LECTURE V

FRACTALS AND TURBULENCE: ATTRACTORS AND DISPERSION

Benoit B. Mandelbrot

The renewal of interest in the mathematical aspects of turbu-

lence has several independent and near simultaneous sources. The
dynamics approach well represented in this seminar is rooted in
the combined arguments of Lorenz 1963 and Ruelle & Takens 1970.
A separate approach started with the combined arguments of Kolmo-
gorov 1962, Berger & Mandelbrot 1963, and Novikov & Stewart 1964;
the most recent statement is found in Mandelbrot 1976 and in the
book Fractals, Mandelbrot 1977.

The two approaches are bound to converge, if only because
both--and also those exemplified by the work of U. Frisch--make
vital use of nonstandard sets I have termed fractals. One notion
that is or should be stressed particularly in this kind of work
is the Hausdorff-Besicovitch dimension D. Since this notion is
classical but, so to say, somewhat obscure, it will be defined
and motivated below. However, it may be useful to say immediate-
ly that (in Fractals) a fractal set is defined as being such that

Hausdorff Besicovitch dimension > topological dimension.

For the standard sets of Euclid, on the contrary, these dimen-
sicons coincide. The term fractal structure may be defined loose-
ly as synonymous with structure involving D. This guantity

becomes known as the fractal dimension.

The prototypical fractal is the Cantor set, and the product
of a Cantor set by an interval is also a fractal. This last
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example enters in the well-known 1967 paper by Smale (see also
Lecture III above) and in Ruelle & Takens 1970. Each stage of
the Smale construction contracts the intercept of a torus into
N>1 domains contained in it, with the usual illustration assuming
N=2. In a different guise, contraction with N>1 also underlies
the processes due to Hoyle and to Novikov & Stewart which
Fractals describes under the name of "curdling". (The presently
available physical motivations are sketchy in both cases.) Cur-
dling also involves a second (weakly motivated) assumption, which
has a counterpart in the the theory of contraction as restated in
Smale's lecture above (but not in the original). The assumption
is that each iteration replaces a set (either a curd or the
meridian intercept of a domain) by N subsets that are similar to
the original in a known ratio r<1.

The assumption concerning N is topoclogical, but the assump-
tion concerning r is metric in character. One metric property to
which it points is the fractal dimension, which we shall see is
given in this context by D=logN/log(1/r). There are many ways of
estimating the D from data (see Fractals) and their practical
importance suggests that the dynamics approach ought to be devel-
oped beyond topology, to include the fractal aspects. The same
remark applies to studies & la Lorenz 1963; there is no doubt
(though the fact remains to be proved) that the corresponding
"worse than strange" attractor is fractal; but its dimension is
not known to me. To evaluate it would be of intrinsic interest
and might help assess guantitatively rather than gualitatively to
what extent natural turbulence is modeled by simplified systems
of this kind (e.g., Hénon's model). (The value of D may play the
role occasionally playved by the exponent in the spectral density.
It seems sometimes that simplified dynamic systems cease to be
meant to derive the Kolmogorov k™°/3 spectrum, the quality of a
simplified system being judged on its ability to predict the -5/3
exponent.)

Thus, the term strange attractor used in Ruelle & Takens 1970

may well be a victim of the very success of the underlying ap-
proach, a more positively descriptive term becoming desirable.
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One may suggest fractal attractor. (One could go so far as to

argue that the first words in the title of this talk are descrip-
tive of the whole object of this seminar; however, this is not a
suggestion I want to promote.)

Two aspects of the notion of dimension: motivation. The

mathematical characteristic which-the Lorenz and other "strange"
attractors seem to share with the sets used in Fractals is the
following: It is known of the latter and suspected of the former
that two alternative definitions of the notion of "dimension"
yield distinct numerical values. The first is the topological
dimension D;. The second is the dimension D defined by Hausdorff
and Besicovitch. Before we recall its definition, it is good to
motivate D through the related concept of similarity dimension

illustrated on Figure 1. (However, said illustration can be
skipped; it is a variant of many in Fractals.) Figure 1 is the
composite of two very-many-sided polygons one may call teragons.
In Greek, teras = a wonder or a monster, and in the metric system
tera = 10'2.,  One of these teragons is violently folded upon
itself, being an advanced stage of the construction of a
plane-filling curve. By way of contrast, the second curve can be
called a wrapping. Both are constructed by a von Koch cascade,
from (a) an initial polygon, and (b) a standard polygon. The
first construction stage replaces each side of the initial poly-
gon by a rescaled and displaced version of the standard polygon.
Then a second stage repeats the same construction with the poly-
gon obtained at the first stage, and so on ad infinitum.

The early construction stages are illustrated in Figure 2.
The initial polygons are, respectively, a unit square and an
irregular open polygon with N=17 sides. (It goes through every
vertex of a certain lattice that is contained in the square.)
Then each side of this 17-polygon is replaced by an image of its
whole reduced in the ratio of r=1/v¥17. The result fills almost
uniformly the shape obtained by replacing each side of the square
by a certain polygon made of N=7 sides of length r=1/v17.
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FIGURE 1

FIGURE 2
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Incidentally, the familiar Peano curve and its variants drawn
circa 1900 £ill a square or a triangle, but recent Peanc curves,
like the present one, tend to involve more imaginative bounda-

ries.

Since each construction stage multiplies length by a fixed
factor Nr>1, both limit curves are of infinite length. But the
filling tends to infinity more rapidly than its wrapping. This
is expressed mathematically by the notion of similarity dimen-
sion. An intuitive explanation uses the following elementary
fact: for every integer y, the "whole" made up of a D dimensional
parallelepiped may be paved by N=yP "parts" which are parallelep-
ipeds deduced by a similarity of ratio r(N)=1/y. Hence,
D=logN/log(1/r). A dimension thus expressed as an exponent of
self similarity continues to have formal meaning whenever the
whole may be split up into N parts deducible from it by similari-
ty of ratio r (followed by displacement or by symmetry). Such is
the case with both limits here. For the wrapping, N=7 and
r=1/v17, hence D=log7/logv17=1.3736. For the filling, N=17 and
r=1/v17, hence D=logl17/logv17=2. Thus the impression that the
filling is more infinite than its wrapping is quantified by the
inequality between their dimensions. The fact that the filling
really fills a plane domain is confirmed by its dimension being
D=2.

Hausdorff Besicovitch dimension and fractals. The first step

in a general definition of D is to define the Hausdorff d-
measure. Given a set S in a metric space and p>0, one covers S
by balls with radii p_ <p, and one forms the sum Epmd; one takes
the infimum of this sum over all coverings that satisfy p <p,

then the limit of the infimum for p+0. The resulting m4(S) is by
definition the Hausdorff d-measure of S. There exists a value of
d, to be denoted by D, such that when d>D, m4(S)=0 and when d<D,
my(S)==. This D is by definition the Hausdorff Besicovitch
dimension.

Clearly, D is a metric rather than a topological property; I
describe it as being a "fractal" property. More precisely, by a
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theorem of Szpilrajn (Hurewicz & Wallman 1941, p. 107), the
topological dimension D, and the above D are related by DzD,.
This explains the definition of fractals through D>D,. The
wrapping in Figure 1 is a curve of topological dimension 1; hence
it is a fractal curve. For the triadic Cantor set, D=0 while
D=log2/log3; hence it is a fractal. For the Cantor set consid-
ered by Smale in Lecture III above, D=-logZ/loge,<1. (However,

by making N larger, one could obtain any D<2 in this fashion.)

In the case of homogeneous Kolmogorov turbulence in the Gaussian
approximation, the isosurfaces of scalars satisfy D=2 and D=8/3,
hence they are fractal surfaces. (While this value of D is used
extensively in Fractals, a complete formal proof became available
too late to be included in the bibliography; the reference is
Adler 1977.)

Very frequently, D coincides with the similarity dimension
examined in the preceding section.

Formal relation between fractal dimension and entropy-

information. By theorems of Besicovitch and Eggleston (see
Billingsley 1965), the fractal dimension frequently takes the
form of an entropy-information; for example, there often exist an
integer C and a discrete probability p, such that D=-Zp,log.p,-
Example: for the triadic Cantor set, p;=1/2, p,=0, and py=1/2,
while C=3 (hence C=y=1/r); thus D=log;2. The corresponding topo-
logical entropy comes to mind: it is equal to log2 with an
unspecified basis for the logarithm. The metric entropy speci-
fies this basis as being 1/r.

The preceding formal relation may help bring the topological
dynamic aspects and the fractal aspects of turbulence together.

Dispersion of a fluid line or tube. It is not for fractals

and fractal dimension to provide ready-made theories, but they
often help formulate empirical observations into geometric con-
jectures that suggest further experiments and mathematical prob-
lems. For turbulence, consider dispersion starting with a smooth
curve such as a straight segment. According to one theory,
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homogeneous turbulence causes the length to increase exponential-
ly in time. It is easier to visualize the effects of a single
"pinch" of turbulent energy left to decay. Within the Richardso-
nian view of self similar turbulence, one can argue that said
effects subdivide into a sequence of stages, each of which multi-
plies the curve's length by some factor, either a fixed one or a
random one with a fixed distribution. This picture is a variant
of the Koch cascade of Figures 1 and 2. If it could be carried
out ad infinitum (neglecting the viscosity cutoff and the effects
of molecular diffusion), it would involve a fractal limit, and
the following alternative emerges: is this limit space-filling,
so that D=3, or such that D<3?

In planar reduction, D<3 corresponds to a curve like the
wrapping in Figure 1, while D=3 corresponds to the filling. Let
us first explore this second alternative. It views each 17-sided
polygon in the Koch construction of the filling as an eddy
(involving a net overall transport of matter). Observe that two
intervals of the initial curve having equal lengths are mapped on
two domains having equal areas. (In space: equal lengths map on
equal volumes.) However, this interesting complication is avoid-
ed 1f the Koch cascade does not initiate on the bottom side of a
square but on a domain. This domain can be taken to be the whole
square and the first cascade stage can be assumed to replace this
square by 17 squares collectively bounded by the first stage of
the wrapping, and so on. In this fashion, our curve-to-domain
application is embedded into a domain-to-domain application and
the image of a curve by the first application is identical to the
image of a domain by the second application. Any other initial
set again yields the same image if it is included in the square
and includes its bottom side. For example, one can represent a
fluid tube by the bottom 1/10-th of the original square, rounded
off to be shaped like one half of a sausage link. Our cascade of
transformations will make it into 17 smaller links, then 172,
etc. The limit will again be the whole interior of the wrapping
on Figure 1. Each stage of the mapping is discontinuous along
the lines where the preceding stage's link has been "pinched".
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The (conjectural) turbulent mixing thus illustrated is gross-
ly nonstationary. It is completely different from the usual
stationary mappings such as the baker's transformation. Second
difference: this "turbulent” mixing involves fixed points in
exponentially increasing number and the baker's mixing has one
fixed point. Third difference: there are reasons to expect the
successive stages in this kind of turbulent cascade to proceed
increasingly rapidly and the limit to be attained in finite time.
(Denoting this time by t*, the length will vary like (t*-t) @
with « a constant.)

The preceding model is readily generalized. Assuming that
overall laminar motions are added, the final shape is no longer
"globular”, rather a long narrow strip, its overall shape being
ruled both by turbulence and the laminar flow, and its detailed
structure ruled only by turbulence. Furthermore, eddies can be
made to be of different sizes, as for example in Figure 3. 1In
comparison with the Koch method, the algorithm used here involves
some complications, on which we shall not dwell. Broadly speak-
ing, the initial shape ("sausage link") is a triangle. An earli-
er stage of the construction is visible (in reduced scale) in the
eight triangles near the top of the picture, to the right.

An alternative conjectural view of turbulent dispersion in-
valves the transformation of a smooth curve with D=1 into a
fractal curve with D<3. The corresponding planar reduction is
easily expressed; it would transform D=1 into D<2, as exemplified
by the bottom fourth of the wrapping on Figure 1. However, the
spatial form of this conjecture is hard to visualize. It is
easier to imagine a spatial domain bounded by a surface of dimen-
sion D=2 being dispersed into a domain bounded by a surface of
dimension De]2,3[. See, for example, Fractals, p. 52, where
(somewhat weak) reasons are given to believe that D=8/3. Simi-
larly, one can work with a fluid filament with a diameter smaller
than the original outer scale L and greater than the viscous
inner scale 5. As the cascade progresses and energy splits into
eddies of decreasing diameter, this filament is taken to stretch
and fold on itself. When the filament and eddy diameters are
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FIGURE 3
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assumed proportional, we are led back to D=3. 1In order to
achieve D<3, the eddy diameter must decrease more rapidly than
the filament diameter. Such eddies will stretch the filament
until it and the eddy have equal diameters. Thereafter, eddies
will only affect the detail of the filament's surface; the
filament's effective length will cease to change.

Of course, the preceding argument remains to be randomized,
possibly along lines suggested by Robert Kraichnan. However, the
feasibility of significant randomization depends strongly upon
the dichotomy between D=3 and D<3. In the latter case, there is
much room for it. In the former case, there is very little.

Now let us go from discrete pinches of turbulent energy on to
homogeneous turbulence, approximating its effects to those of a
sequence of pinches. In the case D<3, the filament's length will
increase exponentially in time, as postulated by the theory to
which we referred at the start. The sequence of successive
transformations affecting it will be stationary.

Before attempting to model turbulent dispersion in detail, it
may be advisable to analyze the evidence again, better than I
could do here, to determine which of the above listed
possibilities--or a farther variant--represents it properly.
Once their task of helping sort alternatives is performed, the
above cascade arguments should cease to be taken seriously, but
the geometry they involve is likely to remain applicable.
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