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Abstract.

The broken line process has been advanced recently as a possible replacement

for fractional noise as a model representing long-run persistence in hydrology and turbulence.
It is shown that in fact one can rederive the broken line process as an approximation to
fractional noise and that efforts to preserve the value of p”(0) may well be misplaced.

The ‘broken line process’ (BL) was first in-
troduced by Ditlevsen [1969] and is being de-
veloped by Mejia [1971], Rodriguez-Iturbe et
al. [1972], Mejia et al. [1972a, b], and Garcia
[1972]. Their purpose has been to show that
hydrology and turbulence theory can take ac-
count of long-run effects without using the frac-
tional noises (FN). The FN were introduced by
Mandelbrot [1965], explored initially by Man-
delbrot and J. R. Wallis, and explored more
recently by N. C. Matalas and others.

The purpose of the present note is to show
that, irrespective of its actual historical motiva-
tion, the BL process can be obtained as an ap-
proximation of the fast Gaussian FN proposed
in Mandelbrot [1971]. The possibility of such a
derivation will, on the one hand, confirm that
BL can indeed perform in conformity with its
promoters’ claims and, on the other hand, stress
that BL is not an alternative to FN itself but
rather an alternative to the fast FN and to
any other computer-oriented approximations of
FN. Also, I shall emphasize that BL is not a
Gaussian process and that this charaeteristic
may be a very serious drawback. In particular,
the extensive literature on, among others, the
problem of level crossings is not applicable to
BL except as an approximation of uncertain
status. Efforts to ‘preserve p”(0)’ may well be
misplaced.

A PROPERTY OF UNICITY POSSESSED BY FN

The aim of a model of long-run statistical
dependence in fields like hydrology is to aceount
for the Hurst phenomenon relative to the

behavior of the rescaled range R/S [e.g., Man-
delbrot and Wallis, 1968]. When one limits one-
self to Gaussian processes, one may just as well
work with the nonrescaled range R. In this
case, I observed in 1965 that a stationary Gaus-
sian process whose range exhibits the Hurst be-
havior exactly and for all lags is unique. This

_statement is not a subjective judgment that one

could dispute; it is related to the theorem that
if a stationary process is Gaussian its covariance
describes it fully. In the present case, this proe-
ess is the continuous time Gaussian FN and
can be obtained as the derivative B,/(t) of the
fractional Brownian motion of Mandelbrot and
Van Ness [1968].

THEORETICAL APPROXIMATIONS TO FN:
DIFFERENTIABILITY

The high-frequency properties of the process
B,/ (t) are unmanageable; By’(t) is not even an
ordinary function. Therefore in practice B,/(t)
must be replaced by approximate FN. In the-
oretical work the best approximations are those
obtained as moving averages of By'(t) [Mandel-
brot and Van Ness, 1968, section 4.1]. For ex-
ample, when By’(t) is averaged once (by us-
ing a uniform weight) over the interval (¢, ¢ +
1), one obtains the process for which the co-
variance p(s) is equal to

s + 1 — 28 + | — 1]
This process can be defined at will in either dis-
crete or continuous time. In continuous time its
sample function is (almost surely) continuous,
but because p”(0) = oo the sample function
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is very irregular in its local behavior and as a
result is nondifferentiable. When B,’(t) is aver-
aged twice, or alternatively is averaged once by
using a triangular weighting factor, one ob-
tains an approximation for which p*(Q) is finite
and the hehavior of p near the origin is other-
wise sufficiently regular for the standard theory
of smooth Gaussian processes to apply to its
sample function. For example, it has (almost
surely) a continuous derivative,

The authors of BL attribute a great impor-
tance to properties of smoothness. By contrast,
Mandelbrot and Wallis [1969, section starting
on p. 262, column 2] have argued that, since
practical work is always limited to processes in
discrete time, smoothness is not important. I
continue to hold this last opinion; nevertheless,
we shall return to p”(0) again.

PRACTICAL APPROXIMATION: FFN

The above smoothed out forms of By are,
unfortunately, themselves impractical. Some ex-
amples of practical approximations are the
type 1 and type 2 functions of Mandelbrot and
Wallis [1969], which are cumbersome to write
and expensive to compute, as is pointed out by
the unanimity of ecritics. Another example is
fast fractional noise (FFN), proposed generator
of Mandelbrot [1971]. A sample of T values
of FFN is obtained as the sum of a number
N(T) of independent Markov-Gauss processes,
where N(T) increases with T roughly propor-
tionately to log 7. Consider one of these terms
X (t), defined as having the covariance C(t) =
o exp (—s/s;), where ¢ and s, are two con-
stants. By definition,

X(t 4+ s) = exp (—s/s)X()

+ a[l — exp (—s/s))]""G
where G is a reduced Gaussian term independent
of X(t).

PRACTICAL APPROXIMATION :
PROGRESSION TOWARD BL

When the X (t) above has been defined for

continuous £, X(¢) is known to be continuous
but nondifferentiable. In practice, of course,
X(t) is only computed when { is an integer,
and the question arises whether it would be
possible to evaluate X (¢) even more economi-
cally. One proposal is to compute X (¢) over some
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rough grid of ¢ values looser than integers and
then to interpolate. When s, is much larger than
1, the change between X () and X (¢ + s) is
very small, and it may indeed be sensible to
select an appropriate second constant s., to con-
struet X (t) for values of ¢ distant by s, and
finally to define X,(#) by interpolating X (¢)
between the above successive values. If, for
example, the interpolation is linear, the func-
tion X,(t) so obtained not only is continuous
but also has a derivative at nearly all points ex-
cept those belonging to the basie grid. If, more-
over, the starting point £, (namely, the first
value of ¢t for which X(¢) is computed) is
chosen at random (with uniform probability)
between —s, and 0, then the random function
X.(£) can be shown to be stationary.

Note that the approximation above has the
asset that the number of random numbers to
be generated is reduced considerably, roughly
in the ratio of 1/s..

In a further step away from the original
X(t), one may also change the process ruling
the terms X (t,), X (to + &), X(t + 28), -
When s./s, > 1, those terms are nearly inde-
pendent. Our final change will consist in mak-
ing them strictly independent. The resulting
process X.(t) is a broken line according to
Ditlevsen’s definition. Moreover, one can check
that the relation between the constants e¢ and
8, for the addends of the FFN and the relation
between the constants a and s, for the addends
of the BL model are compatible. Thus BL is an
approximation to FFN, as was announced.

NON-GAUSSIAN CHARACTER OF THE BL
APPROXIMATION AND ITS CONSEQUENCES

The value of X.(¢) taken at an instant ¢ that
is a breakpoint is a reduced Gaussian random
variable. Its value at ¢, whose distances d and
1 — d from the nearest breakpoints are known,
is an average of two independent reduced Gaus-
sian random variables and therefore is itself a
CGaussian random variable. Its variance is &° +
(1 — d)?, which depends on the position of ¢
and attains a minimum at the midpoint between
two breaks, where it equals 1%4. Consequently,
the value of X.(t) at an arbitrary instant is
a weighted mixture of all the above Gaussian
averages and therefore is itself non-Gaussian.
(For example, its kurtosis, though small, is
positive and equal to 0.15.)
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Though this non-Gaussian character is not
extreme, its consequences must not be dismissed.
For example, the authors of BL attribute great
importance to p”(0) and make sure that its
values in the model and in reality are matched.
Formally, such matching is possible, but its use-
fulness is not established. Indeed, the main point
about p”(0) is the central role that it plays in
the theory of level crossings, maximums, and
so on, and this role applies only to exactly
Gaussian processes. Implicitly, the authors of
BL work with the Gaussian process having the
same covariance as BL. They imply that its
formal properties also apply to BL itself as
‘an approximation,” but they need not. As an
example consider the matter of sample differ-
entiability. The sample of the Gaussian ap-
proximation to BL is known to have a deriva-
tive, whereas BL itself has breakpoints where
it has no derivative. For zero crossings and
maximums a situation may well be worse. The
existing mathematics and computer experiments
about these problems only show them to be
very difficult, and the main lesson that I per-
sonally draw from them is that the quality of
the predictions based on the Gaussian approxi-
mation to the BL approximation is doubtful and
unpredictable.

SUMMARY

On the one hand, I personally welcome BL
because the faet that it has been advanced
marks, despite continuing resistance elsewhere, a
thickening of the ranks of those who believe
low-frequency effects to be important in hydrol-
ogy. Also, T tend to be prejudiced in favor of
this innovation because it goes beyond an ap-
plication to hydrology of techniques that have
already made the textbooks in other fields. On
the other hand, it should be recognized that the
variety of genuinely different random processes
is very limited. Keonomy in the generating
mechanism must be paid for somewhere.

For some time now the selection of models
has mobilized some of the best efforts of hy-
drologists and of friends of hydrology, but I
submit that this phase should draw to an end.
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