry, the
notion of osculation is linked to the concept of curva-
ture. To the first order, a standard curve near a regular
point P is approximated by the tangent line. To the
second order, it is approximated by the circle, called
“osculating”, which has the same tangent and the
same curvature.

The circles tangent to the curve at a point P can be
indexed by u, the inverse of the distance from P to the
circle’s center. The index of the osculating circle will
be written as u,. If u < u,, a small portion of curve
centered at P lies entirely on one side of the tangent
circle, except for P itself, while if u > u, it lies entirely
on the other side, except for P. We say u, is a critical
value or a cut.

For fractals, the definition of osculation by curva-
ture is meaningless. However, there is an infinity of
points where the limit set & of any Poincaré chain
squeezes between two discs tangent to each other. For
example, the point of tangency of the generating
circles C; and C; belongs to ¥, and £ squeezes between
two discs Ay and Ayy,. It is tempting to call both of
these discs osculating.
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To pinpoint this notion, we take a point P where
Z has a tangent, and start with the definition of ordinary
osculation based on critically (= cut). The novelty is
that, as u varies, the single critical u, is replaced by
two distinct values, #’ andu’’ > u’, defined as follows:
For allu < u’', £ lies entirely on one side of our circle
except for P, while for allu > u'’, & lies entirely to the
other side, except for P; and foru’ <u <u'', parts of &
are found on both sides of the circle. I suggest that the
circles of parameters u' and u'’ be both called fractally
osculating to £. The open discs bounded by the osculat-
ing circles and not intersecting #, will be called os-
culating discs. It may happen that one or two osculat-
ing circles degenerate to a point.

As is well known, standard osculation is a local con-
cept, since its definition is independent of the curve’s
shape away from P. By contrast, I have defined fractal
osculation globally, because this is all that was needed
here; a local version is defined without difficulty.

The Group ¢ . Classification of the circles ',
as either osculating or intersecting the set ¥

We found that for the subgroup %, every one of the
41/311! = 4 circles I'y;,, defined an orthogonal to 3 of the
generating circles C,,, is osculating to #,. For other con-
figurations of generating circles C,,, including the con-
figuration in Figure 5 and Poincaré chains with M =
4, the situation is more complex.

For example, consider the complement of the limit
set #. We know already that one needs the clan of Asss
under %, to generate the inside of #;, and that one
needs the clans of A3 and Ayy, under % 4 to generate
the inside of #,, and we shall see that one needs the
clans of Asgs, Ay and Ay under % to generate the
inside of # (Figure on this issue’s back cover). Simi-
larly we shall see that one needs the clans of Agys, Ay,
and A5 under % in order to generate the outside of
£ (Figure on this issue’s front cover).

However, the circles based on the triplets 234 and
135 behave in a totally different way: In either case,
some of the remaining circles C,, are positioned, re-
spectively, in the interior disc 4 ' and the exterior
disc & T. Two open discs, namely % I, and its in-
verse in the circle C,, located within #[;, cover the
whole plane; the same is true of & T'y.. A fortiori, the
clans %71, and % &1, are both identical to the
whole plane. Hence, when ijk = 234 or 135, neither the
interior nor the exterior of I';;; can serve as the initiator
disc of an osculating o-disc. It continues to be true,
however, that the complement of ¥ is a o-disc, and
that it is obtained as the union of clans of the form
% Ai;.. Moreover, whenever Ay can be defined, it is
needed for the construction, and whenever A, cannot
be defined, one can do without it. (Nevertheless, when
C;, C; and Ck form a Fuchsian subgroup having a full

circle I';;. as its limit set, the construction of £ is made
much faster by including % I';;..)

Now to the statement of a general rule. In order for
the triplet i, j, k to be needed in the case of the group
% , the key facts are as follows: A) There exists a
unique circle orthogonal to C;, C;, and C;; B) Either the
inside of I'y; or the outside of I'y;, fails to contain any
of the points of tangency between any two circles
G anid Cas

More general non-Fuchsian groups

This last rule applies to more general groups % based
upon inversions. The first step is to replace the points
of tangency when C,, and C,, are not tangent. As noted
early in this paper, when C,, and C, fail to overlap,
there are two points, <y, in C, and vy,, in C,, which
are mutually inverse with respect to both C,, and C,.
When C,, and C, overlap, let ¥*,,, and ¥*,,, denote their
intersection points. Now requirement B) at the end of
the preceding section generalizes as follows: the circle
I is osculating if, for allm and n, either its inside or
its outside fails to include v,,,, and includes either the
point y*,,, or the ptoint v*um. but not both.

Fuchsian groups and osculating intervals

When there is a circle I' orthogonal to all the C,,, my
algorithm always yields I itself, but ¥ may be either I',
or a fractal dust subset of I'. In addition, the group
may be everywhere continuous, a case which I call
chaotic and which is not investigated in this paper;
if so, £ is the whole plane. In order to construct.# when
it is not the plane, we use osculating intervals.

When both intervals bounded by v;; and y;; contain
no other y,,, £ reduces to y; and vy;. This case plays
for the Fuchsian groups the same degenerate role as
the Fuchsian groups play for the other groups based
upon inversions.

Acknowledgment. The illustrations in this paper were

drawn using computer programs written for this
purpose by Dr. V. A. Norton.

References

1. Robert Fricke, Felix Klein (1897) Vorlesungen iiber die
Theorie der automorphen Funktionen. Leipzig: Teubner.
(1965) Reprint. Johnson.

2. Benoit Mandelbrot (1982) The Fractal Geometry of Nature.

San Francisco: W. H. Freeman. (Supersedes Fractals:

Form, Chance and Dimension, W. H. Freeman, 1977.)

Henri Poincaré (1914). Oeuvres. Gauthier-Villars.

Benoit Mandelbrot (1981) Mathematical Calendar. New

York-Heidelberg-Berlin: Springer-Verlag.

oW

IBM Thomas |. Watson Research Center
Yorktown Heights, New York 10598

THE MATHEMATICAL INTELLIGENCER VOL. 5, NO. 2, 1983 17



