WHEN CAN PRICE BE ARBITRAGED EFFICIENTLY?
A LIMIT TO THE VALIDITY OF THE
RANDOM WALK AND MARTINGALE MODELS"*

Benoit B. Mandelbrot

OUGHLY speaking, a competitive mar-

ket of securities, commodities or bonds
may be considered efficient if every price al-
ready reflects all the relevant information that
is available. Arrival of new information
causes imperfection, but it is assumed that
every such imperfection is promptly arbitraged
away. In the special case where there is no
risk aversion and the interest rate is zero, it can
be shown that if an arbitraged price is imple-
mented, it must follow a “martingale random
process” — the definition of which will be re-
called shortly.

However, even on the theoretical level, the
problem of market efficiency is not settled by
writing the preceding definition. There exists
indeed a class of important cases where useful
implementation of arbitraging is émpossible.
The principal purpose of this paper is to de-
scribe these cases and to show why I consider
them interesting. Moreover, numerous related
issues will be solved along the way.

Since my purpose is merely to illustrate, I
am allowed to restrict the scope of the problem
drastically to avoid extraneous complications.
I assume, first, that the process of arbitraging
starts with a well-defined single price series
P,(t) — which presumably summarizes the in-
terplay of supply, demand, etc., in the absence
of arbitraging. Specifically, the increments of
Py(t)y will be assumed to be generated by a
stationary finite variance process. Further —
unless P,(¢) is itself a martingale.

I assume the purpose of arbitraging is to re-
place Py(t) by a different process P(t) that is
a) a martingale and b) constrained not to drift
from Py(t) without bound. Had not P(¢) and
Py(t) been constrained in some such way, the
problem of selecting P(#) would have been

' Presented to the Annual Winter Meeting of the Eco-
nometric Society, December 28, 1969. This text has benefited
greatly from discussions with Mr. Murad Taqqu.

Closely related work is being currently pursued as part

of a project sponsored jointly by IBM and the National
Bureau of Economic Research.

logically trivial and economically pointless.
Specifically, we shall seek to achieve the small-
est possible mean square drift: the variance of
P(t) — Py(t) must be bounded for all #'s and
as small as possible. In addition, we shall as-
sume that the martingale P(¢) is linear, that is
related to P,(¢) linearly — we shall explain
how and why.

Under these restrictions, the results of this
paper fall under three main headings:

A) A necessary and sufficient condition for
the existence of the required P(#) is roughly as
follows: as the lag s increases, the strength of
statistical dependence between P,(#) and
P,(t+s) must decrease “rapidly,” in a sense
to be characterized later on. If an arbitraged
price series P(¢) exists, its intertemporal vari-
ability depends upon the process P,, and may
be either greater or smaller than the variability
of P,(t). More often, arbitraging is “destabiliz-
ing,” but under certain circumstances, it is
stabilizing.® Note that a market specialist,
in order to “insure the continuity of the mar-
ket,” must stabilize the variation of price.
Under the usual circumstances under which
perfect arbitraging would be destabilizing, the
specialist prevents arbitraging from working
fully and prevents prices from following a mar-
tingale.

B) The case when the strength of statistical
dependence of P,(t) decreases very slowly must
be examined. In this case, the belief that per-
fect arbitraging is possible and leads to a mar-
tingale is unfounded. Contrary to what one
might have thought, such cases are much more
than a mathematical curiosity. Indeed, most
economic time series exhibit a “Joseph Effect”

? After this paper had been presented to the Econometric
Society, I became aware that considerable literature — in-
cluding contributions by M, Friedman, W. J. Baumol, and
L. Telser —had already been devoted to the question of
whether or not speculation is stabilizing. Between these
works and my own there are obvious similarities and dif-
ferences, but, rather than attempt to survey the field at this
stage, I have decided to tell my story straight.
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[8,9,10,11,12,13], which is a colorful way of
saying that they appear as ruled by a hierarchy
of “cycles” of different durations (see figure
1}). The simplest way of characterizing such
processes is to assume that their spectral den-
sity at zero frequency either is infinite, or at
least is extremely large. When the spectral den-
sity of Py(t) at zero frequency is infinite, one
can show that the distribution of the daily
changes of the arbitraged price P(¢) would

THE REVIEW OF ECONOMICS AND STATISTICS

I had shown in 1963 [5] to be exhibited by
price changes. A full empirical description of
prices must take account of both Effects. See
[9].

C) Imperfect arbitraging will also be ex-
amined in this paper. It never leads to prices
following a martingale. We shall describe the
effect on arbitraged prices of a gradually in-
creasing imperfection, especially in the case
when perfect arbitraging is impossible.

FIGURE 1. —
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The cards from which these graphs have been drawn were mislaid; they may be either an empirical record of precipi-
tation [13], or a computer simulated pseudo sample function of a fractional Gaussian noise [12], or an empirical eco-

nomic record interpretable as a function of causes [9].

This uncertainty of origin happens to underline conveniently the striking resemblance that exists between those possible

sources. The intensity of the low frequency components is manifested in each case through an astonishing wealth of
“features” of every kind. These functions swing up and down, sometimes irregularly, but also sometimes in a near pe-
riodic fashion. In the latter case, irrespective of the total sample size, the number of apparent cycles is approximately
the same. In other words, the apparent wavelength is near proportional to the sample size, say, it equals about 10 in a
sample of 30, about 100 in a sample of 300, etc. As to the generating mechanism, it is known for the fractional Gaussian

noise and it has no built in periodic structure, which means the cycles in question are “perceptual artifacts.”
When a process such as this acts as a function of causes, prediction of the future from the known past must involve
even the distant past and presents many peculiarities, as seen in the body of the paper.

have to be some known distribution scaled by
an infinite constant, which outcome is absurd
and demonstrates the impossibility of arbitrag-
ing.

When the spectral density of P,(¢) at
zero frequency is finite but its memory is very
long, in a sense to be described, a finite P(¢)
could be defined, but it would not be acceptable
because the variance of P(¢)—P,(¢) would
have to increase without bound,

An interesting feature of the above ““Joseph
Effect” is that it is intimately related to the
“infinite variance syndrome” (“Noah Effect”)

Introduction

Classical preliminary definitions: P(t) will
designate a price at time £, so P(¢+s)—P(¢)
is the random price change between the pres-
ent time ¢ and the future time £+s. The sim-
plest assumptions about a market are that the
rate of interest is zero and there is no risk
aversion on the part of either the buyers or
the sellers. In this case, the random walk
model asserts that the probability distribution
of P(t+s)—P(¢) is independent of the current
price P(¢) and of all past prices. This assertion
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expresses that, in selecting investments, knowl-
edge of past prices is of no assistance. In addi-
tion, it is nearly always assumed that the ex-
pectation E[P(t+s)—P(#)] vanishes. If it
does not, one speaks of “random walk with a
drift.”

The martingale model is less demanding, be-
ing content with assuming that the conditional
expectation of P(¢+s)—P(¢), knowing the
present price and/or any number of past
prices, vanishes. This simply expresses that
no policy exists for buying and selling that has
an expected return greater than the average
return of the market. On the other hand, the
martingale model does allow the actual distri-
bution of P(t+s)—P(t) to depend on past
and present prices, and therefore i does not
deny that past and present prices can serve in
the selection of portfolios of different desired
degrees of riskiness. For example, the mar-
tingale model allows for buying and selling
policies which have much better than an even
chance of being superior to the average of the
market, but also have a highly appreciable
chance of being enormously worse. All that is
required is that these situations be mutually
balanced so that the expected price change
vanishes.?

Less special than random walks but more
special than general martingales are processes
with uncorrelated (“othogonal”) increments.
When E[P(t+s)—P(¢)]? is finite for all ¢
and s, and P(¢) is a martingale, price incre-
ments are uncorrelated and spectrally “white.”
If — in addition — the process P(#) is Gaus-
sian, othogonality becomes synonymous with
independence and we see that a Gawussian mar-
tingale can only be a Gaussian random walk.

Combining the last result with the definitions
that precede it, it is clear that every random
walk without drift is a martingale. The con-
verse is also true in a Gaussian universe. But
these results do not exhaust the problem of the

* A correct distinction between the concepts of martin-
gale and random walk is made by Bachelier [1], where on
finds an informal statement of the modern concept th-f
price in an efficient market is a martingale, and & nco.
definitive statement of the Gaussian random walk. A cor-
rect distinction is also made in Mandelbrot [5,6,7], in
Samuelson [14], and in Fama [4]. In this last paper, it is
shown that Fama’s earlier claim [3] that evidence supports
the random walk model was unwarranted; it is also com-
patible with more general martingales.
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relation between random walks and martin-
gales.

Attainment of Market Efficiency or of Ap-
proximations Thereto: One reason why the
problem remains open is that market efficiency
is an aspect of economic equilibrium. It is
widely agreed among economists that it does
not suffice to affirm that equilibrium must be
realized and to study its properties; one must
moreover show how equilibrium is either
achieved or approached. Compromising be-
tween generality and tractability, studies of
this type must be addressed to some fully spe-
cified model of a competitive market, which
combines two assumptions. (A) An assump-
tion about the prices — determined by the
exogenous variables — that would have pre-
vailed in the absence of arbitraging. We shall
assume they would have followed a finite
variance stationary process — not necessarily
Gaussian but satisfying a mild restriction of
nondeterminism. (B) An assumption about
the chosen criterion of arbitraging. We shall
assume the martingale is linear and the mean
square drift is minimized. We shall only briefly
comment upon other methods. A model having
been specified, the questions to be raised fall
into several categories.

A) As we have already recalled, in cases
when our form of perfect arbitraging does lead
to well-defined prices, such prices necessarily
follow a martingale. But the notion that a
specific method of arbitraging necessarily leads
to well-defined prices is unwarranted. Roughly
speaking, fully arbitraged prices are well de-
fined if and only if price changes before arbi-
traging P,(t) satisfy a certain special condition
expressing that statistical dependence decreases
rapidly. In addition, the drift of the fully ar-
bitraged prices around P,(#) has a finite vari-
ance if and only if P,(¢) satisfies a second spe-
cial condition expressing rapidly decreasing de-
pendence.

B) One must investigate the partly arbi-
traged prices prevailing when anticipation is
less than perfect. Assuming linear least squares
arbitraging with a finite horizon, one would
expect that arbitraging is in general less than
perfect. Indeed, the changes of the arbitraged
prices generally remain correlated, so prices
do not follow a martingale. As anticipation
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improves, the correlation between successive
arbitraged price changes decreases and the
changes come ever nearer to being uncorre-
lated, but the process does not necessarily have
a finite limit,

Increments of a martingale process are
spectrally “white,” so perfect anticipation can
be called ‘‘spectrally whitening,” and increas-
ingly well anticipated prices are increasingly
close to whiteness. On the other hand, we shall
see that in general improvement in the perfec-
tion of the anticipation leads to increase in the
variance of price changes. Such a ‘“variance
increasing” transformation can be considered
“destabilizing.”

C) Last but not least, it is important to in-
vestigate what is going on in arbitraging, that
is, who is doing it and how do people in the
market behave who are not. In what way are
actual prices the result of a general equilibri-
um in the assets market?” I feel, however,
that the discussion of the above issues is best
separated from the mathematical comments
that follow, and, anyhow, I am not especially
qualified to carry it out.

Market Efficiency and the Syndrome of In-
finite Variance and H-Spectrum: The preceding
reasons for being concerned about the approach
to efficiency through arbitraging lie in the
mainstream of conventional finite variance or
Gaussian econometrics, but there are other
more personal reasons to my interest: a desire
to find out what arbitraging can tell us about
the relations between two syndromes in which
I am greatly interested, the Infinite Variance
Syndrome (Noah Effect) and the H-Spectrum
Syndrome (Joseph Effect).

The term Joseph Effect is of course inspired
by the Biblical story of the seven fat and seven
lean years (Genesis 6:11-12). Pharaoh must
have known well that yearly Nile discharges
stay up and then down for variable and often
long periods of time, so they exhibit strong
long-run dependence and a semblance of “busi-
ness cycles,” but without either visible or hid-
den sinusoidal component (figure 1). As to the
total size of crops in Egypt, it closely depends
on the Nile levels; were it not for Joseph’s abil-
ity to forecast the future by interpreting
Pharaoh’s dream and to arbitrage through stor-
age, crop prices would have plummeted
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through the fat first seven years and for the
lean next seven years they would have soared.
Unfortunately, political economists lack Jo-
seph’s gift, so the question arises, how does per-
fect anticipation perform when the exogenous
variables and the resulting nonarbitraged
prices exhibit the kind of long run dependence
described by the familiar intuitive notion of
“nonsinusoidal business cycles”? Elsewhere
[8,9,11], such dependence has been shown to
be associated with the “H-spectrum syndrome”
which expresses a very slow decay of statistical
dependence between P,(¢) and Py(t+s). In
the present paper, it will be shown that, if one
had insisted on perfect least square anticipa-
tion, the distribution of the arbitraged price
changes would have to be a known distribution
rescaled by an infinite constant, for example,
a Gaussian with divergent variance, which is
absurd. Therefore, our assumptions (the sta-
tionary finite variance model of unanticipated
prices combined with perfect linear least
squares arbitraging) lead nowhere.

One way out is to be content with imperfect
(finite horizon) least squares arbitraging. This
way out will be explored in this paper. Earlier,
another way out has been investigated [6].
There, assuming an even more special exog-
enous variable, nonGaussian but having a
finite variance, I had shown that perfect least
squares arbitraging is not linear and that ab-
surd divergence of P(#) is avoided. That is,
perfectly arbitraged prices are well defined
and their changes follow a nondegenerate non-
Gaussian distribution with an infinite variance,
which means they exhibit a “Noah Effect.”
This last result brings us to my finding [5]
that the actual distributions of price increments
tend to be stable Paretian (‘“Pareto-Levy”),
meaning that the variance is infinite.* In this
paper, however, further pursuit of this line of
thought would be out of place.

Digression Concerning the Use of the Log-
arithm of Price: Both the random walk and the

*My original discovery of the Noah Eiffect for prices
resulted from theoretical insight and from empirical study
of commodity prices (cotton, wheat and other grains), se-
curity prices (rails) and various interest and exchange rates.
Fama [3] has extended the stable Paretian model to a new
case study, the thirty securities of the Dow Jones index.
Since my work and Fama’s, the empirical evidence in fa-

vor of the reality of the infinitive variance syndrome has
been broadening considerably.
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martingale models of price variation conflict
with the basic fact that a price is necessarily
positive. A first example of such conflict is
that if price followed a stationary random walk,
it would almost surely eventually become nega-
tive, which is an impossibility. Second ex-
ample of conflict: If it were rigorously true that
price itself, which is positive, follows the mar-
tingale model, one could invoke the “martin-
gale convergence theorem” of [2, p. 319] and
one would conclude that — almost surely —
such a price would eventually converge, that
is, would cease to fluctuate. A commodity or
security such that its price converges must
eventually cease to be the object of specula-
tion. That feature is acceptable in the special
case of finite horizon commodity futures
(Samuelson [14]), but in general it constitutes
an excessively stringent restriction.

The first of the above examples of conflict
is well known and has suggested to many
authors that the random walk model should
not be applied to price itself, but rather to
some nonlinear function of price that can tend
to either plus or minus infinity — usually the
logarithm of price. This function also avoids
the second conflict. Reliance on log price
raises many issues, however. In particular,
one can write price = exp (log price) and the
exponential function is convex, so when log
price is a martingale, price itself increases on
the average, but how is it possible for all the
prices in an economy to increase on the aver-
age?

However, the issues relative to log price are
entirely distinct from those tackled in this
paper. Therefore, for the sake of notational
simplicity, all arguments will be carried out
in terms of price itself.

Perfect Arbitraging

Nonarbitraged Prices and the Fumnction of
Causes: In order to study the mechanism of ar-
bitraging, we shall assume that the price P,(#)
that would have prevailed in the absence of
arbitraging is well defined. This assumption
is admittedly artificial. The function

APy (t) = Po(t) — Po(t—1) = C(2)
will be called the “function of causes”; it is sup-
posed to summarize in dollar units all the ef-
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fects of supply and demand and of anything
else that can conceivably affect price — with
the exception of arbitraging itself. For a
heavily traded security, C(¢) may be dom-
inated by significant information. For a lightly
traded security, timing of large block sales and
a variety of other comparatively insignificant
circumstances we may call “market noise,” may
be dominant. In order to avoid mathematical
complications, our discussion will be carried out
under the assumptions that the cause C(t)
appears in discrete integer-valued time, and
that the price change AP(¢)=P(t)—P(t—1)
follows immediately.

Independent Causes and the Random Walk
of Prices: If successive causes are independent,
there is nothing to arbitrage and in particular
the arbitraged price P(¢) satisfies P () =P,(¢)
and AP(¢)=C(t). Successive increments of
the price P(¢) are independent and P(¢) fol-
lows a random walk.

Dependent Causes with Finite Variance and
No Deterministic Component: In general, suc-
cessive causes of price change cannot be as-
sumed independent. At any moment, “some-
thing” about the future development of C(?),
although, of course, not everything, may be ex-
trapolated from known past and present values.
But an efficiently arbitraged market should
eliminate any possibility that a method of buy-
ing and selling based on such extrapolation be
systematically advantageous. When setting up
prices, everything that is extrapolable from
present and past values of the causes should
be taken into account. To study such extrap-
olation, assume that the process C(f) is gen-
erated as a moving average of the general form

Ct) = 3 L(t—s)N(s).

§= —00

The quantities N(s) in this expression,
called “innovations,” are random variables with
finite variance and are othogonal (uncorre-
lated) but are not necessarily Gaussian. The
function L(m), called the “lagged effect ker-

nel,” must satisfy the relation 3 L*(m) < o,
m=0

which implies that L(m) — 0asm — . If,

and only if, L(m) = 0 for m > m,, the mov-

ing average is finite. (Note that N is the first

letter of “new,” and L is the first letter of

“lagged.”)
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Moving average processes are less special
than it might seem, since every “purely nonin-
deterministic” stationary random process is of
this form [2, section 12.4]. (The definition of
“nondeterministic” is traditional and need not
be repeated.) Our assumption about C(#) only
implies that deterministic elements have been
taken out from C(¢).

For the random function C(¢), define
E.C(t+n) as the conditional expected value of
C(t+n) knowing C(s) for s < ¢, that is,
knowing the present and past causes. E,C (¢+n)
is also known to be an optimal “least squares”
estimator of C(¢+n). Wold has shown that,
in terms of the N(s),

EC(t4n) = 3

which is a linear function of the N(s) for
s = t.” We shall now study the effect of this
form of E.C({+n) upon arbitraging.

Search for the Arbitraged Price Series P(t):
A linear function of the values of P,(¢) or
AP, (t) for s < t can always be expressed as a
linear function of the past values of N(s), and
conversely. Therefore, the price series P(t)
we seek must be such that AP(#) is a linear
function of the values of N (s) for s < ¢ For
P(t) to be a finite variance martingale, and a
linear function of past P,(#), it is necessary
that AP(¢) be proportional to N(¢). We shall
now seek by an indirect argument the value of
this coefficient of proportionality.

Formalism of Infinite Horizon Lincar Least
Squares Arbitraging: At time f, potential arbi-
tragers will know E.C(i+n) = E.P,(t+n) —
EPy(t+#»—1) for all time instants in the fu-
ture (z > 0). We suppose the arbitragers’
horizon is infinite, interest rates are zero and
there is no risk aversion.

E.C(i+n) being non-zero for some # implies
that prices are expected to go up or down. On
the average, arbitragers will bid so as to make

L(t4-n—s)N(s)

? Wiener and Kolmogoroff have given an alternative ex-
pression of E.C(i-+n) as a lincar function of the past and
present values of C(¢) itself. However the Wiener-Hopf

o0
technique used in implementation requires that 3 L(m) <
=0
o0, which assumption is not inocuous and is in fact invalid

in the most interesting case to be studied in this paper.

“Control theoretical” tools, many of them based on “Kal-
man filters” have begun to draw the economists’ attention.
Their basic ideas are borrowed from the Kolmogoroff-
Wiener theory.
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expected arbitraged price changes vanish. One
may argue then that an arbitrager should take
account of the E,C(¢+n) at any instant in the
future as if it were a current cause. That is,
he should add up the expected future lagged
effects of each innovation N(¢). Clearly, the

total lagged effect of N () is N(¢)[ gL(m)],

m=0

so our arbitrager will attempt to achieve prices
whose increments satisfy

(*) AP() = N[ 3 Lim)].

m=0

Many questions arise: Can this attempt be
successful, that is, does the preceding formal
expression have a meaning? If it has a mean-
ing, then P(¢) is a martingale, but how does
P(t)—P,(¢t) behave with increasing time: is
the mean square price drift E[P(¢)—P,(¢)] *
bounded for ¢, and — among martingales
— does P(#) minimize this drift? More basic
but less urgent questions: are the assumptions
of the present discussion realistic? All the
answers will be shown now to be in the affirma-
tive if the moving average is finite, that is, if
L(m) = 0 for large enough values of m. Other-
wise, the answers depend upon the rapidity of
the decrease of L(m) as m—w. It will mo-
mentarily be shown that three cases must be
distinguished:

The case where V = ;‘, [ E L(m)]* < o0.

=1 m=u

The case where V = = hut | 3 L(m)| < .

m=0

The case where | % L(m)| = 0.

m=0

The Classical Case: The classical case for
P,(¢) is defined by the condition

|3 L(m)| < o

m=0

which is necessary and sufficient to make (*)
meaningful and finite. If this condition is sat-
isfied, the succession of price changes AP(%)
is a sequence of orthogonal random wvariables
with zero expectation and a finite and positive
variance. These properties define the most
general martingale having finite variance in-
crements. In summary: Under infinite horizon
least squares aniicipation in a finite variance
universe, arbitraged prices ordinarily follow a
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martingale whose increments have finite vari-
ance so they are orthogonal.

Subcase of the classical case: Gaussian
causes. In a Gaussian universe, orthogonality
is synonymous with independence. Therefore:
Infinite horizon least squares anticipation in a
Gaussian universe ordinarily gemerates prices
that follow the prototype martingale, namely
the Gaussian random walk without drift.

Observe that if ZL(m) = 0, P(f) is identi-
cally constant, which is degenerate but nominal-
ly remains a martingale,

Mutual price drift P(¢) — P,(t) in the clas-
sical case. For all ¢,

t

P(t) — Po(t) = S N(s) S L(m)
§== — o0 m=1>0
t t—s§

— 3 N(s) L(m)
m=0

§=—00

£
= 3
As a result, E[P(t) — P,(¢)]* is independent
of ¢ and equal to V, with the following defini-
tion (note that the dummy variable t—s41 is
rewritten as u)

V= El[ % L(m)]%.

This expression introduces a second criterion.

If V' < oo, the martingale P(¢) wanders on
both sides of P,(¢), but does remain in a band
of finite variance. If one replaces P(¢) by any
other martingale, that is, by any martingale
proportional to P(t), the mean square drift is
increased, which shows that if P(£) is defined,
it is a linear least squares martingale.

If V = =, on the contrary, P(f) — Py(t)
will drift away without bound, which accord-
ing to our criteria is not admissible.

The “Nonclassical Case.” The nonclassical
case of P,(¢) is characterized by the condition

N(s) §

m=£f— s+

L(m).

% L(m) = . In this case, the perfectly ar-
m=0
bitraged price changes should have an infinite
variance because the total price changes trig-
gered by each innovation should be infinite.
What this conclusion means is that perfect ar-
bitraging in the nonclassical case is impossible.

Discussion: Role of the Fractional Noises:
Of the two conditions V < « and |SL(m)| <
w0, the condition V < o is the more demand-
ing, and both are more demanding than the
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condition 3L*(m) < e which L(m) must sat-
isfy in order to be acceptable as a kernel. But,
one might ask, why should one go through all
of this complicated series of conditions? Can-
not every decent and useful L(m) be trusted
to satisfy any condition one may demand? The
answer is that in fact there exist processes
called fractional noises [10], for which either
or both conditions fail, and which happen to be
widely encountered. One specific subfamily of
these processes is called discrete fractional
Gaussian noises (dfGn) and is characterized
by having the covariance
Cu(s) = (1/2)[|s+1]2H—2|s|2H—|s—|?H]

where the parameter H lies between 0 and 1.
The value H = 0.5 corresponds to the inde-
pendent Gauss process, so the interesting cases
are H between 0 and 0.5 or H between 0.5 and
1. If Py(¢) is a dfGn with 0.5 < H < 1,
L(m) is such that SL(m) = <, so periect ar-
bitraging is impossible even if one allows the
drift to be infinite. If P,(¢) is a dfGn with
0 < H <05,3L(m) =0but V¥V = <, so per-
fect arbitraging is possible only if one allows
the drift to be infinite.

Since nonarbitraged prices are — by defini-
tion — not observable directly, to claim that
any actual P,(¢) function behaves like the
above mentioned dfGn is not verifiable di-
rectly. But there is much indirect evidence of
such behavior in economic time series and also
in branches of physics such as meteorology,
hydrelogy, etc., which provide many among the
more important exogeneous economic variables,
An excellent example is provided by the fluc-
tuations in the level of the Nile River. Though
they are devoid of sinusoidal components, the
series I have in mind typically exhibit a multi-
tude of different cycles of different apparent
wavelengths: short cycles, middle cycles, and
long cycles whose wavelength has the same
order of magnitude as the total sample dura-
tion. For such behavior, the most economical
model is dfGn, as T have found in many sub-
ject matter fields (see [9,10,11,13]). To be on
the cautious side, let me simply say that all
this suggests that Py(#) series of economics that
resemble fractional noise behavior are not ex-
ceptional. Hence, the fulfillment of the condi-
tions SL(m) and V < o is not trivial. Ex-
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ceptions to a good, martingale, behavior for
P(¢t) should be expected.

Imperfect Arbitraging
The Need for Discounting of the Distant

Future: Even in the classical case 3 L(m) <
m=0

e, distant forward predictions are so risky that
infinite horizon least squares arbitraging would
give to future lagged effects of past innovations
an excessive weight. Unless L() vanishes or
becomes negligible when m is still small, one
must assume the rate of interest is positive and
the horizon is finite. The horizon decreases
with increased risk aversion. Let us now show
that under these more restrictive conditions,
market efficiency is no longer expressed by the
martingale condition.

Finite Horizon Anticipation: In the present
section, the lagged effect of each innovation in
the causes C(¢) will be followed up to some
finite horizon, beyond which it will be neglected.
This expresses that, for every past innovation
N (s), one only adds up its lagged effects up to
time ¢+ f, with ¢ designating the present and f
the depth of the future. Thus, the total effect
of the innovation N(s) will be considered as
equal to

t+f—s
N(s) S L(n).
n="0
The resulting price P,(¢) satisfies

¢ t+f=s
APi(t) = 3 N(s) 3 L(m)

§=—00 0

i—1 t—14f—s5
— X N(G) 3 L(m)

m=10

N 3 Lim)

m=0

+ 'S N()L(t4f—s).

Since lim, , L(n) = 0, it is easy to verify
that

as f— o, AP;(t) — AP(¢) and

Py(t) — Py(0) = P(t) — P(0),
which expresses that the martingale process
P(t) of the preceding section can be considered
as identical to P_(¢). But for finite f, AP;(¢)
is a new moving average of the form
H
AP(t) = 3 N(s)L,(t+1—s).

§=—0o0
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The function L,(n) is defined by
f
5 L(m) forn =20

m=10
L(f+n)
The relationship between the two kernels L(#)
and L,(»n) is illustrated in figure 2. The for-
mula for L,(n) shows that the effect of finite
horizon anticipation takes different forms de-
pending upon whether or not the lagged effect
function becomes strictly zero for large enough
lags.

Iq(n) =
fornm = 1.

FIiGURrE 2. —

L(n)
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This is an illustration of the relationship between an
original lag effect kernel L(n), and the lag effect kernel
L;(n) corresponding to finite horizon arbitraging of hori-
zon f = 5. The heights of the bars equal the values of the
kernels; areas of contours linked by arrows are identical.

A) In case the after-effects have a finite
span f,, meaning that L(#) vanishes for all lags
n satisfying » > f,, we have

Li(n) = L(f+n) =0 foralln = land f > fo.

Hence, as soon as f > f,, P,(¢) becomes iden-
tical to the martingale P(¢) = P_ (¢).

We may recall that the assumption of nearly
independent causes appears most reasonable
when such causes are dominated by “market
noise.” This suggests that, among arbitraged
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markets, those closest to efficiency are of two
kinds: some in which anticipatory horizon is
infinite, and others where the “market noise”
is so overwhelming that prediction is impossible
and the assumption of efficiency cannot be dis-
proved!

B) In the case where lagged effects continue
indefinitely (meaning that — however large the
value of f— there exists at least one value of
n > f such that L(n) 5£0), the arbitraged
price P;(t) is not a martingale. That is, it re-
mains possible to forecast that price will in-
crease or decrease on the average. Good mar-
ket analysts would obviously know of such
instances, and they could trade accordingly,
but they will be tempted to do so only if their
horizon of forecasting exceeds that of the rest
of the market; that is, only if the degree of
risk they find acceptable — and hence the re-
sources available to them — exceeds those of
the rest of the market.

A danger is that one may proceed to partial
arbitraging of an already arbitraged price,
which would involve a longer horizon and
greater risks than are wished. (One is re-
minded of Keynes's sarcastic remark about
competitive prices being based on expectation
about expectations, or on expectations about
expectations of expectations.)

Mutual Drift of P,;(t) versus Py(¢): For
all ¢,

t t—s

Py(¢) — Po(t) = = N(s) =

S=—o0 "—

Li(m)

t t—35
— 3 N(s) 5 L(m)
S=—o0 m—0
t t—s
= X N(s) EO [Ls(m)
§=— " —
— L(m)].
Thus,
E[P;(¢) — Po(t)]? is again independent of ¢
and equal to
w u—1 2
vi= 3 { T mm-—1m] } .
ue=1 m=10
If u > f, the »'™ term of this infinite series re-
u+f—2
duces to [ = L(m)]? which is also the '

term of the infinite series yielding E[P,(t+f) —
Py(t)] % For every acceptable L(m), that is,
for every L(m) satisfying ZL*(m) < oo, the

233

latter series converges, so that one has V; < .
This proves that the drift of P;(¢) from P,(¢)
is bounded without any additional assumption.
Of course, as f— «, V;— V, a quantity we
know may be finite or infinite.

Alternative Forms of Finite Horizon Antici-
pation: One could also consider the lagged ef-
fects of all past and present innovations up to
a lag of f. This leads to a price series P¥,(t) =
N(s) éL(m), meaning that P*;(¢) is a mar-

m="0

tingale. But as ¢ — o, the mutual drift, now
defined as P*,(¢) — P(t), increases without
bound for every L(m).

A third form of imperfect anticipation may
attribute a decreased weight W (f) — for ex-
ample, an exponential discount factor — to the
lagged effect the innovation N (s) will have at
the future instant #z+4f. If so, the innovation
N(s) has at time ¢ a total weighted effect equal

to
i—

N[ 3 L(n) + ]§1L(t—s+f)W(f)}-

n=1
In this case, P(¢) does not diverge even if
3L(m) = o, but otherwise the spirit of the
conclusions reached in preceding subsections
remains unchanged.

Effect of Arbitraging Upon Variances,
Correlations and Spectra

The effect of arbitraging on the variance of
price changes: Under the three basic conditions,
namely infinite horizon least square anticipa-
tion, finite horizon anticipation, and absence of
anticipation, the prices P _(¢) = P(¢), P,(¢)
and P,(#) satisfy

E[aP®] = [ £ L | BV,
n=0

E[sP($)]2 = | EoLﬁm)] E(N?).

B8P = | 5 120 | BV,

~ =0

These formulas show that the effect of arbi-
traging depends on the shape of the function
L(n).

A) In the case when the lagged effect kernel
L(n) remains positive for all values of n and
decreases monotonically to 0, arbitraging is
variance increasing and can be called “de-
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stabilizing.” Indeed, the variance of finite
horizon anticipatory price changes AP,(¢) in-
creases from a minimum for P,(¢) (f=0) to
an asymptotic maximum for f=c.°

On the other hand, the lag correlation of
P;(t+1) — P(t) decreases monotonically with
f, which expresses that price increments become
less and less strongly interdependent as the
horizon of forecasting lengthens.”

When 3(m) < <o, the limit for f = « is an
independent process, but when XL(m) =
P;(t) remains forever correlated. One should
expect therefore to find that many actual price
series — even on actively arbitraged markets
— are correlated. This expectation constitutes
one the main results of this paper, and it is in-
deen confirmed by experience [9].

B) In the case when the lagged effect kernel
L(n) oscillates in such a way that = L(n) is

n=0
smaller than L(0), arbitraging is variance de-

creasing and can be called “stabilizing.” Price
Proof: \r\-’rite
3 Lif(m) = 3 L*(m) +2 3 L) L(g).

m =10 m_(J =pl g0
Thc second term on the nght hand side takes the form of a

sum to which fresh elements are added as f increases.
"Proof: In terms of the covariance function
Covi(l) = E[Pi(t+1) — Pi(t)1[Ps(t) — Pr(t—1)1,
the lag correlation is written as
Cov(1)/Cov,(0) = Cov(1)/E(AP)".
As f increases, we have already shown that the denominator
Cov,(0) increases, so it suffices to prove that the numerator
Covy(1) decreases.

Since
Cov,(1) = E Li(n)Li(n+1)
[ z L(m)1L(f+1) + 2 [L(n)L(n4+1)1,
where
T
Covi(1) — Covra(1) = [ 3 L(m)IL(f+1)

-1

—[ % Lm)IL()

m=o

+ 3 L)L) ~ §f L) L(n41).

Rearranging the terms, the preceding expression equals

A+B, \wth
A= 3 L(m)I[L(f+1) — L(f)],and

B = [L(NL(f+1) + _;‘ L(n)L(n+1)

— § L(n)L(n41)].

Term B vanishes, and term A is proportional to L(f-+1) —
L(f), which is negative as asserted.
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variability is decreased by infinite horizon an-
ticipation, but as f increases from O to <o, the
variance of AP,(¢) does not vary monotonical-
ly but oscillates up and down. An example

where ;L(n) < L(0) occurs when the lagged

n=>0
effects of innovation begin with a nearly pe-
riodic “seasonal” before they decay for larger
lags. A high seasonal is then present in unar-
bitraged prices but —as one would hope —
perfect arbitraging eliminates it.

Special Example: When = L(n) = 0, per-

n=>0
fect arbitraging cancels price variability com-
pletely. If unavoidable effects (like spoilage of
a seasonal commodity) enter and impose a fi-
nite horizon, the seasonal effects in price vari-
ance are attenuated but not eliminated.

The Viewpoint of “Harmonic” or “Spectral
Analysis.” The preceding results can be re-ex-
pressed in terms of spectra. The spectral den-
sity of P,(t+1) — P;(¢) =C(¢+1) is known
to be equal to

S L,(n) exp (2mnni) |2

n=10

ST(A) = |

|
In particular, its value S(0) at zero frequency
X is equal to | :2 L,(n)]"
the definition of L (n) from L(n) (see figure
2) implies that EL (n) = EL(_n),

=0
dently of the value of f. It follows that the
spectral density of P,(¢+1 — P,(¢) at A=0
is independent of the value of f.

It must now be recalled that a process is
called “white” if its spectral density is inde-
pendent of the frequency. The values of a
white process are mutually orthogonal; if the
process is Gaussian, they are independent.
Now examine P,(t+1) — P,(¢) for f varying
from 0 to <. We start from P,(t+1) —
P,(t) = C(t+1), which was assumed noninde-
pendent, and hence nonwhite. We end up with
P(t4+1) — P(t) = P_(¢t+1) — P_(¢) which
process is independent (white). Hence, per-
fect arbitraging whitens the spectral density.
But the value of the spectral density at f=0
stays invariant and constitutes a kind of “pivot
point.” As f increases from O to %, and antici-
pation improves, the spectral density of

Now observe that

indepen-
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P,(t+1) — P;(¢) becomes increasingly flat.
But arbitraging can do absolutely nothing to
the amplitude of the really low frequency ef-
fect. If SL(m) = oo, the spectrum of the arbi-
traged price should be expected to remain un-
avoidably “red,” that is, to include large
amounts of energy within very low frequency
components. Such is indeed the case [9].

Let us now consider some of our special
cases more closely. In the case A) when
L(n) > 0 for every value of #» and L(n) de-
creases as #— %, the spectral density of
P:(t4+1) — P;(¢t) — considered for A > 0—
increases monotonically with f. In other words,
the only way in which arbitraging can decrease
the correlation of P,(¢+1) — P,(¢) is by mak-
ing its high frequency effects stronger. This is
what makes prices more variable. Some au-
thors have proposed to call the expression
JAS"(A)dN/JS"(N)dA the average frequency of
a process. We see that in case A) this quantity
increases with improved anticipation.

In the case B) when SL(m) < L(0), im-
proving arbitraging decreases the high fre-
quencies effects and the average frequency de-
creases. In particular in the subclass of B,

when = L(n) = 0, the spectral density of

n=0
Pi(t+1) — P,(¢t) for A = O tends to zero as
f— = (though not necessarily monotonically).
(For A = 0, we know S’(A) is identically zero
for all f.)

Time Increments T Longer Than 1: The
spectral density of P,(t+T) — P,(t) at A =0
equals T%[3L(m)]? also independently of f.
This means that the argument about the origin
as “pivot point” continues to hold. But other-
wise things are too complicated to be worth
describing here.

Alternative Definitions of Imperfect Arbi-
traging: In all the instances I have examined,
the above argument about the pivot at A = 0
continues to hold true.

“Price Continuity” and the Specialist

The concepts of “continuity” and “discon-
tinuity” are invoked often in the study of
prices, but of course these mathematical terms
should not be interpreted textually. Transac-
tions occur at discrete instants of time and are
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quoted in discrete units, so mathematically
speaking a price series is never continuous.
But a series that only moves by small steps
may be interpolated by a continuous function
without violence, while series that move by big
steps cannot. So the concepts of continuous
and discontinuous price variation — if tackled
cautiously — are useful. Roughly speaking,
one can sy that improvement in anticipation,
through the resulting increase in high fre-
quency energy, makes price variation less and
less smooth and “continuous.”

Let us now turn briefly to the role of the
specialist. If he attempts to insure the “con-
tinuity of the market” (to use the words of the
Securities Exchange Commission (S.E.C.), he
will necessarily smooth away the high fre-
quency price fluctuations, which we have seen
acts against good arbitraging. In other words,
the S.E.C.’s prescription creates opportunities
for systematic gain.

This appears to be a good place to recall
which effect price smoothing by the specialist
has in those cases where price changes are not
Gaussian but have infinite variance. In my first
paper on prices [5], T had shown that the hig
expected gains promised by S. S. Alexander’s
“filter method” hinged entirely on the assump-
tion that price is “continuous,” so one could
buy or sell at any price prescribed in advance.
My stable Paretian model of price behavior
predicts, on the contrary, that price is violently
discontinuous. If combined with the smooth-
ing effect of the specialist, my model predicts
that every so often prices will go up or down
very steeply. Alexander assumed that one
could buy or sell during these periods of steep
variation, but of course this possibility is not
open to ordinary buyers and sellers, so Alex-
ander’s results are not in contradiction with
market efficiency.

I believe the role of the specialist deserves
a more detailed study along the above lines,
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