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Abstract. By design fast fractional Gaussian noises (ffGn) have the following charac-
teristics: The number of operations needed to generate them is relatively small. The long
run statistical dependence that they exhibit is strong and has the form required for self
similar hydrology. Their short run properties, as expressed by the correlations between suc-
cessive or nearly successive yearly averages, are adjustable (within bounds) and can be
fitted to the corresponding short run properties of records. Extension to the multidimensional
(multisite) case should raise no essential difficulty. Finally, their definition, as sums of
Markov-Gauss and other simple processes, fits the intuitive ideas that climate can be visual-
ized as either unpredictably inhomogenecus or ruled by a hierarchy of variable regimes.

Discrete fractional Gaussian noises (dfGn)
normalized to have zero mean and unit variance
are Gaussian random processes X4(¢, H) defined
as having the covariance (Table 1),

C(s, H) = 27}
fls + 1% — 2 [s** + |s — 1]*]

The dfGn have a single parameter, normalized
to vary from O to 1, called the exponent H. The
dfGn have been tailored to model the variation
of natural phenomena characterized by long
run effects, that is, by very strong and very
durable statistical dependence. In such phe-
nomena the correlation between successive values
may be small; large lag correlations are even
smaller but are such that their cumulative
effect is nonnegligible. Notably the rescaled
range R/S is proportional to s with H =£ 0.5;
for definitions and a discussion of R/S, see
Hurst [1951], Mandelbrot and Wallis [1969a,
b, c]. If long run dependence is absent, H = 0.5
[Feller, 1951].

Hydrology is the oldest field in which long
run dependence has been observed, and self
similar hydrology, which is the statistical model
using dfGn or other related fractional noises,
has been explored in some detail [Mandelbrot,
1965; Mandelbrot and Wallis, 1968, 19695].
This model appears to have been received well
[Kottegoda, 1971; Askew et al., 1971]. In
addition, long run dependence is observed in
economics, physies, geophysics, and other fields

[Mandelbrot and Van Ness, 1968; Mandelbrot,
1969; Mandelbrot and Wallis, 1969b; Mandel-
brot and MecCamy, 1970]. Finally, the 1/f
noises of electronics are examples -of fractional
noises; they have:been known for a long time
but have not led to a careful study of dfGn.

Construction of a sample function of dfGn
would unfortunately involve an infinite number
of operations, and so approximations are
needed. The type 1 and type 2 functions
of Mandelbrot and Wallis [1969a] are finite
weighted moving averages in which the num-
ber of Gaussian variables to average is roughly
proportional to the size T of the desired
sample. The type 1 approximation follows the
theoretical algorithm and both types have been
very useful in exploratory investigations. But,
as we shall see, subsequent use of the early
approximations has turned out to present prac-
tical and psychological drawbacks. To avoid
these drawbacks I have developed a new ap-
proximation to be designated X,(¢, H) and
called fast fractional Gaussian noise (ffGn);
its construction is described in the next section.
Details, including a list of its principal prop-
erties and advantages and the mathematical
rationale, follow. Brief references will be made
to other possible approximations including the
use of the fast Fourier transform.

FAST FRACTIONAL GAUSSIAN NOISES

This section deseribes without motivation the
steps in the construction of ffGn. To construct
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a sample of the ffGn X,(¢,H), one needs
H and two additional convenience parameters,
the base B > 1 and the quality factor . Recom-
mended choices of B and @ will be described
below. Typical errors of approximation, cor-
responding to T = 10,000, B = 3, and @ = 6,
are given in Table 2.

A sample of T values of X,(¢, H), normalized
to have zero mean and unit variance, is then
constructed as the sum of a high frequency
Markov-Gauss term and a low frequency term
that is the weighted sum of a number N(T)
of independent Markov-Gauss processes.

Definition of the low frequency term X,(t,
H). By definition

N(T)

X.(t, H) = > W.X(t, 1. | MG)

where X (¢, 7. M@) is the Markov-Gauss process
of variance 1 and covariance r,', with r, =
exp(—B™). The weight given to X (¢, r.|MG)
is W,, with

H(2H — DB — B™ o aa_mn
T(3 — 2H)

w2 =
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T being the gamma function. Thus each term
depends on B and H. The number of terms
satisfies

N(T) = [[log (QT)/1og Bl| -
which also depends on the desired sample size
T; ||X|| designates the smallest integer above
X. The base B and the quality factor (or rela-
tive memory) @ together determine the quality
of approximation.

Some indications about computation may be
useful. To generate a sample from ¢ = 1 to
t = T of X(t, 7/ M@), one needs a sequence of
Gaussian variables of zero mean and unit vari-
ance G.(t). One proceeds by the following
steps:

X(1,r. | M@) =
X2, | MO

Ga(1)
nX(1, 7. | MG)

+ (1 — r.)'"?Gu(2)

I

X(t,r| MG) =r,X(t — 1,7, | MG)
+ (1 = )60

' TABLE 1. Values of 10,000 C(s, H) for Various Values of s and H

s H=055H =060H =065H =070 H =07 H=080 H=08 H=09H=0.95

0 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

1 717 1,486 2,311 3,195 4,142 5,157 6,245 7,411 8,660

2 306 711 1,232 1,887 2,606 3,683 4,874 6,301 7,996

3 208 505 914 1,461 2,180 3,109 4,205 5,792 7,668

4 159 398 743 1,224 1,882 2,765 3,933 5,463 7,447

5 129 332 634 1,069 1,681 2,526 3,676 5,222 7,281

6 110 287 557 957 1,533 2,347 3,479 5,034 7,149

7 95 253 500 872 1,419 2,206 3,321 4,880 7,039

8 84 227 455 805 1,327 2,090 3,190 4,751 6,945

9 76 207 419 749 1,250 1,994 3,079 4,640 6,864
10 69 190 389 703 1,186 1,911 2,083 4,543 6,792
20 37 109 239 464 838 1,448 2,422 3,955 6,336
30 25 78 180 363 684 1,231 2,144 3,646 6,084
40 19 62 147 306 592 1,097 1,967 3,442 5,912
50 16 52 126 267 530 1,003 1,840 3,202 5,781
60 13 45 111 240 484 933 1,742 3,174 5,677
70 12 40 99 218 448 877 1,663 3,078 5,500
80 10 36 90 201 419 831 1,598 2,997 5,516
90 9 32 83 188 395 793 1,542 2,927 5,451
100 8 30 77 176 375 760 1,494 2,866 5,394
200 4 17 47 116 265 576 1,213 2,495 5,033
300 3 12 35 91 216 490 1,074 2,300 4,833
400 2 9 29 76 187 436 986 2,172 4,696
500 2 8 25 67 167 399 922 2,077 4,592
600 1 7 22 60 153 31 873 2,003 4,509
700 1 6 19 54 141 349 833 1,042 4,440
800 1 5 18 50 132 331 800 1,801 4,381
900 1 5 16 47 125 315 773 1,847 4,330
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TABLE 2. Values of 10,000 Times the Error of Approximation of C(s, H) for Various Values
of sand H for T = 10,000, B = 3,and @ = 6

s H=05H=060H =06 H=070H =07 H=080H=08 H=0.9 H=0.9

0 0 0 0 3

1 0 0 0 3

2 63 111 141 152

3 20 40 57 68

4 4 8 13 18

5 -1 -2 -3 -2

6 -3 -6 -9 -9

7 -3 -7 —10 -11

8 -3 -7 —10 —10

9 -3 —6 -9 -10
10 -2 -5 -8 -9
20 -1 -3 -5 —5
30 -1 -2 -3 -3
40 0 -1 -2 -2
50 0 =1 -2 -1
60 0 -1 -2 -1
70 0 =1 -1 0
80 0 -1 -1 0
90 0 0 -1 0
100 0 0 -1 0
200 0 0 0 0
300 0 0 0 1
400 0 0 0 1
500 0 0 0 1
600 0 0 0 1
700 0 0 0 2
800 0 0 0 2
900 0 0 0 2

13 53 208 780 2,835
13 53 208 780 2,835
153 169 291 828 2,852
80 114 256 811 2,849
29 69 222 790 2,841
7 48 204 778 2,835
0 39 196 773 2,833
-2 37 194 772 2,832
—2 37 194 771 2,832
g 38 194 771 2,832
s 38 195 771 2,832
2 41 196 772 2,832
4 43 198 773 2,832
5 44 199 773 2,832
6 45 199 773 2,832
6 45 200 773 2,832
7 46 200 774 2,832
7 46 201 774 2,832
8 47 201 774 2,832
8 47 201 774 2,832
9 48 202 775 2,832
10 49 203 775 2,832
10 50 203 775 2,832
11 50 203 775 2,831
11 50 © 203 775 2,831
11 50 204 776 2,831
11 50 204 776 2,831
11 51 204 775 2,831

Note that the errors for a given value of H depend very little on the value of s with the exception of
s = 2. Even the remaining error there could be readily eliminated by replacing the Markov-Gauss high
frequency term with an appropriate three-step moving average. However this step appears unnecessary or

at least premature.

Each operation requires the latest value
X(t — 1, r]M@G), which must be taken from
memory, and a Gaussian random variable in-
dependent of the values used previously, which
may be generated either in advance or on the
spot; then one performs a weighted average
that involves two multiplications and one addi-
tion. As B = 1 and @ — 0, the function N(T)
increases and the quality of the low frequency
approximation improves.

Recommended values of B and Q. I have
found it convenient to take B equal to 2, 3, or
4; the recommended value of @ depends on H
and on two further convenience parameters th2
and ¢h3, as shown in Table 3. The role played by
TQ is analogous to that of the memory M as
defined for type 1 and type 2 approximations
in Mandelbrot and Wallis [1969a].

Definition of the short run, high frequency
term X,(t, H). The construction of the high

frequency term is independent of T and can be
selected to fit either the data or the diGn model
optimally. The term X, (¢, H) will usually be a
Markov-Gauss process, but for H near 1 it is
sufficient to settle for an independent Gaussian
term that fits dfGn best; its variance depends
on H and B as follows:

1 — B " PHEH — 1)
I'(3 — 2H)

If one takes for X,(t, H) the recommended
Markov-Gauss process, its variance should be
as described above and its correlation of lag one
should be

N(T)
24T — 14+ D Wl — 1)
n=]
_B"™HQRH — 1
I'(3 — 2H)
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TABLE 3. Values of Quality Factor Q for Various Thresholds th and Values of H

H=05H=060H=06H=070H=07H=080H=08 H=09 H=0.95

th2 =0.1, th3 =01 0.5*% 1.0 1.7
th2 = 0.05,th3 =0.1 0.5% 1.1 1.9
th2 = 0.1, th3 = 0.05 1.0 2.0 3.1
th2 = 0.05, th3 = 0.05 1.0 2.3 4.0

o 2B

4 3.2 4.0 4.7 5.4 6.0
0 4.5 6.1 7.9 9.6 1.1
2 5.1 5.9 6.6 71 7.5
1 8.2 10.2 12.0 13.5 146

* Only Q values for which 1/Q is not less than 1.

COMPARISONS OF THREE APPROXIMATIONS TO
DISCRETE FRACTIONAL GAUSSIAN NOISE

In this section several characteristics of the
fiGn X,(t, H) are described and contrasted
with the corresponding properties of the type
1 and type 2 approximations X,(f, H) and
X,(t, H). Each characterization is followed by
a digression that the reader in a hurry can skip.

First Comparison between Approzimalions

The first comparison between approximations
concerns the quality of fit in the long run, low
frequency range. The low frequency properties
of ffGn with large @ and of the type 1 approxi-
mations with large memory M are practically
identical and agree with the empirical s* law of
Hurst, where H may have any value between
0.5 and 1.0.

Digression concerning type 2 approximations.
Mandelbrot and Wallis [1969¢], who intro-
duced the type 2 approximation, have noted
that its low frequency behavior is good only
when H is near 1. For other values of s the
transient regime, a characteristic of graphs of
R/S before the s¥ law takes over, is extremely
long. This remark may explain why several in-
vestigators who used type 2 functions for the
sake of economy of computation have obtained
very odd results. For my part, I now regret
that the definition of X.(t, H) ever got into
print.

Second Comparison between Approzimations

The second comparison between approxima-
tions concerns the number of operations re-
quired for simulation. As compared to type 1
and type 2 functions, ffGn requires much
smaller numbers of multiplications and of
quantities to store. Computing a sample of T
values of ffGn requires about 2N(T)T + 2T
= [2 log (QT)/log B + 2]T multiplications
and as few as N(T) ~ log (QT)/log B quanti-

ties to store, whereas type 1 requires 107° mul-
tiplications and 10T quantities to store. Thus
the cost of an fiGn sample, evaluated as a frac-
tion of the cost of a type 1 sample, is roughly
proportional to log (QT)/(T log B), which is
very small when 7 is large. This ratio even de-
creases as the ffGn approximation is made
rougher by increasing B.

Digression. One may consider it a general
rule that, as the horizon T increases, hydrologic
models necessarily become increasingly complex
and costly. For example, for multilag autore-

gressive models [Fiering, 1967, p. 85, figure

3.8], the minimum number of lags had to in-
crease roughly proportionately to T. This ob-
servation was empirical. For type 1 and type 2
approximations, a similar rule was estab-
lished semiempirically by the fact that the
memory M had to be roughly proportional to
T. For the ffGn process the general rule still
holds, but T is replaced by log 7. Not only is
the resulting saving enormous, but the rate at
which the complication of the model must in-
crease with T' now follows a very precise rule.

Digression concerning the use of fast Fourier
transforms. In harmonic analysis, fast Fourier
transform (fFt) methods also lead to economies
deseribed by the replacement of T by log 7.
The two instances of such economy seem unre-
lated.

On the other hand, the current availability of
good fFt programs shows that samples of frac-
tional noise can be generated by still another
method, which is also much faster than the
type 1 algorithm but requires much larger core
memories than ffGn (M. Taqqu, private com-
munication, 1970).

Third Comparison between Approzimations

The third comparison between approxima-
tions concerns the quality of fit in the short run,
high frequency range. The present study disre-
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gards seasonal yearly variation, and so a short
run effect is defined as one concerning the inter-
dependence between successive or nearly suc-
cessive yearly averages. The high frequency term
of ffGn may be selected in either of two ways:
(1) it may be fitted to the theoretical dfGn
optimally and thus it depends only on H and
the convenience parameters B and @Q, or (2)
it may be fitted to have any other high fre-
quency, low lag properties that may be sug-
gested by empirical records. In the former case
ffGn is as nearly self similar as desired; in the
latter case ffGn is only asymptotically (not
strictly) self similar.

To appreciate this freedom in fitting, we
must recall the successive steps that led to the
dfGn model. Starting from Hurst’s law, Man-
delbrot [1965] conjectured that hydrologic rec-
ords are asymptotically self similar for large
lags. From the viewpoint of analytical manipu-

lation, the simplest model is uniformly self .

similar for all lags, but this model exhibits
high frequeney complications, and so the best
alternative is dfGn. Nevertheless, the fact that
the high frequency properties of dfGn were built
into the type 1 approximation is a serious
drawback. An ideal statistical model should
give the hydrologist freedom to select a short
run interpolation either to be the simplest and
most convenient (the dfGn model) or to be as
close as possible to the record evidence (the
ffGn funetion).

Fourth Comparison between Approzimations

The fourth comparison between approxima-
tions concerns the ease of extension to the
multidimensional (multisite) case. Study of the

temporal variation of the discharge of one river

at one spot is usually a preliminary to the de-
sign of wider networks. For this task the joint
study of the discharges of a number of rivers is
necessary. The various discharges taken to-
gether may be thought of as a vector, but the
study of multidimensional vector processes is
much more difficult than that of one-dimen-
sional scalar processes. )

In the ffGn model, low, mid, and high fre-
quency effects are effectively separated and the
laws of dependence relative to each ean be
treated independently and assumed to be dif-
ferent. Caution against excessive inerease in
the number of parameters is of course advised.

547
In this paper the multidimensional theory will

‘not be developed.

Fifth Comparison between Approzimations

The fifth comparison between approximations
concerns their psychological acceptability and
the concepts of nonhomogeneous discharge and
of discharges ruled by a hierarchy of regimes.
A tool for the scientific model maker, statistical
gelf similarity has the virtue of being simple
and the handicap of being umexplained. Ex-
planation may mean either a full and explicit
reduction to the basic laws of fluid mechanics
or, less ambitiously, an adequate conformity
with the practitioners’ intuitive vision of hydro-
logie reality. Each of the competitors of the self
similar model embodies such an intuitive notion.
The standard Markov models embody the idea
that some water is carried over from one year
to the next and perhaps to the year after next.
Some nonhomogeneous models embody the idea
that the discharge is ruled by an independent

" process fluctuating around a mean level, with

the added complication that the mean level is
subject to jumps or to variable trends. Other
nonhomogeneous models think of climatic
change as ruled by a hierarchy of random proc-
esses. The simplest models postulate that
observations result from fast, short memory
fluctuations superimposed on a secular level of
slow, long memory fluctuations. More complex
models invoke several regimes, the short mem-
ory fluctuations being added to slower swings,
themselves superimposed on even slower swings,
and so forth, down to processes that vary so
slowly that within a time span equal to the
sample length T, they are constant.

Despite appearances to the contrary, the self
similar and random variable regime statistical
models are not incompatible. In fact, they can
be fitted so that the sample functions that they
generate are undistinguishable. (However, the
Markov model fitted to the observed small lag
characteristic of the data stands apart.) That is,
a self similar model of given H can be approxi-
mated by any of many different variable models.
It is even possible to view the fiGn approxima-
tion as a variable model in which each of its
Markov-Gauss components is visualized as
ruling one regime. Conversely, it is typical for a
variable model, if the sources of variability are
random and very numerous, to be safely
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approximated by some self similar model. This
last situation is reminiscent of the fact that the
addition of a large number N of random vari-
ables smoothes out the idiosyncrasies of the
addends, the sum being typically approximated
by a Gaussian variable.

Until it becomes possible to study the different
components of the variable regime model sep-
arately, I do not think such models should be
taken too seriously, They are psychologically
satisfying, however, and so it is good that the
self similar model should not contradict them.

DIGRESSION ON MINIMAL APPROXIMATIONS TO
DISCRETE FRACTIONAL GAUSSIAN NOISE

Other authors have also recognized that ran-
dom processes that include both a rapidly and a
slowly varying term are necessary in hydro-
logic modeling. It is useful to view such com-
binations as erude (minimal) approximations
of ffGn. Examples are provided by (1) the
sum of one independent Gauss process and one
slowly varying Markov-Gauss process and (2)
the sum of a rapidly and a slowly varying
Markov-Gauss process. The former can be writ-
ten as

X() = EX(t) 4+ 0,G(t) + a2 M (D)
where (7(t) is an independent Gauss process
of zero mean and unit variance, M(t) is a
slowly varying Markov-Gauss process of zero
mean, unit variance, and large correlation r,
and finally o, and o, are two weights. Not
counting the mean FX and the variance
o + o, X(t) has two nontrivial parameters,
7 and o./. Its covariance (Figure 1) had been
considered previously by Fiering [1967, p. 74,
equation 3.35], who seems, however, to have
abandoned it in favor of multilag autoregres-
sive models. -

The sum of two Markov-Gauss processes
(N. C. Matalas, private conversation, 1969)
has three nontrivial parameters.

As compared to either classical alternative,
the independent Gauss process (no nontrivial
parameter) or the Markov-Gauss process (one
nontrivial parameter r), the two approximations
deseribed above are considerable improvements.
They are even preferable to the two-step
Markov-Gauss process (two nontrivial para-
meters) and to multilag autoregressive processes
(three nontrivial parameters or more).

ol COVARIANCE OF SECOND

i OMPONENT PROCESS

i 2 3 4 5 6

-

Fig. 1. The circles mark the value of the
covariance for the sum of an independent Gauss
process of variance 09 and a Markov-Gauss
process of covariance 0.1 (05)*. The Markov-
Gauss process fitted to have the value 0.05 for a
lag of one would have the steeply falling covari-
ance also marked on this figure.

The reason that the Markov-Gauss process
model is poor is that to make its lag one cor-
relation fit the evidence, its large lag correlation
must be made absolutely negligible, whereas to
give it a nonnegligible covariance for large lags,
its lag one correlation must be made absurdly
large. That the sum of an independent process
and a Markov process avoids this dilemma is
shown in Figure 1.

However, the value of the minimal processes
should not be exaggerated. Other forms of ffGn,
whose cost 1s only slightly higher, provide a
better approximation.

DERIVATION OF THE LOW FREQUENCY TERM
OF FAST FRACTIONAL GAUSSIAN NOISE

The funetion m* = & is known to be the
covariance of a Markov-Gauss process of unit
variance 1 having a lag one correlation equal
to r, and so one can consider its damping time
as equal to 1/u = 1/log(1/r). Thus to approxi-
mate a process X (£) by a finite sum of Markov-
Gauss processes, one must represent the covari-
ance of X (¢) in the form = W,exp(—su.). The
ffGn approximation will proceed in successive
steps, which will be summarized.

In step 0, the covariance C(s, H) of dfGn is
examined more closely.

In step 1, C(s, H) is replaced by a covariance
C, (s, H) (the index 1 refers to step 1) that is
not a sum but an integral of the form
JoW (w)e**du so that the approximating proc-
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ess is the sum of an infinite number of infinites-
imal Markov-Gauss processes.

In step 2, high frequencies in Ci(s, H) are
dropped by replacing ¥ = ¢ by some finite
upper bound of integration. This step leads to
an approximate covariance C,(s, H)., More ac-
curate high frequency terms will be introduced
in a later section.

In step 3, all very low frequency terms are
dropped by replacing © = 0 with some positive
lower bound of integration. This step leads to
an approximate covariance Cs(s, H).

In step 4, the integral C,(s, H) is replaced by
a finite sum C,(s, H) in the remaining mid fre-
quency range, but only after a change of the
variable w. Thus C.(s, H) is based on incre-
ments of % of unequal size. This fact is what
will make computation so much more eco-
nomical.

The detailed description of the five steps
follows.

Step 0

In step 0 dfGn is defined. As previously
noted, the normalized dfGn of exponent H
(0 <« H < 1), X.(t, H), is a zero expectation,
unit variance, stationary Gaussian random
process, the time ¢ being the discrete integer
valued. Its covariance C(s, H) depends on a
single parameter H (0 < H < 1) as follows:

C(S, H) = E[Xd(t, I])Xd(lf; + 8, H)]

= 27l 1% = 2 + s — 1)

For all H, C(0, H) = 1. In the special case
H =105,C(s,05) = 0foralls > 1; therefore
X.(t, 0.5) is a discrete sequence of independent
Gaussian values. The properties of dfGn in the
two subranges 05 < H < land 0 < H < 05
are very different. We shall be concerned with
the subrange 0.5 < H < 1, which is practically
more useful. Values of C'(s, H) for H varying
from 055 to 0.95 by inerements of 0.05 and
for s varying from 0 to 900 are listed in Table 1.

Digression. Although there are many vari-
ants of fractional Gaussian noise, one had to be
selected as a basis for ffGn. Which one is chosen
does not matter greatly, because I expect that
ultimately {f{Gn will be fitted to the data rather
than to any theoretical formula. Nevertheless,
dfGn has advantages when one is dealing with
total discharge or precipitation within a time

unit, because dfGn is the sequence of inere-
ments of fractional Brownian motion over suc-
cessive time units.

Step 1

In step 1 the covariance C,(s, H) is intro-
duced. First note that C'(s, H) is the finite see-
ond “difference of the function s*®/2. For large
s, §7/2 does not vary very rapidly with s, and
its second difference can be closely approxi-
mated by its second derivative, namely,

Ci(s, H) = H2H — 1)

The approximation error C(s, H) —Ci(s, H) is
— o for s = 0; its values for s > 1, listed in
Table 4, are positive, and as s = oo, they tend
to zero rapidly.

Next, observe that one can write

Ci(s, H) = H(2H — 1)s***
=f e "“W(u) du
4]

with W(u) = u**/2|T(—2H)|. The integrand
of Cy (s, H) is the covariance of a Markov-
Gauss process for which the correlation of lag
one is equal to e™ and the variance is infinites-
imal and equal to W (u)du.

Digression. A justification of the formal
step from C(s, H) to Ci(s, H) is that there
is a random process X, (¢, H) of which C,(s, H)
is the covariance, namely, the continuous time
fractional Gaussian noise. The random process

* X.(t, H) is the derivative of a process By(t)

called fractional Brownian motion [Mandelbrot
and Van Ness, 1968]. (In terms of By(t), the
process X,(t) is made of the integer time in-
crements of B,(t).) However, the fact that
Ci(0, H) = oo shows that B,’(t) is not an
ordinary function but requires special interpre-
tation as a Schwartz distribution. Here it is
best to forget about B,/(f) and merely consider

“Cu(s, H) and C(s, H) as formal approxima-

tions of each other.

To represent Cy(s, H) in the form
fore W (u)du is equivalent to writing W(u)
as the inverse Laplace transform of C.(s, H).
Standard tables indicate that s* is the Laplace
transform of ¥**/T'(Z), namely,

f e—luuz—l du
Py [
I'(Z)
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TABLE 4. Values of 10,000 [C(s, H) — C.(s, H)] for Various Values of s and H

s H=055H =060 H =065 H =070 H =07 H =080H =08 H =09 H =095

1 168 287 362 396 392 358 296 212 111
2 12 22 32 40 45 46 42 34 19
3 4 7 11 13 15 16 16 13 8
4 2 3 5 6 7 9 8 7 4
5 0 1 2 3 4 5 5 4 3
6 1 1 1 2 3 3 4 3 2
7 0 1 1 1 2 3 3 2 1
8 0 0 1 1 2 1 2 1 1
9 0 1 1 0 1 1 2 1 1
10 0 0 0 0 1 1 1 1 1
20 0 0 0 0 0 0 0 1 0
In particular setting Z = —2H + 2, which yields

f e-auul-2l'[ du
g B
T(—2H + 2)
and

H(2H — 1)§*"* .
' f e gy
o 1]
T T(—2H + 2)/H(2H — 1)
f e-—auu‘l—zﬂ' du
0

— 2 |r(—2H)|

Step 2

In step 2 the covariance C.(s, H) is intro-
duced by dropping the high and very high fre-
quency terms of C.(s, H). A Markov-Gauss
process will be called rapidly varying if its lag
one correlation e™ lies below some threshold
thl < 1, From the viewpoint of simulation, the
sum of such Markov-Gauss components can be
approximated by a single much simpler proc-
ess, to be taken care of later when we deal with
the high frequency component. Hence one can
replace Ci(s, H) by

—~log (thl)
—su 1-2H
f ) du
0

2 [T(—2H)|

The threshold thl is acceptable only if
C:(0, H) < 1. For this condition, it suffices
that

Cols, H) =

|log (21}
f W du < 2 |T(—2H)|
]

[llog (A1) |]*“™™ < 4(1 — H) |T(—2H)|

= I'(3 — 2H)/H(2H — 1)
A sufficient condition valid for all H is
[log(th1)| < 20 (ie., thl > ™ ~ 10™),
which ordinary values of thl will satisfy handily.

In Step 4 a special value of thl will impose
itself.

Step 3
In step 3 the covariance C,(s, H) is intro-

* duced by dropping the Markov-Gauss com-

ponents of C.(s, H) that follow either of two
criteria: they vary very slowly or they are
negligible to begin with. First the slow variation
criterion is considered. Between the instants
t = 1and t = T, the elementary Markov-
Gauss process of covariance e** W(u)du in-
creases by a random amount of variance

W(u) du {1 — exp [—(T — Du]}
~ W1l — exp (—Tw}] du.
Let the relative change in variance be de-
fined as 1 — exp(—Tu). If this quantity lies
below a second threshold th2, the resulting
Markov-Gauss process is essentially constant,
and in simulation it need not be considered. In
other words one can drop all values of % below
w’, w being defined by
1 — exp (—Tu') = th2
or
uw = T |log (1 — th2)|

Note that «'T is independent of H. If th2 is
small, then w'T ~ th2.
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The next criterion is based on the contribu-
tion of different values of u to the variance of
ffGn. The idea is to increase the lower bound
of 4 from v to w” to weed out the Markov-
Gauss contributions that do vary rapidly but
are negligible to begin with. The difficulty is that
the notion of negligible contribution is not de-
termined uniquely; from the short run view-
point, a Markov-Gauss process of covariance
e W (u)du is negligible if only W(u) is very
small, irrespective of the value of w. But from
the long run viewpoint we shall require the
average of this Markov-Gauss process between
times £ = 1 and ¢ = T to be very small. The
expectation of this average obviously vanishes.
Its variance is readily evaluated and turns out
to be 2w *(Tu—1 + ¢ ™)W (u)du. With our
W (u), this expression becomes

2T (Tu — 1 + &™)
2 [T(—2m)[17} du

Even if W(u) is very small, the preceding ex-
pression becomes large if % is very small. Our
second criterion will be that the ratio bétween
the contribution of values of u between «’ and
u” and the contribution of values above o
should lie below a third threshold th3. Since
high frequency terms with very large u con-
tribute very little, one need not worry about
them. Thus our second eriterion yields

re

f WP — 1+ ™) du

’

It

detl _ th3
f w (T — 1+ ™) du

%

Changing the variable from » to z = uT, we
transform this condition into

w’T
-/:"7'
f: T — 1 4 670 de

When T and «”T do not exceed 1, one can

approximate e *—1 4+ z by 2°/2, and the con-
dition becomes

Z—I—ZH(z -

14+ e7%) de

= th3

(uffT)2—2H . (u;T)2—2H
4(1 — H) [I(—2H)| — 'T)*™

= th3
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Write w’T = 1/Q, and transform the denomi-
nator by noting first that 4(1 — H)|T'(—2H)| =
T(3 — 2H)/H(2H — 1) and next that in the
range 0.5 < H < 1 the term T(3 — 2H) de-
pends little on H and is reasonably approxi-
mated by 1. Solving, we obtain the final crite-
rion,

Q2™ = [—log (1 — th2)] 297
(1 — th3) + th3/H(2H — 1)

Soluticns of this equation for @, rounded to the
nearest tenth, are given in Table 3. One can
verify that, except for the two starred values,
1/Q is indeed less than 1 as was assumed in
deriving the approximation. Step 3 yields the

approximation,
‘p—log (thl)
- —2H
f e du
1/TQ

2 |°(—2H)|

Ci(s, H) =

Step 4

In step 4 a finite discrete Markov-Gauss ap-
proximation C.(s, H) is introduced. This step
processes the Markov-Gauss terms that were
left after the preceding steps eliminated the low
frequencies and the high and very high fre-
quencies. In a first substep we select a param-
eter B > 1 and change the variable of inte-
gration from w to B™°, v being continuous from
— oo to oo, Applied to the original C, this
change yields

__logB
Ci(s, H) = I2F(—2H)l

.f exp (_SB—n)B-ZKlAH)v d”

Digression. Behind this change of variable
lies the idea that when two Markov-Gauss
processes have the respective damping times
1/w and 1/%”, the best measure of the degree
of similarity or difference between these proc-
esses is not the difference, w' — w”, but rather
the ratio u'/uw”. After the change of variable,
w = B, this degree of similarity or difference
is measured by B or simply by v* — v”
itself. The best approximation is one that relies
on uniformly spread values of .

In a second substep the variable » is made
discrete by dividing its domain of variation into
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spans: of unit length of the form n — 05 to
n + 0.5, n being an integer.

At one end the values of n much below 0
correspond to very high frequencies (step 2),
and it is simplest to set the boundary between
mid and high frequencies by calling n = 1 the
highest frequency in the mid range. Thus a
threshold thl equal to exp(—1/B") is im-
plied, which for ordinary B satisfies the condi-
tion on thl obtained in step 2.

At the other end, values of n much above 0
correspond to low frequencies (step 3) and can
be truncated as soon as possible beyond the
quantity v that satisfies B = 1/TQ; ie,
v ~ log(T@Q)/log B. Since n must be an integer,
one must round off log(7'Q)/log B to the nearest
larger integer, designated || log (TQ)/log B|.

Within each span of v, the integrand
[exp(—sB*)][B**™*] is the product of the
two terms in brackets. In a third substep
these terms are approximated as follows:
exp(—sB™) is replaced by its mid span value
exp(—sB™), whereas B=*"*"dv is replaced by
its integral over the total span. This process
leads to the final approximation

cx("x H) ~ C4(¢: H)
with
log B
2 |T(—2H)|

Illog (QT)/log BII

exp (—sB™")

04(8, H) ~

n=0

n+0.5
-2(1-H
f B ¥ dy
n—0.5

111eg (QT)/log Bl

= , E exp (—sB™).
n=0
Bl—H — B—1+H

: B—Z(I—H)u

4(H — 1) |IT(—28)]

Finally the characterization sketched at the

beginning of the paper is obtained by replacing

|T'(—2H)|, which is not given in the tables, by
T(3 — 2H)[(2H)(2H — 2) (2H — 1)1

Approzimation Errors

Steps 1 and 2 have introduced a high fre-
queney error that is important and will be dis-

cussed in the next section. Step 3 has introduced
a low frequency error that, being an unknown
(random) constant of known variance, is not
important. Step 4 has introduced a grid error,
but it is not very important as long as we avoid
cases in which T and B are both large and log
(QT)/log B is small.

DERIVATION OF THE HIGH FREQUENCY TERM OF
FAST FRACTIONAL GAUSSIAN NOISE

The approximations in steps 1 and 2 add up
to an error term with a variance equal to

(—log (tRD)]*™*"
4(1 — H) |[T(—2H)|

Adjustment to dfGn. The crudest correction
is to approximate this error by an independent
Gaussian process. Since steps 3 and 4 do not
affect the high frequency terms, we obtain the
approximation

X,(t, H) ~ X,(t, H) + [1 — (0, H)]"*G(9)

The covariances of X (t, H) and of this last ap-
proximation coincide for s = 0 and for large
s but differ for s = 1 by C(1, H) — Ce(1, H),
which happens to be positive. A better correc-

1_02(0,H)=1‘_‘

. tion will thus be achieved by a Markov-Gauss

process whose covariance equals

Cy(0)
Co(1) = C(1, H) — Cy(1, H)

Co(s) = [Cu(D)]’

Adjustment of ffGn to empirical short lag
correlations. As long samples of an empirical
record become available, the model maker may
become increasingly demanding. I have only in-
vestigated the case in which the record is reason-
ably nearly Gaussian and its long run pro-
perties are reasonably described by some H
> 0.5, but its variance and lag one covariance
do not fit, the variance and lag one covariance
predicted by the last obtained approximation.
Clearly, change in the short run component will
not affect the long run effects but will change
the variance and lag one covariance. As a result
a more accurate fit may be allowed between
model and data. The algebra is straightforward
but so lengthy that going through it here ap-
pears premature. Details may be provided later.

1 — Cy(1, H)

s> 2
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