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Abstract

Luria and Delbriick (1943) have observed that, in old cultures of bacteria
that have mutated at random, the distribution of the number of mutants is
extremely long-tailed. In this note, this distribution will be derived (for the
first time) exactly and explicitly. The rates of mutation will be allowed to be
either positive or infinitesimal, and the rate of growth for mutants will be
allowed to be either equal, greater or smaller than for non-mutants. Under
the realisticlimit condition of a very low mutation rate, the number of mutants
is shown to be a stable-Lévy (sometimes called “Pareto Lévy™) random variable,
of maximum skewness f§, whose exponent ¢ is essentially the ratio of the growth
rates of non-mutants and of mutants. Thus, the probability of the number of
mutants exceeding the very large value m is proportional to m—%-1 (a behavior
sometimes referred to as “asymptotically Paretian™ or “hyperbolic™). The
unequal growth rate cases o 3% 1 are solved for the first time. In the ot = 1
case, a result of Lea and Coulson is rederived, interpreted, and generalized.
Various paradoxes involving divergent moments that were encountered in
earlier approaches are either absent or fully explainable.

The mathematical techniques used being standard, they will not be described
in detail, so this note will be primarily a collection of results. However, the
justification for deriving them lies in their use in biology, and the mathematical-
ly unexperienced biologists may be unfamiliar with the tools used. They may
wish for more details of calculations, more explanations and Figures. To satisfy
their needs, a report available from the author upon request has beenprepared.
It will be referred to as Part II.
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1. Introduction

Let the bacteria in a culture grow, and sometimes mutate, at random, for a long
time. In an occasional culture, the number of mutants will be enormous, which
means that “‘typical values”’, such as the moments or the most probable value,
give a very incomplete description of the overall distribution. Also, when the same
mutation experiment is replicated many times, the number of mutants in one
replica, which chanced to be the most active, may exceed by orders of magnitude
the sum of the numbers of mutants in the aggregate of all other replicas. Luria and
Delbriick (1943), who first observed the above facts, also outlined an explanation
that has played a critical role in the birth of molecular biology: if and when the
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first mutation occurs very early in an experiment, the advantage of primo-
geniture is so great that the clone to which it gives rise has time to grow to a
very much larger size than either any other clone in the same replica, or than the
largest clone grown in a more typical replica in which no early mutation happened
to be included.

Interest in expressing this explanation quantitatively, by describing the full dis-
tribution of the numbers of mutants, first peaked around 1950 (Lea and Coulson
(1949), Kendall (1952), Armitage (1952), (1953) and Bartlett (1266)), but the solu-
tions advanced were not definitive. Several investigators only calculated moments.
Also, rates of growth were always assumed to be the same for mutants and non-
mutants, and the rate of mutation to be very small. Kendall’s work, on the other
hand, was so general that it may include in principle the results to be described,
but, because of its generality, it lacked explicitness.

In the present note, the whole distribution will be described, for the first time,
under assumptions that seem both sufficiently general to be realistic and suffi-
ciently special for the solution to be exact and near explicit, in the sense that the
Laplace transform of the distribution is given in closed analytic form.

The extreme statistical variability characteristic of the Luria and Delbriick experi-
ment is also found in other biological experiments in progress; one may therefore
hope that a careful study of the earliest and simplest such problem would provide
guidance in dealing with new cases when very erratic behavior is unavoidable, and
in avoiding them when possible and thus achieving better estimates of such quan-
tities as rates of mutation.

2, Preliminary: assumptions and some known distributions
Assumptions

(A) At time ¢ = 0 the culture includes no mutant but includes a large number
b, of non-mutants of a single kind.

(B) Between times f and t + dt, a bacterium has the probability mdt of muta-
ting.

(C) Back mutation is possible.

(D) Neither the mutants nor the non-mutants die.

(E) The rate of mutation m is so small that one can consider each mutation as
statistically independent of all others.

(F) Mutants and non-mutants multiply at rates that may be different. The scale
of time is so selected that, between the instants t and f + dt, the probability of
division is gdt for a mutant and dt for a non-mutant.

Non-mutants. A bacterium that mutates may be considered by its non-mutant
brethren as having died, so N(t, m), defined as the number of non-mutant bacteria
at the instant ¢, follows the well-known “‘simple birth and death process™” (see, e.g.,
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Feller (1968), p. 454). When b, > 1, the variation of N(t, m) is to a good approxi-
mation deterministic,

N(t,m) ~ EN(t, m) ~ bye'™*™™,

Non-random clones. Denote by K(t, m) the number of “‘clones’’ at the instant
t (a clone being the progeny of one mutation). From Assumption (E), K(t, m) is
so small relative to N(t, m) that different mutations can be considered statistically
independent, so K(t, m) is a Poisson random variable of expectation

t
m [N(S’ m) dS = bgm(l -_— m)_l[e'(l-"') s 1]-
+0

Random clones. Denote by Y(t, m, g) the number of mutants in a clone
selected at random (each possibility having the same probability) among the clones
that have developed from mutations that occurred between the instants 0 and ¢.
The distribution of Y (¢, m, g) will be seen to depend on its parameters through the
combinations ¢” and & = (1 — m)/g; since eventually we shall let m — 0, « nearly
reduces to the ratio of growth rates, 1/g. One can prove that, after a finite ¢,

exp(gt)

P['{Y(t, m, g) g y} = fx[l -_— e-t(l—m):l_l f v“"'l’(v o l)y—ldv.
1
In the case o = 1, this yields explicitly
PL’{Y(?, m, g) =z y} = y"1[1 = e—gr]v—l'

The generating function (g.f.) of ¥, denoted by ¥, equals
exp(gt)
Y(b,t,m,g) = ol — e"‘“_"’)]f v Y [w(e® — 1) + 1] 'dv}.
1

As t — oo, while m and g are kept constant, ¥ tends to a limit random variable
Y () that only depends on o. When « = 1,

1
o+’

a result known to Lea and Coulson (1949). For all o,

_ . T(@I(y)
PI{Y(O{) = y} = o m

Pr{Y(1) = y} = J‘ 1v(l — o) 1y
0

1 The formulae in the remainder of this Section restate some results obtained by Yule
(1924), in a paper which is known to have introduced the birth process, but has otherwise
been almost completely neglected. Yule treated a nominally different problem: our *‘growth”
was his “increase in the number of species in one genus”, our “mutation’ was his “starting of
anew genus.” His work and the term “Yule distribution” had owed part of their limited
notoriety to several papers by H. A. Simon, who sought to modify Yule’s argument to obtain
equally strong results from less strong assumptions. This attempt has proved a failure.



440 BENOIT MANDELBROT

For large y,
Pr{Y(«) = y} ~ T(a+ Dy~ '7=

The Y(x) thus constitutes a form of asymptotically ““hyperbolic’’ or ‘‘Pareto’’
random variable of exponent «. The population moment EY*(«) is finite if & < «
but infinite if i = «. For example, the expectation of ¥ (x) is finite if and only if
o > 1 and the variance is finite if and only if « > 2. Infinite moments are a vital
part of the present problem.

3. The total number of mutants

M(t, m, g) will denote the number of mutant bacteria at the instant ¢. Thus,
M(0, m, g) = 0, and

K(t, m» g)

M(I, ms g) == k'“zl Yk(ts ms g)

Denote its g.f. by M(b, t, m, g); since K is a Poisson random variable of expecta-
tion EK, log M(b, t, m, g) = EK[¥ (b, t, m, g) —1].

Since the distributions of K and Y both depend on ¢ (and are therefore inter-
related) one cannot apply the standard theorems concerning the limit behavior of
sums (Gnedenko and Kolmogoroff (1954), Feller (1966)), but the special analysis
that is required is straightforward. An approximate formal application of the
standard theorems, by first letting the Y converge to the Y () and then adding K
of them, would be unjustified, but some of its results nevertheless remain applic-
able. (Some of the paradoxes encountered in the analyses circa 1950 are related
to cases where inversion of limit procedures is unjustified.) One correct formal
inference concerns the correct standardizing choices of a scale factor S(K) and a
location factor L(K), so as to ensure that the probability distribution of R =
S(K)[M — L(K)] tends to a non-degenerate limit as K — co. These are as follows:

a>2:L(K) = EY; S(K) = (EK)™'/?

1 <a<2:L(K) = EY; S(K) =(EK)’”°‘-1
a=1:L(K) = logEK; S(K) = (EK)™'/* Ik = De™ ",
a<1:L(K) = 0; S(K) = (EK)~Y/*

Here, we denote
D = [bom(l —m)~']7 Y=,

The limits are as follows.

The case o > 2. Here, lim,., .(EK)™*(M — EM) can be shown to be Gaussian.
Nothing original!

The case o < 1. Here, lim,_, , (EK)™'* X £ Y, can be shown to have a g.f,
equal to
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D
R(b, 0, m, g) = exp [af bw ™% (bw + 1) tdw ] §
0

The corresponding limit r.v. — call it R( o0, o, D) — seems to appear for the first
time in the present context. Its being non-degenerate (not reduced either 0
or o) confirms that the above standardization was well chosen. Moreover,
near b = 0, R(b, 0 ,m, g) has a good expansion in Taylor series, so all mo-
ments of R(co,a, D) converge. However, this convergence has limited signi-
ficance because, in actual practice, m is extremely small and D is extremely
large, so the moments of R( co, «, D) are themselves enormous and tell us very little
about the distribution of R( c0,e, D). On the other hand, as had been realized by
Luria and Delbriick, the birth and mutation process is illuminated by a sort of
‘‘diagonal’ procedure whereby, while ¢ is increased, m and/or b, change in such
a way that D — oo while g > 1 to ensure that « remains between 0 and 1. If so, the
function R tends towards

exp[ — ab® Lw z %1+ 2) “’dz] = exp[ — b*an/sin (am)],

which is an unfamiliar form of an expression well known in the literature; namely
the g.f. if a stable random variable of maximal skewness f = 1, which is positive
(Gnedenko and Kolmogoroff (1954), Feller (1966)). It is also the limit one would
have obtained for K — oo by first letting ¥ — Y () and then considering the simi-
larly standardized sum of K independent random variables of the form Y (x).

In the limit, all the moments of order & > o (including all integer moments)
diverge. As a practical consequence, the statistical estimation of m and g from
values of M is both complicated and unreliable. Traditionally, statistics had relied
heavily on sample averages, but when the population averages are infinite, the
behavior of the sample averages is extremely erratic, and one must absolutely
avoid any method that involves them.

The case 1 <o <2. Here, lim,,,(EK)""* ZX_ [Y, — EY,] can be shown
to have the g.f.

D
exp [af b2w Y (bw + 1)"1dw] "
0
As D — oo, this function tends towards

exp[ — b%oan/sin(ar)],

which is again the g.f. of a stable random variable of exponent « and maximal
skewness, i.e., of the limit of a similarly standardized sum of K independent ran-
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dom variables of the form Y (). The theory of these limits is well known, but their
shape is not; see Mandelbrot (1960), Mandelbrot and Zarnfaller (1959).

The case o = 1. Here, lim,,,(EK)™! X ,[Y, —logEK] can be shown to
have the g.f.

exp [blogb + blog(l + 1/bD)].

As D — oo, this function tends towards exp[blogb], corresponding to the stable
density of exponent « = 1 and maximal skewness = 1, sometimes called the
“asymmetric Cauchy’’ density. It has been derived (but not identified) in Lea and
Coulson (1949), which concerns the case when the mutation rate m is small, and
the growth rates for the mutants and the non-mutants are equal, so that o ~ 1.

4. The total number of bacteria and the degree of concentration

Designate by B(t, m, g) = N(t, m) + M(t, m, g) the number of bacteria of
either kind at the instant ¢. In the straightforward special case g = 1, the func-
tion B(t, m, g) follows a “‘simple birth process’ or ‘““Yule process’’; see Feller
(1968). When by > 1, the growth of B is for all practical purposes deterministic
and exponential, meaning that B(f) ~ bge’.

In the cases g # 1, things are much more complex, but much of the story is
told by the orders of magnitude for large t: M(t,m, g) ~ " and N(t, m, g) ~ e'* =™,

When o < 1, B(t, m, g) ~ M(t, m, g), meaning that the mutants — which we
know are subject to very large fluctuations — become predominant.

When o > 1, B(t, m, g) ~ ™™ with little relative fluctuation, the random
factor that multiplies ¢ being nearly the same ‘‘as if”” there had been no mutation.
Thus, the dependence of B upon g is asymptotically eliminated.

Now examine the ‘‘degree of concentration of the mutants, namely the ratio
p of the number of mutants in the largest of the K clones in a replication, divided
by the total number of mutants in the other clones of this replication.

It was discovered by Luria and Delbriick that an alternative ratio can be quite
large; namely the number of mutants in the largest among H replications, divided
by the sum of the number of mutants in the other of the replications. It can be
shown that the above two ratios follow the same distribution, so it will
suffice to study the first, beginning with two extreme cases.

Let mutation bring in so great a competitive disadvantage and such decrease in
the growth rate that & > 2. Then, the number of young and small clones increases
much faster than the size of the single oldest clone in an experiment. Therefore,
it is conceivable that a negligible proportion of mutants will be descended from
this oldest clone, and the more so from any other single clone. This expectation
is indeed confirmed. We know that if & > 2 the quantity M(t, m, g) tends towards
a Gaussian limit, so the contribution of any individual addend Y, to their sum is
indeed negligible.
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Let, on the contrary, mutation bring in great competitive advantage and such
increase in the growth rate that « < 1. Then, the size of the oldest clone in an
experiment (corresponding to the earliest mutation) grows much faster than the
number of fresh clones. It is conceivable therefore that the largest clone in an
experiment be comparable in size with the sum of all the other clones. An appreci-
able proportion of the mutants could descend from the single largest clone. This
expectation is indeed confirmed in two different ways. First, it has been shown by
Darling (1952) (see also Feller (1966), p. 439, problem 20), that if « < 1 the ratio
p does not tend to zero as K — co. Rather, its distribution tends to a non-
degenerate limit, and E(1/p) has the non-degenerate limit o/(1 — «). As « varies
from 0 to 1, it varies from 0 to co. That is, when mutation brings enormous
increase in growth rate so that the value of « is very small, 1/p is nearly 0 on the
average, and the limit value of p for large K is often very large. When, on the
contrary, mutation brings very slight advantage, so that « is very nearly 1, 1/p is
very large on the average and p tends to be small. But its values can be seen to be
widely scattered, and large values are not unlikely.

The limits described by the preceding theorem are attained asymptotically,
rapidly when o is small, but very slowly when « is near 1. Thus, in the Lea and
Coulson case corresponding to o = 1, the value of K must be very large for p to
become negligible. For ordinary values of K, the typical value of p is non-
negligible, and the dispersion of p around this typical value is very wide, so that
the original argument of Luria and Delbriick is justified.

A different aspect of concentration, attacked by Mandelbrot (1960), concerns
the distribution of p if the replica is known to be “‘very large”’, or if the largest
clone it contains is known to be very large. In that case, p is likely to be nearly
one (see Mandelbrot (1960), p. 96, or Feller (1966), p. 279, problem 27).

References

ARMITAGE, P. (1952) The statistical theory of bacterial populations subject to mutation. J. R.
Statist. Soc. B 14, 1-40.
s JIQSJZMITAGE, P. (1953) Statistical concepts in the theory of bacterial mutation. J. Hygiene 51,

EARTLETT, M. S. (1966) An Introduction to Stochastic Processes. 2nd. ed. Cambridge Univer-
sity Press.

DARLING, D. A. (1952) The influence of the maximum term in the addition of independent
random variables. Trans. Amer. Math. Soc. 73, 95-107.

FeLLEr, W. (1966) An Introduction to Probability Theory and Its Applications. Vol. II. Wiley,
New York.

FELLER, W. (1968) An Introduction to Probability Theory and Its Applications. Vol. I, 3rd.
ed. Wiley, New York.

GNEDENKO, B. V. AND KOLMOGOROFF, A. N. (1954) Limit Distributions for Sums of Independent
Random Variables. (Translated by K. L. Chung) Addison-Wesley, Reading, Mass.

KenpaLL, D. G, (1952) Les processus stochastiques de croissance en biologie. Ann. Inst.
Poincaré 13, 43-108.

Lea, D. E. anp CouLson, C. A. (1949) The distribution of the number of mutants in bacterial
populations. J. Genetics 49, 264-285,



444 BENOIT MANDELBROT

Luria, S. E. AND DELBRUCK, M. (1943) Mutations of bacteria from virus sensitivity to virus
resistance. Genetics, 28, 491-511.

MANDELBROT, B. (1960) The Pareto-Lévy law and the distribution of income. Internat.
Economic Rev. 1, 79-106 and 4 (1963) 111-115.

MANDELBROT, B. AND ZARNFALLER, F. (1959) Five place tables of certain stable distributions.
Research Report RC-421, IBM Research Center. (Available from the first named author, as part
of a revised reprint of the above 1960 paper.)

YuLg, G. U. (1924) A mathematical theory of evolution, based on the conclusions of Dr.
J. C. Willis, F. R. S. Philos. Trans. Roy. Soc. London B 213, 21-87.



