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ABSTRACT  The degree of irregularity in oceanic coast-
lines and in vertical sections of the Earth, the distribution of
the numbers of islands according to area, and the commonal-
ity of global shape between continents and islands, all
suggest that the Earth’s surface is statistically self-similar.
The preferred parameter, one which increases with the de-
gree of irregularity, is the fractal dimension, D, of the coast-
line; it is a fraction between 1 (limit of a smooth curve) and 2
(limit of a plane-filling curve). A rough Poisson-Brown sto-
chastic model gives a good first approximation account of
the relief, by assuming it to be created by superposing very
many, very small cliffs, placed along straight faults and sta-
tistically independent. However, the relative area predicted
for the largest islands is too small, and the irregularity pre-
dicted for the relief is excessive for most applications; so is

* indeed the value of the dimension, which is D = 1.5. Several
higher approximation self-similar models are described. Any
can be matched to the empirically observed D, and can link
all the observations together, but the required self-similarity
cannot yet be fully explained.

Geometry arose from the description of measurements of
the surface of the Earth. The two disciplines split apart al-
most immediately, but geomorphology is bringing them to-
gether, One broad task is to sort out two elements, which are
best contrasted using electrical engineering terminology. (a)
The first is a “signal,” defined as a reasonably clear-cut fea-
ture one hopes to trace to a small number of tectonic, isostat-
ic, or erosional causes. (b) The second is a “noise,”” defined as
a feature one believes is due to many distinct causes that
have little chance of being explained or even disentangled.
This paper is mainly directed towards this “noise” aspect.
The fit between the models and the empirical relationships
they aim to represent will prove good, and even surprising,
since there was no objective way to tell a priori whether the
relationships to be represented are indeed mostly noise-relat-
ed. In fact, even the simplest model will generate ridges, of a
kind one is tempted a priori to classify as signal-like. Thus,
our study of noise will end up by probing the intuitive dis-
tinction between it and the signal.

The strategy and the tactic to be used are in part very fa-
miliar, having proven successful in taming the basic electric
noises.* The first novel aspect of the present problem (and a
major difficulty) is that it deals not with random curves, but
surfaces. The second novel aspect follows as a consequence.

* An opinion, that may be shared by other readers, was expressed
by a referee who criticized my approach for “a narrow focus on
purely tectonic processes of the simplest kind and a belief that (i}
it is both good and important to make stochastic models whose re-
alizations agree with the largest scale behavior, and (i) if this can
be done, it is right and wise to think of these largest scale phe-
nomena as in fact stochastic.” Lacking space to reply in detail, I
shall simply say that, while the validity of models of the kind I
shall describe must eventually be discussed with great care and
skepticism, I see only benefits in first developing them in some
detail.

Since an acoustic or an electric noise is not visible (save as a
drawing on a cathode ray tube), geometric concepts do not
enter in its study until late and in an abstract fashion. For
the Earth’s relief, the opposite is true. However, ordinary
geometric concepts are hopelessly underpowered here; new

" mathematics will be needed. For our purposes, remem-

bering that the Earth is roughly spherical overall would only
bring insignificant corrections. We shall therefore assume
that, overall, the Earth is flat with coordinates x and y.

GOALS

Quantified Goals. To be satisfactory, a model will be re-
quired to either explain, or at least relate to each other, the
following theoretical abstractions from actual observations,
(a) Korcak’s empirical number-area rule for islands (1): the
relative number of islands whose area exceeds A is given by
the power-law ®(A) ~ A=K A fresh examination of the data
for the whole Earth yields K ~ 0.65. More local (and less re-
liable) estimates using restricted regions range from 0.5 for
Africa (one enormous island and others whose sizes decrease
rapidly) up to 0.75 for Indonesia and North America (less
overwhelming predominance of the largest islands). (b) The
concept that, even though coastlines are curves, their wiggli-
ness is so extreme as to be practically infinite. For example,
it is not useful to assume that they have either well-defined
tangents (2), or a well-defined finite length (references are
given in ref, 3). Specific measures of the length depend upon
the method of measurement and have no intrinsic meaning.
For example, as the step length G of a pair of dividers one
“walks” along the coast is decreased, the number N(G) of
steps necessary to cover it increases faster than 1/G. Hence,
the total distance covered, L(G) = GN(G), increases without
bound. (¢) Richardson’s empirical power law N(G) ~ G2,
This D is definitely above 1 and below 2; it varies from coast
to coast, a typical value being D ~ 1.3 (references in ref. 3).
{d) Mandelbrot’s proposal (3) that it is useful in practice to
split the concept of the dimension of a coastline into several
distinet aspects. Being a curve, it has the topological dimen-
sion 1, but the behavior of L(G) suggests that from a metric
viewpoint it also has a “fractal dimension,” equal to Rich-
ardson’s D. Curves of fractional (Hausdorff) dimension have
been known for over half a century, as an esoteric concept in
pure mathematics, until Mandelbrot (3) injected them into
geomorphology. The notion of fractal dimension has also ac-
quired applications in several other empirical sciences (see
refs. 4 and 5). Implicit in ref. 3 was the further concept that
the surface of the Earth has the dimension D + 1, contained
between 2 and 3. (e) Vertical sections of the Earth have been
studied less thoroughly than the coastlines, but a model of
the Earth should embody whatever is known on their behalf

(6).
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FIG. 1. Perspective view of a sample of a Brownian surface of
Paul Lévy, with a sea level included to help enhance detail.

Subjective Goals: Resemblance in External Appear-
ances. Still another property to be explained is obvious but
not easy to quantify. Roughly speaking, it is hard to tell
small and big islands apart, unless one either recognizes
them or can read the scales. One possible germ of an expla-
nation would consist in arguing that the determinants of
overall shape are scaleless, hence are not signals but noises,
(In fact, many islands look very much like distorted forms of
whole continents, which is perhaps too good to be believed:
why should self-similarity extend to the plates?)

A final goal for the model maker has recently arisen from
advances in computer simulation and graphics. The validity
of a stochastic model need no longer be tested solely through
the guality of fit between predicted and observed values of a
few exponents. It is my belief (perhaps a controversial one)
that the degree of resemblance between massive simulations
and actual maps or aerial views must be treated as evidence.

STRATEGY

First Strategy: An Explicit Mechanism and Its Limit
Behavior. Self-similarity. Our first strategy is the one used
to explain thermal noise in electric conductors through the
intermediacy of shot noise, which is the sum of the mutually
independent effects of many individual electrons. The anal-
ogous “‘Poisson-Brown” primary model of the Earth has iso-
tropic increments, It is simple, explicit, direct, and intuitive,
and, in general terms, does fulfill the goals that have been
listed. In particular, it predicts that coastlines are not recti-
fiable, that the above power laws are valid, and that D must
be greater than 1. In fact, the relief that it vields is self-simi-
lar. This last concept quantifies the first of the subjective
goals listed above. It expresses that the altitude Z(x,y) has the
property of spatial homogeneity: take Z(0,0) = 0, and pick
an arbitrary rescaling factor h > 0. Then Z(hx,hy) is identi-
cal in statistical properties to the product of Z(x,y) by some
factor f(h). Unfortunately, the predicted value D = 1.5 is
not satisfactory. No single value can represent the relief ev-
erywhere, and most observed values are well below 1.5. This
discrepancy is confirmed by the excessively irregular ap-
pearance of the simulated primary relief and coast-
lines.

Second Strategy: Self-Similarity and Use of Limits. To
do better than Poisson-Brown, as demanded by both numer-
ical and perceptual reasons, one must unfortunately resort to
an indirect strategy, more complex, less powerful, and less
convincing. First postulate: Without attempting to describe
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any specific mechanism, we preserve the assumption that
the noise element in the relief is the sum of many indepen-
dent contributions. It follows, for example, that the incre-
ment Z(P’) — Z(P”) between the two points P’ and P”, must
belong to a very restricted family of random variables. Be-
sides the Gaussian, it includes other members (so far, ill-
known in the applications; see below). Alternative postulate:
We adopt the self-similarity of the relief as an excellent
quantification of our first subjective goal, and hence as a
summary of many quantified goals. Even after self-similari-
ty is assumed, the identification of an appropriate Z(x,y)
continues to pose a challenge. We shall examine several
possibilities in order of increasing complication, and show
that they make it possible, while staying within the restrict-
ed domain defined by the first postulate, to fulfill our vari-
ous goals in a way that relates them to each other.

THE POISSON AND BROWN SURFACES

A Spatial Construction on the Principle of Poisson Shot
Noise, Start with an Earth of zero altitude, then break it
along a succession of straight faults, and in each case dis-
place the two sides vertically to form a cliff. The terms
“fault” and “cliff” are to be understood in purely geometri-
cal terms, with no tectonic implication. The resulting relief
will be denoted by II(x,y). It is convenient to choose an ori-
gin (0,0), and to maintain I1(0,0) = 0, but changing the ori-
gin only adds a constant to II(x,y). (This model obviously
neglects the basic roles of isostasy and of erosion.)

The positions of the faults and the heights of the cliffs are
assumed random and mutually independent, the former
being isotropic with a high average density, and the latter
having zero mean and finite variance (implying that large
values are very rare). A computer simulation is exhibited in
Fig. 1, showing a perspective view of the relief, and in Fig,
3B, showing a larger piece of coastline. The quantitative
properties of a primary relief have already been summa-
rized by stating it is self-similar with D = 1.5. Let us now ex-
amine them one by one.

Vertical Sections. The effect of a set of isotropically ran-
dom and mutually independent faults is named after Poisson
because of the property (which could be used as a definition)
that their points of intersection with any straight line (par-
ametrized by u) form a Poisson point process II(u) (while
the angles of intersection are distributed uniformly between
0 and 27). Denote the average number of points of intersec-
tion per unit length by A. Each primary vertical section can
be said to be a Poisson random walk. It differs from an ordi-
nary random walk because the instants when it moves are
not uniform but Poissonian.

Limit Vertical Sections. Divide II(u) by A'/2, thus rescal-
ing the cliff heights to make them decrease as their number
increases, and then let A — «. As is well-known, the distri-
bution of the Poisson steps becomes increasingly irrelevant.
By the central limit theorem, I1(z)A~!/2 tends to a Brownian
motion B(u). This limit is a continuous process, which fact
expresses that even the highest contributing cliff is swamped
into being negligible. The overall resemblance between
Brownian and real vertical sections has been pointed out in
ref. 8 (p. 435), but other authors must have noted it earlier.
It is confirmed by spectral analysis (6).

Relief. Z = TI{x,y) can be called a Poisson surface, and Z
= B(x,y) is called a Brownian surface. It had been defined
by Paul Lévy (9) through the characteristic property that,
for every two points P’ and P”, B(P’) — B(P”) is a zero
mean Gaussian random variable of variance |P’P”|2H, with
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H = 0.5. B(x,y) is self-similar with the factor f(h) = h!/2
Until the present application, it was known simply as a
mathematical curiosity. Its use as a model could have been
introduced directly and dogmatically as just another in-
stance of the oft-successful tactic, which approaches every
new statistical problem by trying to solve it by the simplest
Gaussian process. However, the detour through Poisson
faults improves the motivation.

Coastlines. An island is defined as a maximal connected
domain of positive altitude. A coastline, being simply a hori-
zontal section of the relief, has the same degree of irregulari-
ty as a vertical section, The coast of a Brown island has infi-
nite length, however small its area A; for a Poisson island of
area A 3> A2 the total length is very large, of the order of
ALZ\1/2 In either case, when G > A\~2, one-has N(G) ~
G~L3,

The Number-Area Rule for Islands. For islands defined
through B(x,y) = 0, ®(A) = A=3/4 for all values of A. For
islands defined through Il(x,y) = 0, ®(A) = A=%/4 so long
as A >\ 72

ANISOTROPIC STRETCHING AND ADDITION
OF SPECTRAL LINES

A striking feature of sample Brown surfaces (Fig. 1) is the
invariable presence of clear-cut ridges. They are merely an
unexpected consequence of continuity, but their presence
expresses that each sample is grossly nonisotropic. Since
these ridges have no privileged direction, they are quite
compatible with isotropy of the mechanism by which B(x,y)
is generated. If we did not know them to be expressions of
noise, we might say they are signals. That is, if we did not
know them to be due to the superposition of many effects,
we might try to explain them by some single cause.

Nevertheless, they do not remotely have the regularity of
(say) the Appalachians or the Andes, which are profoundly
nonisotropic. We shall list two easy ways of accounting for
them by invoking “signals” superposed upon an primary
“noise.” First signal: It consists in a controlled degree of ani-
sotrophy introduced into either II(x,y) or B(x,y). One may,
for example, make the probability of faults greater along
some direction than faults along its perpendicular. Alterna-
tively, one can stretch the plane. Either change will make
our ridges tend to become parallel to each other and form
mountain ranges; by adjusting the degree of stretching, the
overall fit can be improved. On the other hand, the values of
the parameters K and D would remain unchanged. Addi-
tional signal: A different approach to the problem of noni-
sotropy is best explained in spectral terms. The spectrum of
B(P) is continuous, with a density proportional to w=2. Just
as In communication technology, the signal may be assumed
to take the form of a pure spectral line. It would induce si-
nusoidal up- and down-swells in the relief, hence a tendency
towards parallel ridges.

FRACTIONAL BROWNIAN RELIEF

The most satisfactory model, among those currently avail-
able, combines either of the above signals with the following
noise.

A Gaussian Secondary Model with Either 1 < D < 1.5
or 1.5 < D < 2. We now adopt a second strategy, and fulfill
its first requirement by continuing to assume that Z(z,y) is a
Gaussian surface, meaning that for any set of points P, (0 <
n = N), the N dimensional vector of coordinates Z(x,,y,) —
Z(x0,yo) is Gaussian. The combination of isotropy of the in-
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F1c. 2. Several perspective views of a sample fractional Brown-
ian surface for H = 0.7 drawn using the same random generator
seed as Fig. 1. Letting the sea level recede further enhances the
shape of the relief. This H = 0.7 gives the best fit from all view-
points.

crements with self-similarity turns out to require Z(x,y) to be
proportional to either the above Brownian function B(x,y),
or a generalization, which I propose to call fractional Brow-
nian function and to denote by Bg(P). It is defined by
E{Bu(P’) — By(P")P = |P'P”|2H with0 < H < Yor % < H
<'1. [If H = %, By(P) = B(P).] The fractional Brownian
function of time has served the author in modeling a variety
of natural time series (10). The present multiparameter
By (P) has been fleetingly mentioned in the literature (refer-
ences in ref. 4), but here it can be applied; selected simula-
tions are illustrated in Figs. 2, 3A, and 3C. To satisfy our nu-
merical goals with any desired D, it suffices to select H = 2
—D.If D~13and H ~ 0.7, the subjective goal of familiar-
ity of appearance is fulfilled also. As to the exponent K, its
theoretical value is K = D/2 (meaning that the distribution
of the typical length A'/2 is hyperbolic with the exponent
D). The single Earth-wide estimate K ~ 0.65 is a compro-
mise between different regions, and indeed it fits the world-
wide compromise D ~ 1.3. Local estimates for Africa and
Indonesia also fit the local estimates of D, and the empirical
relationship between D and K seems to be monotone in-
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Fi1G. 3. Several coastlines, defined as the zero level lines of fractional Brownian surfaces corresponding to different values of I, drawn
using the same random generator seed. For H = 0.5, one has the Brownian surface.

creasing. This feature, if confirmed (an interesting topic for
further study), would provide an unexpected link between
the local and the very global properties of the relief in dif-
ferent Earth’s areas.

After the Fact Partial Rationalization of By(P). There
are at least two approaches, each of which is more reason-
able in different regions of the Earth, First method: One
notes that the spectrum of By (P) is continuous with a densi-
ty proportional to @ 2H+1) When H > 0.5, it differs from
the w2 density of B(P) by being stronger in low, and weak-
er in high frequencies. The replacement of B(P) by By(P)
could be viewed as due to yet another signal. Its overall ef-
fect is in the direction of smoothing; its local aspects could
well be associated with erosion, while its global aspects may
relate to isostasy. The fact that D varies around the globe,
for which we have not yet accounted at all, would result
from local variability in the intensity of such erosion. How-
ever, none of the common methods of smoothing, such as
local averaging, would do, because each only affects a nar-
row band of frequencies. The smoothing required here must
involve a very broad band; and therefore, it would have to
combine a whole collection of different narrow band opera-
tions. In addition, their relative importance should take a
very specific form.

Alternatively, one may obtain By(P) directly (this ap-
proach is used and described in ref. 4), by resorting to cliffs
with a very special kind of profile. They must rise very
gradually but forever on both sides of each fault.

A NON-GAUSSIAN SECONDARY MODEL

Though By (P) gives a surprisingly good phenomenological
description of the relief, it is continuous, which implies it
will not fit some data. However, discontinuity, if required,
happens to be within easy grasp. It suffices to proceed to
random surfaces that follow one of the non-Gaussian distri-
butions that may apply to sums of many independent ad-
dends, namely, a stable distribution of Paul Lévy. They can
be injected into the Poisson model (see above) by making

cliff heights have infinite variance and fulfill other require-
ments. The resulting Poisson-Lévy model cannot be de-
scribed here. It suffices to say that the largest contributing
cliff no longer becomes relatively negligible as the number
of contributions increases, but continues to stand out. With-
out question, we will be tempted to interpret it as a signal.

GENERALIZATIONS

The above models not only are closely related to some recent
work in turbulence (4), but have many other fairly immedi-
ate applications. They are readily translated to account for
such phenomena as the distribution of minerals and of oil.
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