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Various distinct aspects of the geometry of turbulence can be studied
with the help of a wide family of “‘shapes”, for which I have recently
coined the neologism “fractals™. Until now, they had been used hardly at
all in concrete applications, but I have shown them to be useful in a
variety of fields. In particular, they play a central role in the study of a)
homogeneous turbulence, through the shape of the iso-surfaces of scalars
(Mandelbrot 1975a), b) dispersion (Mandelbrot 1976a), and especially
c) the intermittency of dissipation (Mandelbrot 1972 and 1974a,b).
Fractals are all loosely characterized as being violently convoluted and
broken up, a feature denoted in Latin by the adjective “fractus”. Fractal
geometry approaches the loose notion of “form™ in a manner different
and almost wholly separate from the approach used by topology.

The present paper will sketch a number of links between the new
concern with fractal geometry and the traditional concerns with various
spectra of turbulence and the kurtosis of dissipation. Some of the results
sketched will lead to improvement and/or correction of results found in
the literature, including further refinement of Mandelbrot 1974a,b.

One result described in Chapter IV deserves special emphasis: It
confirms that intermittency requires that the classical spectral exponent
5/3 be replaced by 5/3+B. However, the factor B turns out in general to
be different from the value ordinarily accepted in the literature, for
example in the treatise by Monin and Yaglom 1975. Said value, derived
by Kolmogorov, Obukhov, and Yaglom, is linked to the so-called lognor-
mal hypothesis, which is a separate Ansarz, and is highly questionable.

Other results in the paper are harder to state precisely in a few words.
In rough terms, they underline the convenience and heuristic usefulness of
the fractally homogeneous approximation to intermittency, originating in
Berger & Mandelbrot 1963 and Novikov & Stewart 1964. On the other
hand, they underline the awkwardness of the lognormal hypothesis. That
it is only an approximation has been stressed by many writers of the
Russian school, but it becomes increasingly clear that even they underesti-
mated its propensity to generate paradoxes and to hide complexities.

Turbulence and Navier Stokes Equations (Orsay, 1975).
Edited by Roger Temam (Lecture Notes in Mathematics 565).
New York: Springer, 121-145,
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My book Les objets fractals: forme, hasard et dimension, Mandelbrot
1975b, describes numerous other concrete applications of fractals. It can
also serve as a general background reference, but its Chapter on turbu-
lence is too skimpy to be of use here. This deficiency should soon be
corrected in the English version, tentatively titled Fractals: form, chance
and dimension, which is being specifically designed to also serve as pre-
face to technical works such as the present one. Nevertheless, in its main
points, the present text is self-contained.

I. CURDLING AND FRACTAL HOMOGENEITY.
ROLE OF THE FRACTAL DIMENSION D=2.

The term ‘“‘curdling’ is proposed here to designate any of several
cascades through which dissipation concentrates in a small portion of
space. Absolute curdling is described by the Novikov & Stewart 1964
cascade. Its outcome was described independently, without any generat-
ing mechanism, in Berger & Mandelbrot 1963 and Mandelbrot 1965.
Weighted curdling is described by the cascades of Yaglom 1966, Mandel-
brot 1974b and Mandelbrot 1972. It turns out that absolute curdling is
more realistic than suggested by its extreme simplicity and in addition it
provides an intrinsic point of reference to all other models. Therefore it
deserves continuing attention. Weighting will be examined next. It turns
out that it mostly adds complications, and its apparent greater generality
is in part illusory.

Absolute curdling. Before each stage, dissipation is assumed uniform
over a certain number of spatial cells, and zero elsewhere. Curdling
concentrates it further: each of the initial cells breaks into C = I'? sub-
cells and dissipation concentrates within N2 of these, called “curds”.
The quantity p = 1/I is the ratio of similarity of sub-cells with respect to
the cells.

After a finite number of stages of absolute curdling, dissipation con-
centrates with uniform density in a closed set, whose outer and inner
scales are L and n and which constitutes an approximation to a fractal.
Figure 1 represents such an approximate fractal in the plane. (We shall
soon see it is nearly a plane cut through an approximate spatial fractal.)

The most important characteristic number associated with a fractal is
its fractal (Hausdorff) dimension, which in the present case is most
directly defined as

D = log N/log (1/p).

It is always positive (because of the condition N22), and it is ordinarily a
fraction. On Figure 1, T =5 = 1/pand N = 15, so that D = 1.6826 (the
values of N and p were chosen to make this D as close as conveniently
feasible to 5/3). One reason for calling D a dimension is elaborated upon
in Figure 2,
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The notion of fractal dimension also extends to shapes that are not self
similar. D is never smaller than the topological dimension D;. For the
classical shapes in Euclid, D=D, and the shapes for which I had intro-
duced the term fractals are by definition such that D>D,.

When dissipation is uniform over such a fractal of dimension D<3,
turbulence will be called fractally homogeneous. The modifier is of course
meant to contrast it with G. I. Taylor’s classical concept of homogeneous
turbulence, which can henceforth be viewed as the special limit case of
fractally homogeneous turbulence for D+3. The salient fact is that the
generalization allows D-3 to be negative.

The value of D refers to just one among many mathematical structures.
It follows that the same D can be encountered in sets that differ greatly
from other viewpoints, for example are topologically distinct. Neverthe-
less, many aspects of fractally homogeneous turbulence turn out to de-
pend solely upon D. In an approximate fractal of dimension D and scales
L and 7, it is clear that dissipation concentrates within {(L/%)° out of (L/%)?
cells of side . This approximation’s volume is (L/5)%p3. The relative
occupancy ratio of the region of dissipation (measured by the relative
number of curds of side n within a cell of side L) is (n/L)?3. Therefore
the uniform density of dissipation in a curd must be equal to (L/#)*P
times the overall density of dissipation.

The difference 3—-D (or, for sets in A-dimensional Euclidean space with
A#3, the difference A-D) will be called codimension. This usage is con-
sistent with the usage prevailing in the theory of vector spaces.

The quantities evaluated in the preceding paragraph concern solely the
way blobs of intermittent turbulence spread around. Therefore D is a
so-called metric characteristic. It is conceptually distinct from the topo-
logical characteristics of the way blobs are connected. And indeed, as is
already the case for defining inequality D>D,, most of the relationships
between fractal and topological structures are expressed by inequalities.
Topological structures prove very difficult to investigate, but fractal
structures are more easily accessible to analysis. It is fortunate therefore,
as we shall show in this paper, that several structures which a casual
examination would classify as topological actually turn out to be exclu-
sively or predominantly metric, namely, fractal. One example is the
degree of intermittency as measured by the kurtosis. Another is the
intermittency correction to the 2/3 and 5/3 laws, even though intermit-
tency may conceivably have a distinct topological facet.

Weighted curdling. This more general process proceeds as follows.
Each stage starts with dissipation uniform within cells. Then the density
of dissipation in each subcell of a cell is multiplied by a random factor W,
with (W)=1. As a concept, W is related, but not identical, to the Yaglom
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multiplier. The cascade underlying weighted curdling is a generalization
and a conceptual tightening-up of various arguments concerning the
lognormal distribution. (In the absence of viscosity cutout, weighted
curdling leads asymptotically to an everywhere dense fractal that is —
topologically — open rather than closed. However, this distinctive feature
vanishes when high frequencies are cut out by viscosity.)

The inner scale. The value of =, of course, is determined by the
dissipation and the viscosity ». Its value in the Taylor homogeneous case
is well known. In the fractally homogeneous case, it continues to be
well-defined, with a value that also depends on D. In the general case,
however, the notion of 7 involves great complications. They will be
avoided in Chapters III and IV, and only faced in Chapter V.

Behavior of linear cross-sections and a deep but elementary experimental
reason to believe that for turbulent dissipation D>2. Most conveniently, the
fractal dimensions of the linear and planar cross-sections of a fractal are
given by the same formulas as the Euclidean dimension of the correspond-
ing cross-sections of an elementary geometric shape. We shall state the
rule, then show that, combined with evidence, it suggests very strongly
that the D of turbulent diffusion must be greater than 2.

Rule: When the fractal or Euclidean dimension D of a shape is above
2, then its cross-section by an arbitrarily chosen straight line has a posi-
tive probability of being non-empty with the dimension D—2. Otherwise,
the cross-section is empty. For planar sections analogous results apply,
except that, instead of subtracting 2, one must subtract 1 (Mattila 1975).
Finite n-approximations to fractals. Start with (L/%)° curds of side 7.
When D>2, the typical line cross-section will either be near-empty, or
(with a positive probability, near independent of ) will include about
(L/m)P-% segments of side about 5. When D<2, on the contrary, the
probability of hitting more than a small number of curds, say two curds or
more, will greatly depend on n and will tend to zero with n/L. At the
limit, suppose that D=log2/log(L/n) (which, among possible values of D,
is the closest to D=0); then everything concentrates in two curds; the
probability of hitting either by an arbitrarily selected line or a plane is
minute. [/lustration. Figure 1, being of dimension log 15/log 5, has the
same dimension as the typical planar section of an approximate spatial
fractal with D=1+log15/logb.

Application. By necessity, turbulence is ordinarily studied through
linear cross-sections in space-time. Under Taylor’s frozen turbulence
assumption, they are the same as linear cross-sections through space.
Turbulence is a highly prevalent phenomenon, in the sense that the typical
cross-section hits it with no effort and repeatedly. Such would not be the
case if the cross-sections were almost surely empty. Hence, we have an
elementary reason (and hence an especially profound one) for believing
that the fractal dimension D of turbulent dissipation satisfies D> 2.
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Digression. Possible relevance of fractal geometry to the study of the
Navier-Stokes and Euler equations. My approach to the geometry of
turbulence is to a large extent “phenomenological”, as was Kolmogorov’s
approach, and is geometric rather than dynamic. It cannot rely on any
information drawn from the study of the Navier-Stokes and Euler equa-
tions. However, the converse could be true: any success the fractal
approach may be able to achieve should assist in the notoriously difficult
search for turbulent solutions. I think, indeed, that the greatest roadblock
in this search has been due to the lack of an intrinsic characterization of
what was being sought. One could even go as far as to argue that no one
could be sure he would recognize such a solution if it were shown to him.
In past studies of other equations of physics, on the contrary, the easiest
procedure has frequently been to seek guidance in guesses concerning the
singularities to be expected in the solution. Knowing what to look for has
often made it less difficult to find it, but this approach has not yet worked
for turbulence. Von Neumann 1949-1963 has noted that ““its mathemati-
cal peculiarities are best described as new types of mathematical
singularities”’, but he made no progress in identifying them.

In this vein, I propose to infer from empirical evidence that, for nonli-
near partial differential equations like Euler’s system (when viscosity is
absent) or the Navier-Stokes system (when viscosity > 0, or possibly even
at a positive small viscosity), the singularities of sufficiently ‘“mature”
solutions are likely to tend towards being fractal.

The singularities of Euler solutions should be viewed as associated with
curdling, as discussed above and in the body of this paper. As to the
Navier-Stokes equations, the notion that the solution can possess singu-
larities remains unproven and in fact controversial, but if singularities in
the Oseen-Leray sense do in fact exist, they must be enormously
“sparser’” than the Eulerian ones; possibly a proper subset. Assuming
they indeed exist, Scheffer 1975 has been successful in restating some of
my rough hunches on this topic into precise conjectures, and has proved
several of them, relating them with the work of J. Leray 1934 and open-
ing new vistas on this ancient problem. See also Scheffer’s paper in the
present volume.

Given that closely related forms of intermittency are found to occur in
phenomena ruled by diverse other equations, the specific characteristic of
the Navier-Stokes equation, which leads to the “fractality” of the solu-
tions, must have its counterpart in broad classes of other equations, and it
may well be more useful to study them within a broader mathematical
context.

Digression. A second connection between fractality and Navier-Stokes
equations. This connection comes in through the shapes of coastlines. A
priori, it may well be that fractality is wholly related to the Oseen-Leray
argument that a solution with good initial data may, after a certain time,
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have large velocity gradients. Alternatively, we have the Batchelor &
Townsend (1949) argument ‘“‘that the distribution of vorticity is made
‘spotty’ in the early stages of the decay by some intrinsic instability and is
kept ‘spotty’ throughout the decay by the action of the quadratic terms of
the Navier-Stokes equations”. However, ‘‘spottiness’ may also be affect-
ed by a third factor. Indeed, the study of partial differential equations,
while stressing the respective roles of the equation itself and of boundary
conditions, usually fails to consider the possible effects of the shape of
that boundary. More precisely, the boundary is nearly always assumed
very smooth, for example is taken to be a cube. For atmospheric and
ocean turbulence, this approximation may well be unrealistic. The fact is
as | showed in Mandelbrot 1967 and in the book Fractals ) that the shapes
of coastlines contain features whose ‘“‘typical lengths” cover a wide span,
so that their fractal dimensions are greater than 1. This and the analogous
statement concerning the rough surface of the Earth may well combine
with intrinsic instabilities as a third contribution to the roughness of
observed flow.

II. THE FUNCTION f(h). THE FRACTAL
DIMENSIONS ARE DETERMINED BY f'(1).

All the aspects of intermittency to be studied in this paper are ruled by
power laws. If one adds specific further assumptions, the various expo-
nents are linked to each other (through the fractal dimension D of the
carrier or the parameter “u" of the Kolmogorov theory). However, in the
general case they are distinct. As Novikov 1969 had observed in the case
of spectra and moments, each power law is merely a symptom of self
similarity. The multiplicity of different exponents shows the self similarity
syndrome to be complex and multifarious.

Nevertheless, the exponents that enter in my previous papers and in
the present one can all be derived from various distinct properties of the
following determining function:

f(h) = log (Wr);

recall that C = I'¥ is the number of subcells per cell. In absolute curdling,
W is a binomial random variable: it can either vanish or take one other
possible value 1/p with the probability p, so that (W) = 1. In weighted
curdling, W is a more general random variable, still satisfying (W) = 1.
Further, the limit lognormal model of Mandelbrot 1972 also fits in the
same scheme by appropriate interpretation of W. By a general theorem of
probability (Feller 1971, p.155), f(h) is a convex function; it obviously
satisfies f(1)=0. Furthermore, whenever Pr(W>0)=1, one also has f(0)=0.
As a first example, the graph of f(h) is a straight line if, and only if, cur-
dling is absolute. If so, the graph passes through f(1)=0 but not through
f(0)=0. As a second example, f(h) is a parabola when W is lognormal.
These two cases are drawn on Figure 3, which also illustrates other fea-
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tures of f(h).

My past and present papers show that the following characteristics of
f(h) are of interest: f(2/3), f' (1), f"(1), f(2), f(h) for h integer >2, and «,
a,, a, = a, where «_ is defined as the root other than h=1 of the equation
¢, (h) = 3f(h)-m(h—1) = 0. The functions ¢ _ being convex, each «_ is
unique, but of course one or more among them can be infinite. Since the
condition ¢,(h)<0 is at least as demanding as ¢,(h)<0, and, a fortiori, as
¢,h)<0, we see that, if «,>1, one has «, <, Sa;=a.

The order in which these various characteristics have been listed in the
preceding paragraph is that of increasing sensitivity to the detail of the
distribution of W. The first and least sensitive — and, in my opinion, the
most basic — is

f1(1) = (Wlog,. W}

This quantity was first considered in Mandelbrot 1974a,b, further results
being due to Kahane 1974 and Kahane & Peyriére 1976. When
3f1(1)<3, the carrier of intermittency is nondegenerate, and its fractal
dimension is D=3-3f'(1). Thus, 3f'(1) = (Wlog,W) determines the
codimension 3-D. As to the planar and linear intersections, when
3f1(1)<2, respectively when f'(1)<1, these intersections are non-
degenerate, with fractal dimensions equal to D, = 2-3f' (1), respectively
toD, = 1-3f'(1). Asexpected, D, = D1 and D,=D-2. In the case of a
lognormal W, and denoting by u the basic parameter, one has f(h) =
(h=1)hu/6. Hence, D = 3—u/2 and u is merely twice the codimension.

Next, as the present paper will show, some other characteristics of f(h),
more sensitive to details of W, rule the traditional concerns with second
order (spectral) properties. One must distinguish an inertial and a dissipa-
tive range (these are probably misnomers). In the former, the value of
f(2/3) rules the corrective term B to be added to the exponent in the
Kolmogorov k*# law (this will be shown in Chapter IV). Similarly, the
value of f(2) rules the variance, the kurtosis and the exponent of the
spectrum of dissipation (this will be shown in Chapter III). The next
simplest characteristic of f(h) is f"(1). Our last result will be that f"(1)
determines the width of the dissipative range. When f"(1)=0, an equality
characteristic of the fractally homogeneous case, the dissipative range is
vanishingly narrow. Otherwise, it is most significant, especially when L
much exceeds the Kolmogorov inner scale.

Digression. Each property that involves a moment of higher order h is
ruled by the corresponding f(h). As h increases, f(h} becomes increasingly
sensitive to details of the distribution of W, which is why the moments
computed from the lognormal assumption appear inconsistent; see Novi-
kov 1969. This difficulty was eliminated, however, when Mandelbrot
1972,1974a,b showed that — in the absence of viscosity cutoff — the
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population moments above a certain order, namely «, «,, or «, are in fact
infinite. In my opinion, this feature explains why the experimentalists
have found empirical moments of higher order to be so elusive.

[II. COVARIANCE, FLATNESS AND KURTOSIS OF
DISSIPATION. EXPONENTS DETERMINED BY {(2).

The exponent in the covariance of the dissipation. Take two domains '
and " whose diameters are small compared to the smallest distance r
between them, and large compared to 5. We define the covariance of the
dissipation density £(x) as the expectation of the product of the average of
e(x) within these domains. Without entering into details, let it be stated
that in the fractally homogeneous case this covariance is approximately
(r/L)"3, and in the general case it is (r/L)-%?. The proof follows closely
that of Yaglom (see Monin & Yaglom 1975, p. 614), but stops before the
point where these authors approximate the product of many W's by a
lognormal variable.

By the convexity of f(h), f(2) = f(1) + (2-1)f*(1) = f'(1). Thus,
3f(2)23f ' (1)=3-D. Equality prevails if and only if f(h) is rectilinear, i.e.,
the curdling is absolute and turbulence is fractally homogeneous. (This is,
in addition, the sole case where one can make r as low as n.) In every
other case, an evaluation of the codimension 3-D through the observed
exponent f(2) would lead to overestimation. For example, for the strictly
lognormal W, 3f(2)=pu, which is the double of the estimate using the
dimension, namely 3f ' (1) = u/2.

Let us now show that the same exponents play an equally central role
in the study of the kurtosis of dissipation after averaging over small
domains of side r. In other words, at least in intermittency generated by
curdling, the covariance and kurtosis of dissipation are conceptually
identical.

Kurtosis in the fractally homogeneous case. Here, we know that the
dissipation vanishes, except in a region of relative size (L/r)" %, in which it
equals (L/r)®t. Hence, it is readily shown that the kurtosis is simply
{L/r)*P. It increases as r becomes smaller, and when r takes its minimum
value 7 (as announced, we shall show that » is well-defined in the fractally
homogeneous case), the kurtosis reaches its maximum value (L/%)® ”. The
measure of degree of intermittency depends both on the intrinsic charac-
teristic of the fluid, as expressed by D, and on outer and inner scale
constraints, as expressed by L/7, which is related to Reynolds number.
Therefore, it is better to measure the degree of intermittency by D itself.
The empirical value of the exponent is 0.4 (Kuo and Corrsin 1972),
suggests under the assumption of fractal homogeneity that D=2.6.

To explore the significance of these findings, let me begin by sketching
the results of previous studies of the kurtosis by Corrsin 1962 and by
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Tennekes 1967. These and other authors took it for granted that the
exponent of kurtosis depends mainly upon what may be called the proto-
topological shape of the carrier of intermittency, namely on whether it is a
“blob™, a ‘“‘slab”, or a ‘‘sheet”. While other assumptions also entered
each model, they were felt to be secondary. This impression turns out to
have been unwarranted. The crucial fact is that each of these models
leads to fractally homogeneous intermittency, whose dimension D is
affected by all the assumptions made, and determines the exponent of the
kurtosis.

It turns out that, in the Corrsin model, the exponent’s value is 3—D =1
(his formula 10), hence D=2. This fractal dimension is experimentally
wrong, in fact fails to satisfy the basic requirement D>2. It is interesting
to note that D=2 is the smallest fractal dimension compatible with
Corrsin’s featured assumption, that turbulent dissipation concentrates
with uniform density within sheets of thickness 7 enclosing eddies of size
L. In other words, Corrsin’s additional assumptions cancel out: there was
no surreptitious increase of D, and he worked with a classical shape rather
than with a fractal.

On the other hand, the exponent in the Tennekes model can be seen to
imply D = 7/3. This value does satisfy D>2, and is reasonably close to
observations. On the other hand, it very much exceeds the minimum
fractal dimension, namely D=1, which topology imposes on a shape
including ropes. Hence, Tennekes was mistaken in featuring the assump-
tion that dissipation occurs in vortex tubes of diameter . The more vital
assumption was that the average distance between tubes is the Taylor
microscale A. The fact that D = 7/3 is even higher than the Corrsin value
D = 2 strongly underlines that a tube, if sufficiently convoluted, ends up
by ceasing to be a tube from a metric-fractal viewpoint, and becomes a
fractal. Finally, the experimental D = 2.6 satisfies D>2. In addition, it
does not exclude the presence of either ropes or sheets, but does nor require
either.

Kurtosis of nonfractally homogeneous intermittency generated by weight-
ed curdling. 1In this case, kurtosis is simply (e?)/{e)? = (¢?) and turns out
to be equal to

(W2boor(L /1) = (L/r)osr & = (L/ )32

We know that 3f{2) = 3-D. Hence, among all forms of turbulence gener-
ated by curdling and having a given D, the fractally homogeneous case is
the one where the kurtosis is smallest. Hence 3f(2) = 0.6 only yields
DE2:6,

Digression concerning the fractally homogeneous case. The behavior of
the Fourier transform. Fourier transforms do not deserve the near exclu-
sive attention which the study of turbulence gave to them at one time
(through spectra), but they are important. It may be useful, therefore, to
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mention that, in the fractally homogeneous case, their properties happen
to involve fractal dimension. The strength of the relationship has long
been central to the fine mathematical aspects of trigonometric series see
Kahane & Salem 1963, but the resulting theory has thus far been little
known and used beyond its original context.

It deals particularly with functions that are constant except over a
fractal of dimension D. Such functions have no ordinary derivative but
have generalized derivatives which are measures carried by the fractal in
question. The rough result is that the Fourier coefficients of the measure
in question turn out in many typical cases to decrease like k°.

In a finer approximation, however, the considerations of fractal dimen-
sionality are logically distinct from spectra. This fact further elaborates
the assertion made earlier, that the consequences of the self similarity of
turbulence split into conceptually distinct aspects, dimensional, spectral
and others, which are governed by different exponents of self similarity
linked to each other through inequalities.

If, as I hope, the importance of fractal shapes in turbulence becomes
recognized, the spectral analysis of the motion of fluids may become able
at last to make some use of a considerable number of pure mathematical
results relative to harmonic analysis.

IV. THE MODIFICATION IN THE 2/3 AND 5/3 LAWS.
A SPECTRAL EXPONENT CHANGE
DETERMINED BY f(2/3).

It has been noted in Kolmogorov 1962 and Obukhov 1962 that inter-
mittency changes the exponents 5/3 and 2/3 by adding a positive factor
to be denoted by B. A more careful examination of the problem, to which
we now proceed, confirms this conclusion but yields a value of B that does
not in general fit those asserted by the Russian school.

Consider two points P' and P" separated by the distance r and denote
the velocity difference u(P") — u(P') by Au. In Taylor homogeneous
turbulence of constant dissipation denotes 8(x) = &, one has ((Au)?) =
(er)?/3. To extend this result to the intermittent case, when the nonran-
dom ¢ is replaced by a random field e(x) with {e(x)) = &, one must replace
e in (er)?/® by some quantity characteristic of said random field and also of
P' and of P". Even though this quantity may be determined in several
different ways, there will be no harm in always denoting it by ¢ .

Like Yaglom, we shall first follow closely the approach of Obukhov
1962 and Kolmogorov 1962, who propose one should take as ¢ the
average of e(x) over a sphere — we shall call it the Obukhov sphere —
whose poles are P' and P". We shall designate this domain as
QP ',P"). In practice, in the case of curdling within cubic cells, 2 is more
conveniently the smallest cell containing both P' and P. We shall find, as
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have Kolmogorov and Obukhov, that intermittency requires the replace-
ment of the classical spectral density E(k) = E e?/3k®/3 by E(k) = E,
€?/3%-5/3(k/L)"8. On the other hand, we shall disagree with them on two
basic points: a), the value of the exponent B, and b), the highest value of
k for which a spectral density with the exponent 5/3+B is conceivable.

When expressed in terms of the dimension D, the Kolmogorov-
Obukhov correction comes out as B = (3—-D)/4.5, but this value turns out
to be due to very specific and arguable features of the lognormal assump-
tion, which is part of their model. In the case of fractally homogeneous
intermittency, one finds the different and /arger value B = (3-D)/3, and
in general B = —3f(2/3), which can lie anywhere between the bounds O
and (3—-D)/3. Thus the value (3-D)/4.5 is a kind of compromise, perfect-
ly admissible but by no means necessary.

Secondly, the fractally homogeneous case is unique in that it allows a
widely-liked approximation in which the dissipative range reduces to a
point, and one can assume that E(k) takes the above form all the way to
the inverse of the proper inner scale, and vanishes beyond. In all other
cases, this traditional approximation leads to paradox. This Chapter will
evaluate B and present the paradox; Chapter V will resolve it.

The following Sections will derive the above result, then subject the
approach of Obukhov-Kolmogorov to a critical analysis. Their choice for
e, was indeed acknowledged to be to a large extent an arbitrary first trial
suggested less by physics than by commodity. Other definitions of ¢, are
therefore worth considering. The first alternative ¢ will be the average of
e(x) over a domain € that is the interval P'P". When D>2, as we believe
is the case for turbulence, the expression for B is unchanged and the
coefficient E”, while modified, remains positive and finite. When D<2, on
the contrary, E, vanishes and B becomes meaningless. To obtain the
second and last alternative e,, we shall let £ be determined by the distrib-
ution of intermittency, and we shall thereby bring in topology. The
argument will give reasons for believing that the carrier of turbulence, not
only must satisfy the metric inequality D>2 proven in Chapter I, but
must, in some topologic sense, be “‘at least surface-like””. However, this
third choice of € is very tentative, and so are the conclusions drawn from
1.

1. THE FRACTALLY HOMOGENEQUS CASE WHEN
{2 IS THE OBUKHOV SPHERE OR AN APPROXIMATING CUBE

In this case, ¢, is the average of £(x) over . By the theorem of condition-
al probabilities, one can factor (¢?/?) as the product of a) the probability
of hitting dissipation in {2, and, b) the conditional expectation of &?2/3
where “‘conditional” means that averaging is restricted to the cases where
e, >0.
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When {2 is the Obukhov sphere or the smallest cubic eddy that contains
both P' and P'", it can be shown that, as n+cc, the hitting probability
becomes at least approximately equal to p,(r/L)3®.

Since the product of the hitting probability by the conditional expecta-
tion of & is simply the nonconditional expectation e, the conditional
expectation must be equal to e (r/L)°3. A stronger statement, in fact,
holds true. Assuming fractal homogeneity, ¢, when positive, it can be
shown to be the product of er®=L3PC by a random variable having positive
and finite moments of every order. Consequently,

((err)2’3> - V1.«3 (F/L)S—D e2/3r2/3 (r/L)—(S—D)f‘Ii

=V 821’3 L—IB—DH3 r2:3+53—D1-'3
1/3

=N % £2/3 |_-13-D1/3 1-(D-2)/3
1/ :

The corresponding spectral density is

E(k) = E, £2/3 L~3-D)/3 |¢-8/3+(D-31/3

= F F?,’B L—lB-D);‘S k-2+(D-21/3
0 .

It is important to know that the numerical coefficients £, and V, , are
positive, but their actual values will not be needed.

These expressions show that intermittency has two distinct effects: to
inject L and to change the exponent of k from 5/3 to 5/3+B, where B =
(3-D)/3.

Since B20, the exponent 5/3+B always exceeds the 1941 Kolmogorov
value 5/3. As expected, B=0 corresponds to the limit case D=3, when
dissipation is distributed uniformly over space.

The point where 5/3+B goes through the value 2 occurs when D=2, a
relationship to which we shall return in Section 4.

Even if it is confirmed that (as inferred in Chapter I) ordinary turbu-
lence satisfies D>2, it is good to include the values D<2 for the sake of
completeness. Since B satisfies B<1, the exponent 5/3+B always lies
below the value 8/3. This value is seen to correspond to D=0, the limit
case when dissipation concentrates in a small number of blobs. (In
absolute curdling, we saw that D is at least log2/log(L/%) corresponding
to dissipation concentrated into two curds. However, variants of curdling
vield a more relaxed relationship between D~0 and concentrates in a few
blobs.) We shall see in Section 3 that, among curdling processes of given
D. B is greatest in the fractally homogeneous case. Hence, the bound
B<1 is of wide generality. Sulem & Frisch 1975 were able to rederive it
by an entirely different argument from the characteristic that for D=0
everything concentrates in a small number of blobs.
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2. THE FRACTALLY HOMOGENEOUS CASE
WITH OTHER PRESCRIBED DOMAINS §2.

To discuss Obukhov’s specification of £ further, we shall find it useful
(however cumbersome) to decompose this specification into parts of
increasing degrees of arbitrariness: a) one should replace ¢ by the average
e, of the local dissipation rate e(x), taken over an appropriate domain £;
b) this domain € should be independent of &(x}; ¢) € should be three-
dimensional, something like the sphere whose poles are P' and P".
Without going so far as to question assumption a) above, we shall (in
Section 5) question both b) and c¢). In the present Section we shall keep
b) and question ¢). That is, we shall suppose that € is fixed but make £
nearly one-dimensional, namely choose for it a cylinder of radius 2y and
axis P'P", or make it strictly one-dimensional, namely (for reasons of
symmetry) the segment P'P".

When @ is P'P", the results are more complex than when @ is
Obukhov’s sphere, because in the limit »+0, the probability of P'P"
hitting turbulence depends on the value of D. When D<2, we know this
probability is zero. When D>2, we know it to be positive because of the
nondegeneracy of linear cross-sections, and it turns out that the expres-
sion familiar from Section 1 continues to be valid: the hitting probability
is approximately equal to (r/L)3P°. As a result, the dependence of {(Au)?)
on L/r and of E(k) upon Lk goes as in Section 1, except for a single
change, a vital one. Here the coefficients E, and V, , remain positive if
D>2, but vanish if D<2. In particular, the exponenf of r is restricted to
the narrower range of values between 2/3 and 1, and the exponent of k-’
always lies above the Kolmogorov value 5/3, but below the “Burgers”
value 2. The latter constitutes the bound corresponding to the stage when
all turbulent diffusion within the segment P ' P" reduces to a few blobs.

3. DISSIPATION GENERATED BY WEIGHTED CURDLING

As was the case for the correlation in Chapter III, the formal argument
can be borrowed from Monin & Yaglom 1975, with one exception: just
like in Chapter IlI, one must not, and we shall not, replace logW by its
Gaussian approximation. The exact result, supposing that r>>%, is as
follows

(Errix‘B) =\ r2/3 [(WZHS)]OQ]'H /0
= V23 (L/r)8,

with B = =3f(2/3), and
E(k) = E, L8 k-5/3-¢,

To evaluate f(2/3), we shall return to the determining function f(h). By
convexity, the 0<h<1 portion of the graph of f(h) lies between the h axis
and the tangent to f(h) at h=1, whose slope is equal to f' (1) = (3-D)/3.
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As a result, given any value D<3, B can range from the maximum value B
= 3f'(1)/3 = (3-D)/3 (obtained in the fractally homogeneous case)
down to 0. (It is possible to show that this last value cannot be attained,
but can be approached arbitrarily closely. So it is conceivable, however
unlikely, that intermittency should bring no change to the k=/? spectral
density.)

The general inequality B<(3-D)/3 generalizes the equality B=(3-D)/3
valid in the fractally homogeneous case. The value corresponding to a
lognormal W is (as known to Kolmogorov 1962) /9. Written in terms of
D = 3—u/2, it yields B = (3—D)/4.5. This value confirms that the changes
in the 2/3 exponent can be smaller than (3-D)/3.

4. THE “BURGERS” THRESHOLD SPECTRUM k=2 AND THE DIMENSION D=2
ARE RELATED IN ABSOLUTE BUT NOT IN WEIGHTED CURDLING.
THIS LAST FACT IS PARADOXICAL.

Formally, the preceding argument is easily generalized to Burgers
turbulence and more generally to turbulence with Au = |[P'P"|?". The
value B = -3f(2/3) is simply replaced by B = —-3f(2H). It follows that the
Burgers case H=1/2, and this case only, has the remarkable property that
B=0. The value of the spectral exponent is independent, not only of D
but of the random variable W. In other words, even after Burgers turbu-
lence is made intermittent as a result of curdling, its spectral density
continues to take the familiar form k2.

More generally, the “Burgers threshold” will be defined as the point
where the intermittency has the intensity needed for the spectrum to
become k=2, It is a well-known fact (exploited in Mandelbrot 1975a) that
the k-2 spectrum prevails when the turbulent velocity change is due to a
finite number of two-dimensional shocks of finite strength. Hence it was
expected that one should find that the spectrum is k=2 in the case of fractal
homogeneity with D=2. This dimension marks the borderline between
the cases when the segment P'P" does, or does not, have a positive
probability of hitting dissipation.

On the other hand, it seems that the logical correspondence between
D=2 and B=1/3 fails in the case of weighted curdling. Example: for
D=2, the lognormal approximation combined with the choice of Obukhov
sphere for Q yields E(k) = E,L-%/® k-'7/® with E;>0. Even though
(assuming it is confirmed that turbulence satisfies D>2) the behavior of
the spectrum about D=2 has no practical effect, the fact that 17/9<2
constitutes a paradox that must be resolved. We shall postpone this task
to Chapter V.
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5. NON-PRESCRIBED DOMAINS £ IN FRACTALLY HOMOGENEOUS
TURBULENCE AND THE ISSUE OF TOPOLOGICAL CONNECTEDNESS

Let us resume the discussion of the choice of €2, started in Section 3. The
use of any fixed @ implies the belief that the mutual interaction between
u(P') and u(P") is on the average independent of the fluid flow in be-

tween the points P' and P'". It is, however, worth at least a brief consid-
eration to envision interactions propagating along lines, say, of least
resistance. In the all-or-nothing fractally homogeneous case, it may well
be possible to join P' and P" by a line A such that .I', e(x)dx=0. If so,
one may well argue that Au should vanish.

One is tempted in this spirit to replace ¢ by (1/r) glb /', a short nota-
tion for the product of (1/r) by the greatest lower bound of .J',e(x)dx
along all lines A joining P' to P". The principle of the new specification
of € is radically different from A = P'P", because, if accepted, it would
open the door to topology. In particular, two of the shapes to be studied
in the turbulence Chapter of the English version of Fractals (namely, the
Sierpinski sponge and pastry shell) have the same D>2 but very different
topology. For the former glb .1, =0 for any P ' and P", while for the latter
glb 1 =0 if P' and P" lie in the same cutout, and glb ./, >0 otherwise.
Since turbulence does in fact exist so that ((Au)?)>0, the acceptance of the

A that minimizes /', would lead to the following tentative inference:
Among all sets of two points P' and P", selected at random under the
constraint that | P'P" | =r, sets in which every line from P' to P" hits

the carrier of turbulence must have a positive probability. In other words,
the probability of P' and P" being separated by “‘sheets’ of turbulence
must be non-vanishing. The mathematical nature of this tentative infer-
ence is entirely distinct from the fractal inequality D>2; the latter was
metric, while the present one combines topology with probability. A
mixture of theoretical argument with computer simulations shows there
exist a critical dimension D, such that the probability of the set generated
by absolute curdling being sheet-like is zero when D<D, and positive
when D>D. This D, is much closer to 3 than to 2.

Further, it is tempting to constrain A to stay in the Obukhov sphere,
and designate the restricted glb by glb'.J,. If so, the inference that
(glb'.r,» >0 would involve a combination of topological, probabilistic and
metric features; this lead can not yet be developed any further.

The preceding reference to topology is extremely tentative, by far less
firmly established than the fractal inequality D>2. It accepts without
question two results of Kolmogorov and Obukhov: the 1941 link between
(Au)*) and a uniform e, and the 1962 link between ((Au)?) and the expec-
tation of €2/%. Moreover, the all-or-nothing fractal homogeneity may well
be too flimsy a model to support such extensive theorizing.
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V. THE INNER SCALE AND THE DISSIPATIVE RANGE.

Thus far the existence of actual dissipation was only acknowledge
‘indirectly, by introducing an inner scale n which, like L, was arbitrarily
imposed from the outside. We shall now dig deeper into the classical
result of Kolmogorov: Taylor homogeneous turbulence with the viscosity
v and a uniform rate of dissipation e, the dissipative range is vanishingly
narrow around the inverse of 5, = »3/%~'/%. One reason for the notation
1, is that the letter n was used up above; a more consequent reason will
-appear momentarily. One aspect of 7, is that, if the spectrum E(k) = E,
e?/2k /% is truncated at an appropriate numerical multiple of k = 1/n,, the
relationship e = v/, . ., k* E(k) dk becomes an identity. In this
Chapter we shall first examine formally the changes due to intermittency.
'Then we shall proceed to an actual analysis of the inner scale of curdling.
In the fractally homogeneous case, the inner scale will continue to be
defined as the inverse of the spectrum’s truncation points. This result had
already been obtained by Novikov & Stewart, but it deserves a more
careful analysis. In all other cases the result is quite different. The analy-
sis will show the necessity of a dissipative range that does nor reduce to
the neighborhood of any single value 1/n, but has a definite width deter-
mined by the value of f'"(1).

1. TRUNCATION POINT FOR THE POWER-LAW SPECTRUM

From Chapter IV, the spectral density of velocity in intermittent turbu-
lence is of the form E(k) = E 2/ k53 (Lk)®. Suppose we want the rela-
tionship e = v/, . ., k?E(k)dk to continue as an identity. Then, up to
numerical factors, one must have n = 7', where 5 ', is defined by

e = pe2f3| By D_4,3_ o
ity = [(p9)e) LoRR] 028
n ! E)/L = (TTS/L)I"‘”’?'QW“.

Since 0<B<1, we find that n' <<%, For given D, ' is a monotone
function of B. Thus, when B reaches its maximum value B = (3-D)/3,
n', reaches its minimum value L(n,/L)*®*" and 1/%', reaches its
maximum. Note that, in addition to » and e, the value of o' depends
upon L.

More generally, if one stays within a sub-domain of length scale r,
much smaller than L, in which the average dissipation is ¢, one will have
the new inner scale n ' ,(r) such that

p3ia 8"1,’4/r - i"’l 1 :}(r)/r]i—ﬂ,'ﬁs‘a_
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2. CRITIQUE OF AN INNER SCALE OF INTERMITTENT
TURBULENCE TENTATIVELY SUGGESTED BY KOLMOGOROY

The need to reexamine the concept of inner scale had already been felt
by Kolmogorov (1962). On p. 83 of this work (seventh formula) he sug-
gested for this role the expression »3/* (g )-'/* which occurs in the left-hand
side of the last formula of the preceding Section. He did not explain his
choice, and made no further use of it. Actually, it seems hard to retain. A
first odd feature of his definition is that when r = L, his modified inner
scale reduces to n,. Hence, contrary to 7, it is independent of the degree
of intermittency. A second odd feature relates to r+0. To describe it, let
us follow Kolmogorov in assuming loge, to be lognormal, with the vari-
ance ulog (L/r) and a mean adjusted to insure that (¢ ) = . It follows that

(-1/4) = g V4 expl(1/2){=1/4)(-5/4)ulog(L/T)]

r
= E——l;‘4 (L/ r)E,.fS"Z'

Hence, as r + 0, the modified Kolmogorov scale increases on the aver-
age and may exceed r. We shall not attempt to unscramble this concept.

3. INNER SCALE OF CURDLING
IN THE FRACTALLY HOMOGENEOUS CASE

The truncation of E{k) shows that the energy cascade must stop when
reaching eddies on the order of magnitude of ' ;. But what about the
curdling cascade? It too must have an end, to be followed by dissipation.
We shall now identify the scale 5, at which it stops.

In the fractally homogeneous case, 1, turns out to be identical to the
n," defined through E(k). Consider, indeed, a cube of side L filled with a
Taylor homogeneous turbulent fluid of viscosity », dissipation ¢ and inner
scale n,. Since we assume that the increasingly small curds created by a
Novikov-Stewart cascade are themselves Taylor homogeneous; these
curds are endowed with a classical Kolmogorov scale varying with the
cascade stage. We assume moreover that the instability and breakdown
leading to curdling are encountered if and only if the curd size exceeds the
Kolmogorov scale. (This assumption can be seen to be equivalent to a
little-noticed condition of Novikov & Stewart, as reported in Monin &
Yaglom 1975, p. 611.)

The first curdling stage leads to curds of side L/T" in which dissipation
is equal to either O or ¢ I'**". In the empty cells, the Kolmogorov scale is
infinite, and of course further curdling is impossible. In the first stage

curds, the inner scale is o' = 5, I"#P74  In the m-th stage curds, the
average dissipation is eI, the curd size is LI"'™, and the inner scale is
therefore n'™ = 5, I="E-0/4 We see that the inner scale and the curd size

both decrease with 1/m. Our postulate being that there is no further
curdling after these two scales meet, we are left with the criterion 7,
FenS-RiSenPem, |e., syl 5 [F=-012=51, Thessolufionturns: out toryicld
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=" L =1y, with 5, identical to the n', obtained earlier in this Chapter
through the truncation of E(k). Hence the fractal dimension rules not only
the manner in which Novikov-Stewart curdling proceeds, but the point
where it stops. We find, in addition, that it is reasonable to assume that
the cutoff of E(k) near 1/n, is very sharp.

Digression concerning curdling in spaces of Euclidean dimension A > 3.
The derivation of 5, has relied on the fact that, in a space of Euclidean
dimension A = 3, the decrease in 7, is less rapid than the decrease in curd
size. However, this last feature is highly dependent upon A-D, and
therefore upon the value of A. As in many other fields of physics, a
qualitative change may be observed when A # 3. Indeed, our stability
criterion readily yields the result that a nonvanishing inner scale need not
exist. Tt exists if and only if A—D<4. Its value is given by the relation

(TIA/L) ~ (nO/L)l—m—Duq'

The necessary and sufficient condition A—D<4 for the existence of a
non-vanishing inner scale is peculiar but not very demanding. One amply
sufficient condition is A<4. (However, in order that curdling continue
forever, meaning 7,=0, the converse condition A>4 is only necessary, not
sufficient.) Another amply sufficient condition for n,>0 is A-D<1, which
we know expresses that linear cross-sections are nof almost surely empty.
These various conditions make it clear that a vanishing inner scale can at
most be observed for phenomena that are very much sparser than the
turbulent dissipation presently under study. Much sparser even than the
Leray-Scheffer conjectural singularities of the Navier-Stokes equations.

Nevertheless, odd as the result may be, our criterion does indicate that,
when A—-D>4, a curdling cascade will continue forever, without any physical
cutoff, even when the viscosity is positive. 1 do not know what this result
means, and what its implications concerning dissipation are. It seems to
be trying to tell us something about the singularities in the ultimate solu-
tion of the equations of motion of some physical system, but I cannot
guess of which one.

4. INNER SCALE OF CURDLING
WHEN INTERMITTENCY 1S GENERATED BY WEIGHTED CURDLING
FIRST ROLE OF ''{1).

In the case of weighted curdling, as we shall now proceed to show, the
inner scale is best studied in two approximations. The first one yields a
single typical value. The interesting fact is that this value turns out to be
much smaller than the quantity ', obtained through the truncation of
E(k). The second approximation shows that said typical value is not very
significant and that one must deal with a whole statistical distribution.
Strictly speaking, the same situation had already prevailed in all-or-
nothing curdling leading to fractally homogeneous intermittency, but in
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that case »'™ was simply binomial, equal to either 5,I""™3-/* or infinity
and the latter value could be neglected. The same cannot be done in the
case of weighted curdling.

Recall that, if the curdling cascade could continue forever, the dissipa-
tion density &(x) at the point x would be a product of weights \W, one per
cascade stage. It can be written in the form W \N W] i ., where the
real number O, i,i, ...... designates x in the countmg base & and the W’s
are an infinite sequence of independent random weights. Similarly, o'™
will be written simply in the form n,[IT,. . W ]-"/4, Curdling will stop
when this random 7'™ first overtakes the nonrandom I'-"L. Taking logar-
ithms, we find that m is the first integer where

2 chenl(=1/4)0gW, + logl'] = log[L/7,].

After we select a probability distribution for W, the left-hand side of the
above expression will define a random walk with nonrandom drift equal to
zlogl'~logW/4x and an absorbing barrier. The above-defined value of m is
therefore merely an instant of absorption or, alternatively, of ruin. Ab-
sorption will occur almost surely because the drift turns out to be positive
(digression: this is so as long as A—-D<4),

First approximation. When L/n,>>1, the drift tends to overwhelm the
randomness, and one can approximate m by the value m#* obtained by
the rough approximation which consists in replacing the random walk by
its expectation. The proper choice of weights in the above expectation is
not obvious, but there is room only to state the result without a full
justification. Moreover, in order to avoid irrelevant notational complica-
tion, we add the assumption that the values w, of W are discrete with
probabilities p . Then the proper intrinsic probablhty of w_is not given
by P, itself. Rather it can be shown to take the form p W Since
Wih=1, Zp,w, = 1; therefore the p w, are acceptable as probabllmes
Conunumg to ilse ( ) to designate expected values under the probabilities
P, our criterion yields

n,/L = [T{exp{WlogW))-1/4]-m*

The result stated in the last form turns out to apply also to nondiscrete
W’s. Since —(Wlog,W) = D-3, the definition of 7, reduces formally to
that applicable in the fractionally homogeneous case.

Summary of the first approximation. In weighted curdling the order of
magnitude of m is the same as in the all-or-nothing curdling having the
same value of D, hence of f'(1). In particular, the order of magnitude of
1/m is much greater than the 1/n ' deduced in Section 1.

Second approximation. The actual values of m scatter around m*, For
fixed W, the scatter increases with L/n,. For fixed L/n,, it is useful to
define a standard scatter, to be denoted by em. It is approximately the
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ratio of two factors. The first is the standard deviation of the sum of m=*
factors of the form —logW/4. The variance of W is
(Wlog?W)—{WlogW)?, which happens to be equal to logC f"(1) = 3logrl’
f"(1). Hence, the first factor is equal to [3m=*logl'f'(1)]'/2/4 =
[3log{L/n,)/(1—(3-D)/4)]'/2/4. The second factor is the expected value
of logT-logW/4, that is logI'—f ' (1)logC/4 = logl'[1-(3-D)}/4]. Combin-
ing the two factors, we obtain the two alternative forms

om = (2/1ogT')(1+D)-3/2 [3log(L/n,)]"/2 [F"(1)]'/2
= (3/1ogl)"/2(1+D)-"[m=]"/2[f"(1)]'/2

This is the first time that the value of f'"'(1) enters in the present discus-
sion. The value of f' (1) enters also, through D, but the result is not very
sensitive to it.

5. THE DISSIPATIVE RANGE.

The methods used in Chapters III and IV to evaluate exponents and
exponent changes only apply to scales for which curdling has a small proba-
bility of having stopped, that is, roughly, from (1/L) to k~(1/LjIm*—=m,
Going towards higher wave numbers, one encounters next the range from
k~(1/L)m*=m to k~(1/L)I'™**sm_ Here, some dissipation is likely to
occur in a substantial region of our fluid.

Let us make a few more comments on this topic. By the last result of
the preceding Section, the width of the dissipative range, measured in
units of log,k, is proportional to [f"(1)]'/2. When logW is lognormal, f(h)
is parabolic and f'(1) is proportional to u. More generally, unless the
distribution of W is very bizarre, one has approximately f(2/3)~ f{1) —
frn(1/3) + £"(1)(1/3)2/2. Thatis, (3-D)/3-B ~ £"(1)/6. This relation
holds even if B and (3-D)/3 do not bear to each other any numerical
relationship of the kind that holds when W is lognormal and B =
(3—D)/4.5. In other words, the width of the dissipative range — measured
on the logk scale — is typically the square root of the defect of B with
respect to the fractally homogeneous approximation.

It was to be expected that each of these quantities should be a mono-
tone increasing function of the other. Indeed, the inequality 1/5, >>
1/m", expresses that the spectrum k-5/3-8 relative to the inertial range
cannot be extrapolated consistently. The corresponding distribution of
energy among the wave numbers decreases very much too slowly as k
increases, which implies that the whole energy would be completely
exhausted well before reaching k ~ 1/5',. The greater the difference
1/m — 1/n",, the sooner must this inertial range law k®°/°-® cease to
apply.

The expressions that apply in the dissipative range and replace coeffi-
cients such as B, will be described elsewhere.
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FIGURE 1. PLANAR FRACTAL OBTAINED BY ABSOLUTE CURDLING.

Random curdling proceeds on a square grid. We show the effect of four
stages, each of which begins by dividing the cells of the previous stage into
52=25 subcells, then "erasing" 10 of them to leave the remaining 15 as
"curds"".
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FIGURE 2. THE SELF SIMILARITY DEFINITION OF THE FRACTAL DIMENSION.

A segment of line can be paved by — and is therefore equivalent to —
N =5 replicas of itself reduced in the ratio r=1/5. A square is equivalent to
N =25 replicas of itself reduced in the ratio r=1/5. The same property of
self similarity is obviously encountered in the pattern of Figure 1: it is
equivalent to N=15 replicas of itself reduced in the ratio r=1/5. In each
of the classical cases, the concept of dimension can be associated with self
similarity, and one has D=logN/log(1/r). The point of departure of
fractal geometry is that this last expression a) remains well defined and
b) happens to be useful for all self-similar sets such as the pattern of
Figure 1, and that it is not excluded for D to be a fraction.
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FIGURE 3. THE DETERMINING FUNCTION f(h).

The two lines represent two determining functions 3f(h) which yield
the same value of 3—D=.45. The present paper concentrates upon the
roles played in the theory of intermittency by the quantities f(2/3), f(2)
and f'"'(1). Earlier work, Mandelbrot 1974a,b, had concentrated on the
role played by f'(1) and the a’s (the latter are not shown here). The
lower line in the present Figure is straight of equation 3f=.45(h—1). It
corresponds to fractally homogeneous turbulence and is the lowest com-
patible with the given D. The upper line, which is the parabola
3f=.45h(h—1), corresponds to lognormal intermittency with p=.9. For
other forms of curdling, the determining function can lie between the
above lines or even higher than the parabola. Two examples are of
interest. The fractally homogeneous case can be changed so that the
value O is replaced by some scatter of values slightly above it, while the
value of 1/p is slightly changed to keep D invariant. Alternatively, the
lognormal can be truncated sharply. In either case, the resulting line f(h)
will be approximately straight for abscissas to the right of h=1 and ap-
proximately parabolic to the left.

The concept of approximation used in the bulk of probability theory is
of little value in the present context. A random variable W' may be a
close approximation to W and still lead to a markedly different determin-
ing function and hence to a markedly different form of intermittency.

3f(h}

2/3




