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INTRODUCTION

Given a mapping = — f(z. ). where f is a rational function of both z and A,
consider the iterated maps z, = f{ f{. .. f{zc). . .)) of the starting point z,. To achieve 2
global undersianding of these iterates’ behavior, it is necessary to allow A and z,, hence
z, also, 1o be complex variables. Contrarily, the extensive recent studies of the
mapping z — Az(1 — z}, lor example, those found in Reference 1 and in the present
volume, are largely restricted to A real = [1, 4] and =z real = [0, 1]. Hence, they are
powerful but local and incomplete. The global study for unrestricted complex A and =
throws fresh light upon the results of these restricted studies. and reveals important
new facts, In this light, 2an immediate change of emphasis from the restricted studies 1o
even more general mappings fx — f(x. ». Ak ¥ — glx. y. A)} appears 1o be
premature.

The present paper stresses the role played in the unrestricted study of rational
mappings by diverse fractal scts, including A-fractals (sets in the A plane). and
=-fractals (sets in the z planc). Some are fractal curves (of topological dimension 1),
and others arc fractal “dusts” (of topological dimension 0). The =z-fractals are of
special interest, since they can be interpreted as the fractal attractors of appropriately
defined (generalized) discrete dynamical systems, based upon inverse mappings. This
role is foreshadowed in the work of P. Fatou™ and of G. Julia® (and even that of H.
Poincaré, in the related context of Kleinizn groups), but the topic was never pursued.
Indeed, an explicit and systematic concern with fractals only came with my book,” in
which, for the first time, the notion itself was defined and given a name: A fractal set is
one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the
topological dimension. This paper’s illustrations arc fresh (and better than ever)
examples of what this definition implies intuitively. The text is a summarized excerpt
from Reference 6. A related excerpt concerning the fractal attractors of Kleinian
rroups is Reference 7. The final section comments on “strange™ attractors.

THE A-FracTaL @

We denote by Q the set of values of A with the property that the initial points z, for
which Lu.b. |z,| < = include a closed domain (that is, a set having interior points). It is
well known that it suffices that Lub.|z,| = = hold when the initial point is the
*eritical™ point =, = 0.5. The portion of ) for which Re{A) = [ is illustrated in FIGURE
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Fioure 1. Complex plane map of the A-domain . The real axis of the A-plane points up from
A = 1. The center of the circle is A = 2 and the tip of the whole is A = 4.

1. the remainder of Q being symmetric to this figure with respect to the line
Re(Ad) = 1.

A striking fact, which 1 think is new. becomes apparent here: FIGURE 1 is made of
several disconnected portions, as follows.

The Domain of Confluence L, and fts Fractal Boundary

The most visible feature of FIGURE | is the large connected domain L surrounding
A = 2. This £ splits into a sequence of subdomains one can introdude In successive

stages.
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The first stage subdomain, .L,, is constituted by the point A = | plus the open disc
A = 2] = 1 {left blank on FiGuRE | 1o clarify the remainder’s structure). If A & L,
there is a finite stable fixed point. (Proof: When ReA = 1, the stable limit point, if it
exists, is 1 — 1/A; the condition | (1 = 1/X)| < 1 boils down to|A — 2| < 1.}

The remaining, and truly interesting, portion of £ is shown in black on FIGURE 1.
The fact that this black area is “small” means that the mapping z — Az(l — z) is
mostly not bizarre. However, many interesting and bizarre behaviors {some of them
unknown so far, and others thought o be associated with much more complex
transformations) are obtained here in small but nonvanishing domains of A.

Each of the second stage subdomains of L is indexed by one or several rational
numbers /3. The subdomain £ (a/8) is open, except that we include in it the limit
point where it attaches “sprout”-like to £ this is the point A — 2 = —¢™ =
—exp| - 2xi(a/B)]. When A & L{a/B), the sequence z, has a stable limit ¢ycle of
period 4. This cycle can be obtained through a single g-fold bifurcation by a
continuous change of A that starts with any stable fixed point, for example, with the
stable fixed point z, = 0.5 corresponding to Ay = 2.

Each of the third stage subdomains of £ is indexed by two rational numbers:
Lie /B, ay/B:); it is open, save for the point where it attaches, again sprout-like, to
Lie, /8,). When A & L /8, oyfB2). the sequence z, has a stable limit cycle of
period 8,8, resulting from two successive bifurcations, respectively 8,-fold and 3,-fold,
which started with a stable fixed poinmt in £,

Further series of subdomains are similarly indexed by increasingly many rational
numbers o, . . . e, /8, £ combines all the values of A that lead either to stable limit
points of z, or 1o stable limit cycles that can be reduced to stable limit points by the
inverse of the bifurcation process. | propose for this process the term confluence, which
is why I call £ the domain of confluence.

The domains £ (a/8) etc. are nearly disc shaped, but not precisely so. More
generally, the boundary of each sprout is nearly a reduced scale version of the whole
boundary of £. Recalling the classic construction of the “snowflake curve,”™ one can
have little doubt but that the boundary of £ is a fractal curve.

The Transformed Domain M

Using the often invoked transformed variable w = {2z — 1)A/2 re-expresses the
mapping z — Az(l = z) intow — u — w', where g = (A?/4) — (A/f2). This leads to the
replacement of the A-set £ by a u-set M. The counterpart to the discs [A — 2| = |
(= £,)and|A| = 1 (the symmetric of £, with respect to Re(A) = 1) is a shape .M,
bounded by the fourth order curve of cquation g = ¢**/4 — ¢*/2. The sets Jt and .,
will be needed momentarily. Hence, the scholars’ familiar hesitation between the
notations involving A or g is not resolved here: the shape £, is far simpler than i, but
<M is more useflul than L.

The Domains of Nonconfluent, or K-Confluent, Stable Cycles

In addition 1o £, the domain @ is made of many smaller subdomains. Indeed, 1
discovered that at least some of what are, apparently, specks of dirt or ink on FIGURE 1
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are indeed real: more detailed maps reveal a well-defined “island” whose shape is like
that of .M, except for a nonlincar one-to-one deformation. Each island is. in turn,
accompanicd by subislands, doubtless ad infinitum.

When A lies in an island’s deformed counterpart to L. =, has a stable limit cycle of
period w = 1. When X lies in an island's deformed counterpart to £, /4, . . . o B),
=, has a limit stable cycle of period wf,, ... 8, One would like again to be able 1o
reduce these cycles, through successive confluences provoked by continuous changes in
A, 1o the fixed point Ay = 2. But this is impossible. None of these fixed cycles is
confluent 1o a fixed point.

Some islands of L that intersect the real axis create intervals that have been
previously recognized and extensively studied. It was clear that a cycle with A in such
an interval is not confluent to A = 2 through real values of A. We see that it is not
confluent through complex As, either.

The Radial Patterns in the Distribution of the Domains of Nonconfluence

The islands that intersect the real axis can be called “subordinate” to the value of
A = 3.569, which is known to mark the right-most point of £, and corresponds to an
infinite sequence of successive 2-bifurcations. More generally, | observe that every
island is subordinate 1o a A corresponding 10 an infinite sequence of successive
bifurcations. The subordination is spectacular (on a detailed A-map) when the first of
these biflurcations is of high order, that is, when 8,/ 2x = &, /8, with a high value of 8,.
But the subordination is already apparent in FIGURE 1 for the outermost point of the
sprout linked to L at 8,/2x = \. Morcover, the islands are arrayed along 8, directions
radiating from an “offshore point.” In particular, if X corresponds to several successive
bifurcations, the other 8, do not affect the number of radii. For details, see Reference
6.

THE z-FracTAL F(X)

We proceed now to a family of z-plane fractals associated with z — Az(1 - 2).

Definition

First, recall that z = = is a stable fixed point for all A. (Proof: In terms of u = 1/z,
the mapping is & — g(u) = o’ /Mu — 1); we sec that g(0) = 0 < 1.) For each A, the
z-fractal F(}) is defined as the (closed) set of points =, such that Lu.b.|z,| # =, that
is, as the set of points whose iterates fail to converge to «. This set, F(A). is never
empty: it includes z, = 0, which is an unstable fixed point, all of whose iterates also
satisfy z, = 0, plus all the finite preimages of =, and their limit points. Furthermore,
F(A) is always bounded: it is casy to see that it is contained—with room to spare!’—in
the circle |z ~ 0.5] = 2.5. The boundary of F(A) is 1o be denoted by F*(A).

FIGURE 2 shows an example involving a 7-fold bifurcation.
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Figure 2, Map of (1) for A near a 7-fold bifurcation.

Exceptional Values of A, for Which F(\) is a Standard Shape

The only such values of Aare A = 4, A = 2, and A = =,

For A = o=, F*{=), hence F(=), reduces to the points 0 and 1. Obviously, z, = =
except conceivably for z5 # 0 and z;, = |: these values yield an indeterminate
expression z; = 0 « =, The expression is made determinate by noting that the inverse
transform leaves these points invariant, The relevance of the inverse transform will be
made clear below,

For A = 4, F*(4), hence F(4), reduces the segment [0, 1]. Indeed, introducing the
new variable w (2z = 1) changes z — z({1 — 2) inlow — 2w® — 1, and the further
new variable u = cos "w yields w — 2w, hence u, = 2'w. When Iming) # 0, Imiw,) |

= = and |z,| — =. Hence, the & coordinate representation of F(4) is the real axis,
implying that w & [—1,1] and z & [0, 1].

For A = 2, the same variable w changes z — 2z(1 — z) into w — w*, mcaning that
F*(2)isthecircle|w] = 1,ie.]z - 05]|= 0.5, and F(2) is the closed disc bounded by
this circle, Clearly, w, — 0, hence 2, — 0.5 z; & F(2) — F*(2), and w, — =, hence
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Figure 3. Composite FIA) for several real valued A's: & . &= 1.5 (from
mid-grey to black), A 2.5 (dark grev 1o black) A = 2.9 {black ¢ The o for A 1 i
called the San Marco shape in the text, The two points that are co to all four diagrams are

==0Dand 2 =



Mandelbrot: Fractal Aspects of lieration of z — Az(1 - z) 257

{J\}
7N A

.

L

FIGURE 4. The 64 000 first positions of a dynamic system attracted to the San Marco fractal
shape.

<

For A = 2, when F*()\) is a circle, the invariant measure is known to be uniform.
For & = 4, when F*(A) is [0, 1], the invariant measure is readily seen to be the real
axis projection of a uniform measure on a circle; hence, it has the “arc-cosine™ density
w '[x{1 — x)]""% Both are found empirically to be very rapidly approximated by
sample dynamical paths. See also the approximation of the San Marco shapes in
FIGURE 4. On the other hand, the most interesting cases, where F*(A) is extremely
convoluted, as in FIGURE 2, involve a complication. The limit measure (= invariant
measure) on F*(A) is extremely uneven. The tips of the deep “fjords™ require very
special sequences of the ¢, to be visited, and hence are visited extremely rarely
compared 1o the regions near the figure's outline.

A DIGRESSION COMNCERMING “STRANGE ATTRACTORS"

Lately, the term “attractor™ has often been associated with the adjective
“strange,” and the reader may legitimately wonder whether strange and fractal
attractors have anything in common. Indeed, they do.

First Point

The fractal {Hausdorff-Besicovitch) dimension D has been evaluated for many
strange attractors, and found to exceed strictly their topological dimension. Hence,
these attractors (and presumably other ones, perhaps even all strange attractors) are
fractal sets. The £ of the Smale attractor is evaluated in Reference 8. And the
Saltzman-Lorenz attractor with o = 40, ¢ = 16, and & - 4 yields £ = 2.06; this result
was obtained independently by M. G. Velarde and Ya. G. Sinai, who report it in
private conversations but neither of whom has, to my knowledge, published it. {Last
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minute addition: A preprint by H. Mori and H. Fujisaka confirms my value of D for
the Smale attractor and the Velarde-Sinai value of D for the Saltzman-Lorenz
attractor. For the Hénon mapping with @ = 1.4 and b = 0.3, it finds that D = 1.26.)
The fact that P = 2.06 is very close 1o 2, but definitely above 2, means that the
Salizman-Lorenz attractor is definitely not a standard surface, but that it is not
extremely far from being one.

Since the relevance of £ in this context may puzzle those who only know of fractal
dimension as a measure of the irregularity of continuous curves, let me point out that
in this instance, D is not a measure of irregularity but of the way smooth surfaces pile
upon cach other—a variant of the notion of fragmentation, which is also studied in
Reference 5.

Let us also recall from Reference 5 that the HausdorfT-Besicovitch discussion was
not the sole candidate for fractal dimension, but was selected because (1) it is the most
thoroughly studied, (2) it has theoretical virtues, and (3) in most instances, the choice
does not matter, because diverse reasonable alternative dimensions yield identical
values. In an interesting further development in the same direction, a relation has
recently been conjectured to exist, and verified empirically on examples, between a
strange attractor’s fractal dimension and its Lyapunov numbers (preprints by H. Mori
and H. Fujisaka and by D. A. Russell, J. D. Hanson, and E. Ott.)

Second Point

One is tempted, conversely, to ask whether the fractal attractors 1 study are
“strange.” It depends which meaning is given to this last word. Using its old-fashioned
“meaning,” as a milder synonym to “monstrous,” “pathological,” and other epithets
once applied to fractals, the answer is “Yes, but why bother 1o revive a term whose
motivation has vanished when fractals were shown, by Reference 5, to be no more
strange than coastlines or mountains.” Unfortunately, the term “strange™ has since
acquired a technical sense, one so exclusive that the Saltzman-Lorenz attractor must
be called “strange-strange.” In this light, many fractal attractors of my dynamic
syslems are not strange at all. Indeed “strangeness™ reflects nonstandard topological
properties, with the nonstandard fractal properties mentioned above coming along as a
seemingly inevitable “overhead.” In this sense (1) a topological circle (intuitively, a
closed curve without double points) is not sirange, however crumpled it may be; hence,
(2) the fractal attractors F*(A) for [A — 2| < 1 are surely not strange.

However, the fractal attractors associated with other rational mappings | have
studied are topologically peculiar.” Thus, the answer to our question is confused. But it
i$ nol an important question: the term “strange”™ has, in my opinion, exhausted its
usefulness, and ought to be abandoned.
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