VOL. 5, NO. 5

The present paper is addressed to scientists
'concerned with analyzing empiric records in
which very long run statistical dependence (ex-
cluding seasonals or other cycles) may be
| present. Problems relative to the very long
run are increasingly recognized as being on the
forefront of both theoretic and practical sta-
tistics, but statistical techniques to treat the
very long run were yesterday all but non-
existent. We have found a new technique of
data analysis, to be called ‘R/S analysis,” very
effective in this context [ Mandelbrot and Wallis,
1968 1969a, b, ¢, d], and we shall iry in this
paper to examine the principal reasons for our
enthusiasm. References to actual records will be
limited to a comment (below) on Hurst's em-
pirie results concerning R/S.

The letters ‘R/S’ stand for the rescaled range
R(t, s)/S(t, s), where R(t, s) is the cumu-
lated range of a process between times ¢ + 1
and ¢ + s after removal of the sample average
and S°(t, s) is the corresponding sample vari-
ance. That is, given any function X(¢) in dis-
crete integer valued time with X*(t) defined
by X*(t) = Z...' X(u) and given any lag
s > 1, R(t, s) is defined by

RB(t, s) = max {X*(t + w) — X*(2)

0<u<s
— (u/9)[X*(t + o) — X*()]}
— min {X*(t 4+ ») — X*()

0Lu<a

— (W/9)[X*(t + 5 — X*®)]}
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Abstract. The rescaled range K(i, s)/S(L, s) is shown by extensive computer simulation
to be a very robust statistic for testing the presence of noncyclic long run statistical dependence
in records and, in cases where such dependence is present, for estimating its intensity. The
processes examined in this paper extend to extraordinarily non-Gaussian processes with huge
skewness and/or kurtosis (that is, third and/or fourth moments).

(Figure 1), and S*(¢, s) is defined by

8%t s) = s 2 {X(t+ w

u=1

— s (X4 9 — X*(1)

=5 i: Xt + w)

- [ ; X(t+ w).

We shall show here that the dependence of
&[R(t, 8)/8(t, s)] upon s can introduce the concept
of B/S intensity, which is one precise and useful
measure for the more general concept of intensity
of noneyclic very long run statistical dependence.
Consequently the dependence upon s of the
average of the sample values of E(Z, s)/S(, 9),
carried over all admissible starting points ¢
within the sample, can be used to test whether
the R/S intensity in a sample is nonvanishing
and/or to estimate the value of this /S intensity.
The performance of these statistical tasks will
be labeled R/S analysis, a term we have coined
after spectral analysis. The measure of R/S
intensity will be designated by H — 0.5, with
0 < H < 1, the special value H = 0.5 corre-
sponding to the absence of very long run
dependence.

Without question the first discipline in which
the presence of noneyclic very long run de-
pendence has been reported is hydrology. We
have therefore proposed that all fields exhibiting
noneyelic very long run dependence be said to
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Fig. 1. Construction of the sample range R(l, s)

reproduced from Mandelbrot and Wallis [1969b]. To
make this graph more legible the function X*(t) was
measured arbitrarily from its sample average over
the sample from { = 1 tot = T. That is, instead of
X*(t) itself, we have plotted as a bold line the
function D(¢) = X*(t) — (¢/T)X*(T). The replace-
ment of X*(1) by D(t) does not affect the value
either of A(u) as defined below or of R(t, s). More-
over since empiric records are mnecessarily taken
in discrete time, the function D(u) should have
been drawn as a series of points, but it was drawn as
a line for the sake of clarity. The function A(u) as
marked stands for X*( 4+ u) — X*(t) — (u/s)
[X*(t + s) — X*()], and the sample range is defined
as R(f, s) = maXpcucs A1) — MiNgcucs Alu).

exhibit the Joseph Effect. That is, the original
Joseph Effect expresses the well-established
fact that high or low levels in rivers tend to
persist, perhaps over the Biblieal ‘seven fat and
seven lean years,” but more often over decades,
centuries, and millenia. Similar observations
have been made in meteorology, geophysics,
economics, physics, and other sciences. Using
our convenient terminology, we shall character-
ize R/S intensity as one possible measure of
how strongly the Joseph Effect is present in a
given class of phenomena.

The question immediately arises of whether
other measures of the strength of the Joseph
Effect could have been used. The answer depends
upon whether the record in question is nearly
Gaussian, If it is, one can also use the method
of wvariance-time curves introduced by G. T.
Taylor in 1921 or perhaps one of a few alterna-
tive statistical techniques. However, natural
records are very frequently extremely non-
Jaussian. This finding was also first reported in
hydrology, so that we have proposed to call it
the Noah Effect. The original Noah Effect
expresses the fact that the levels of rivers may
be extraordinarily high and that intense rain
may last over the Biblical forty days and
nmghts. The Noah Effect is eclassically studied
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under the heading of ‘theory of extreme values.”

Because of the Noah Effect the question we
raised at the beginning of this paragraph is
transformed into the question of how the
R/S intensity and other measures of the Joseph

Effect are affected by the superposition of the

Joseph and the Noah Effect.

Our investigations have led us to conclude
that the unique virtue of R/S analysis lies in
its being ‘blind’ to the Noah Effect, that is, in
its being equally applicable to Gaussian records

and to records with a strong Noah, When there

is no Noah, other available techniques may be
comparable to R/S analysis in effectiveness.
When Noah is strong, however, all alternative
techniques known to us are in some way in-
ferior to R/S analysis. The best are simply less
effective, their sampling distribution being less
favorable. The worst alternative techniques are
worthless because the results they yield confuse
Noah and Joseph inextricably.

Because of the audience anticipated for this
paper, the theorems to be stated will not be
proved mathematically but rather demonstrated
by computer simulation buttressed by some
heuristic argument. The captions of the figures
are unusually detailled and should be eon-
sidered an integral part of the exposition.

Our use of the term ‘law’ will follow the
custom established by the law of large numbers,
which designates a statement to the effect that
some sample average tends asymptotically to-
wards its expectation. As is well known, many
classical theorems of probability are of the
form ‘under such and such hypotheses, the law
of large numbers holds.” Similarly behind every
development that follows lurks a theorem of the
form ‘under such and such hypotheses, such and
such ‘s¥ law’ applies to R(t, s)/S(t, s)” That
is, the phrase ‘s” law’ will not designate a
theorem but only the conclusion common to a
number of theorems.

For stationary Gaussian processes without
long run dependence, division by S(t, s) is a
useful but not vital detail, so that R/S analysis
18 a small iImprovement over the B analysis of
R itself, as carried out for white Gaussian
noise by Feller [1951] and by Anis and Lloyd
[1953]. The importance of the division of
R(t, s) by S(t, s) increases as the process di-
verges from the Gaussian and/or as one intro-
duces dependence of increasingly longer extent.
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It has been shown in Mandelbrot [1965],
Mandelbrot and Van Ness [1968], and Mandel-
brot and Wallis [1969b] that Gaussian random
processes with a fractional spectrum in which
dependence can have as long an extent as one
may wish are very good for modeling the
Joseph Effect. It remained, however, to study
R/S for non-Gaussian processes and for proe-
esses with strong cyclic components and to
compare R/S analysis with other methods of
| analyzing long run statistical dependence (in-
. cluding R analysis and other techniques, many
of which were apparently first considered in
our work as possible alternatives to R/S anal-
ysis). We have attacked all these tasks with the
help of computer simulation, but only our main
results concerning B/S will be reported.

MATHEMATICAL PRELIMINARY

If X(t) is a stationary random process, the
ratio R(¢t, s)/S(t, s) considered for fixed s as
a funetion of ¢ is another stationary random
process, a transform of the original X(¢). Re-
call that a random process X(t) is called
stationary if identical rules generate the process
X(t) itself and all the processes deduced from
X () by a time shift, namely, all the processes
of the form X (¢ + s).

To appreciate some of our manipulations
concerning R/S, it is useful to recall the cor-
responding features of the classical covariance
analysis. One can consider that technique as
based on the fact that when X(¢) is stationary,
the transformed process Y(t) = X () X(¢t + s)
i8 also stationary for every s. Since the covari-
ance of X(t) may be written as E[X ()X (i + s)] =
E[Y(t)], such covariance depends on s but is
not a function of ¢ and can be designated by
C(s). It is known that many features of a process
are fully deseribed by the functional dependence
of C'(s) upon s.

R/S analysis also is based on the properties
of a family of stationary random functions
obtained by transforming X(f), namely, the
function R(t, s)/S(t, s). Stationarity implies
that &[R(t, s)/S(, s)], like C(s) above, depends
on 8 but not on ¢, and we shall show that some
important properties of a process are described
by the functional dependence of this &[R(¢, s)/
S(t, 8)] upon s.

The body of this paper will discuss first R/S
testing, then R/S estimation. A short additional
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section on cyclic effects will follow. The last
sections will comment briefly on R/S self simi-
larity and on R/S analysis for nonstationary
processes.

R/S TESTING

Abstract of this section. The behavior of
R(t, s)/8(t, s) as s = oo can define the concept
of R/S dependence, which is a form of non-
cyclic long run statistical dependence. The first
application of B/S analysis thus occurs in test-
ing whether R/S dependence is present in a
record.

Preliminary. The concept of long run statisti-
cal dependence is obviously important, but it is
complex and many faceted, and generally ac-
cepted definitions are lacking. Some random
processes exist, however, for which long run
dependence is unquestionably absent, and some
other processes exist in which long run de-
pendence is unquestionably present. Moreover,
cyclic and noneyelic long run dependence must
be distinguished [Mandelbrot, 1969, section
2.2]. Having R/S-analyzed many processes, we
have observed a relation between noncyeclic
long run dependence and the following law.

Definition. A random process will be said to
satisfy the s"® law in the mean or, to be more
precise, to satisfy the R/S ~ s*° law in the
mean if the expression

lim s~ &[R(¢, s)/ 8(¢, 5)]
exists (that is, is well defined) and is positive
and finite. In more intuitive terms this s
law means that the graph of the function log
8[R(t, s)/S(, s)] versus log s is asymptotically
a straight line of slope 0.5.

The s°-5 law in the mean fails to hold in two

cases, (1) when

s~ E[R(t, )/ 8(t, )]

tends to no limit as s— o and (2) when this quan-
tity tends to zero or to infinity. All these pos-
sibilities are expressed in more intuitive terms
by saying that the graph of the function log
8[R(t, s)/S(t, s)] versus log s does not possess a
straight asymptote of slope 0.5.

Basic result. We have found that the s°-8
law in the mean holds for every process for
which long term dependence is unquestionably
absent and does not hold for many processes
exhibiting unquestionable noncyclic long term
statistical dependence.
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Examples. The stationary process of in-
dependent reduced Gaussian variables is un-
questionably the simplest process with no
dependence. The term ‘reduced’ means that
the expectation vanishes and the variance is
unity. For this process the law of large numbers
shows that lim, .. S(¢, s) = 1. In addition Feller
[1951] has computed the value of lim,., s—0-
E[R(t, s)] and showed it to be v/7/2, which is
about 1.25. Thus € = lim,_.. s7°-5 §[R(t, 5)/S(t, 5)]
is also about 1.25 for independent Gaussian
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Fig. 2. Pox diagram of log B/S versus log s for a

sample of 9000 values of a discrete white noise G(1),
ie., a sample of independent identically distributed
Gaussian random variables. The boxes correspond
to estimates of log &[R/S]. Their disposition is
evidence that the s°5 law in the mean applies to
G(t) after a very short transient, shorter than the
transient of R(Z, s) derived by Anis and Lloyd [1953].
The dots (+) correspond to sample values of 2/S
(see below). They show that the dispersion of B/S
around s7%¢ that is, the dispersion of s5R/S,
depends little on s. This disposition is evidence
that the s law in distribution applies to G(t) after
the same short transient, the relative dispersion of
§70% being small.

A sample function of white noise has been plotted
in Mandelbrot and Wallis [1969a]. Had we plotted log
R (t, s) instead of log R/S, this diagram would
not look substantially different, though the initial
transient would have become longer.

This pox diagram was constructed as follows. The
dots () correspond to values of the lag s restricted
to the sequence 3, 4, 5, 7, 10, 20, 40, 70, 100, 200,
400, 700, 1000, 2000, 4000, 7000, and 9000. For
every s satisfying s < 500, 14 dots (+) are plotted,
corresponding to values of ¢ equal to 1, 100, ... ,
1400. For every s satisfying s > 500, ¢{ was made
successively equal to 1000, 2000, up to either 000
or T' — s + 1, whichever is the smaller.
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processes. The fact that this limit is both positive
and finite establishes that these processes satisfy
the §°-5 Jaw in the mean (Figure 2).
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Fig. 3. Pox diagram of log R(t, s)/S(t, s)
versus log s for an independent log normal random
function. Such funections have been used often
to fit hydrologic data, The function we used,
namely, 10" (where G(t) is a discrete white
noise), has very high skewness (27) and kurtosis
(1050), which are symptoms of the Noah Effect.
Nevertheless, the disposition of the boxes in-
dicates that the s** law in the mean is satisfied by
10%*) after a short transient, whereas the disposi- |
tion of the sample values (4) indicates that the
5** law in distribution is satisfied with a small |
relative dispersion.

Tt might have been illuminating to plot a sample
function of 10°“, but a plot on linear coordinates
would be illegible. It could show clearly either
the peaks or the details of the small values but
could not show both. Logarithmic coordinates
would have to be used in order to make the plot
legible, but this would have simply consisted in
plotting G(¢) itself.

The fact that in the case of 10%* the *° law
holds asymptotically is a consequence of the |
argument in Feller [1951]. The study of the |
penultimate region of moderate values of s is
an entirely different matter. To prove that the
asymptotic results should apply there, one ecan
proceed as follows. The basic fact, proved in
Mandelbrot [in preparation], is that in the
range of moderately large values of s the log
normal density can be approximated by an ap-
propriate hyperbolic, as defined in the legend of
Figure 5. As a result the penultimate behavior
of RB/S for the log normal process is essentially ‘

like the asymptotic behavior of R/S for the ap-
propriate hyperbolic process. ‘
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Figures 2, 3, 5, and 6 demonstrate that the s

. law also applies in the mean to processes of

independent values having a variety of other
marginal distributions: truncated Gaussian,
log normal, and hyperbolic, respectively. In
every case the expression s—05 §[R(Z, s)/S(¢, 8)]
attains its limit value very rapidly, that is,
after a very brief initial transient. Note, however,
that the precise value of lim... s 8[R(, s)/
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S(t, s)] greatly depends on the process; this
will be exemplified later in the paper.

It should be noted that the value of R(¢, s)/
S(t, s) for small lag s as plotted in the figures
of this paper have been incorrectly computed.
They must be disregarded. The paper’s con-
clusions, however, remain unaffected. The nature
of the error will be explained in a paper by
M. Taqqu, Note on Evaluations of ER/S for
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Fig. 4. Pox diagram of log R(¢, s) versus log s for the sample of the random function 109"
used for Figure 3. The present diagram differs dramatically from the diagram of log R/S
shown on Figure 3. The s*° law in the mean (boxes) shows evidence of applying, but the
transient goes up to 8 ~ 70, which means it is longer than the transient of log R/S for either
G(t) or 10°". There is no visible stabilization, however, in the distribution of the sample
values of R(t, s) (4) around their average. Thus even a sample of 9000 values gives no
evidence that the s** law in disiribution is valid. The scatter of the dots (4) is so extreme
that were the sample much shorter, testing whether the R(¢, s) function of 10°" obeys the
5% law would be hard at best and often hopeless. That is, the statistic R(¢, s) is much less

robust than R/S.

The pox diagram of log S(t, s) versus log s has also been plotted but need not be reproduced
in this paper because it is so similar to the present diagram. In other words, the diagrams of
both log 8(¢, s) and R(t, s) are widely scattered, but the values of the two functions are so
precisely meshed together that, as seen on Figure 3, little scatter remains in the difference
log R(t, s) — log S(t, s) = log R/S. Additional insights about meshing are yielded by the
behavior of R/S for the very skew Gamma process discussed in the body of this paper. Still
further insights are yielded by the legend of Figure 11.

The meshing of R(¢, s) and S(¢, s) teaches an important lesson: an excellently behaved
statistic can sometimes be obtained by combining several expressions that behave badly when

considered separately.
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Fig. 5. Pox diagram of log R(t, s)/S(t, s)
versus log s for a sequence of independent iden-
tically distributed hyperbolic random variables
with exponent @ = 1.1, where hyperbolic random
variables are defined below. We shall not try to
plot a sample function of this process on linear
coordinates because, as was the case for the func-
tion 10°“’, such plot would be illegible. The dis-
position of the boxes is evidence that the s*° law
in the mean applies after a short transient, and the
disposition of the sample values (4) is evidence
that the s°° law in distribution applies with a
relative dispersion, perhaps even smaller than in
the Gaussian case.

The random variable X is called ‘hyperbolic’
if it satisfies for large values of z the two relations

Pr(X > 2) ~ (z/¢")""
Pr(X < —a) ~ (2/¢'")""

where « is a positive constant. If, moreover, either
o’ or ¢” vanishes, X is called ‘unilaterally hyper-
bolic’ or ‘Paretian.’ If both ¢’ and ¢ are positive,
X is called ‘bilaterally hyperbolic.’ (The possibility
that ¢ = ¢” = 0 must be excluded.) For a dis-
cussion of the special role of such random vari-
ables, see for example Mandelbrot [1963a, 1964a].

To carry out the simulations reported in the
figures of this paper, we considered the case where
¢ = 0 and ¢ = 1 and the case where ¢ =
a”, 27/°. We began with a sequence F(f) of in-
dependent random variables distributed between
0 and 1 with uniform probability density. Next a
bilateral hyperbolic function Z(¢) was constructed
using the formulas

0 < F(t) <3,  2Z() = [2F()]V"

IfE<Fl) <1, 28 = [2— 2/
Tinally, to simplify subsequent calculations, Z(t)
was rounded off by dropping away all the digits
after the decimal point. As to our unilateral hy-
perbolic function, it was defined as |Z(¢)].
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Fractional Noises and Geophysical Records, sub-
mitted for publication to Water Resources Re- |
search. |

When the values of the process X(t) are
statistically dependent but the dependence is
limited to the short run, the transient is much
longer, but the s*® law in the mean holds
asymptotically. We shall return later to a dis-
cussion of the practical meaning of such asymp-
totic results.

On the other hand Figures 7 to 17 and ad-
ditionally many figures in Mandelbrot and
Wallis [1969b] show the s*° law in the mean
to fail for a variety of processes for which the |
dependence between X(¢) and X(¢ + T) de-
creases to zero as I' — oo but does so extremely
slowly. A more detailed discussion of these
figures is best postponed to a later section de-
voted to R/S estimation.

Remark concerning the explanation of Hurst's

empiric §¥ law. Tn empiric records the va.luesi
]‘
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Fig, 6. Pox diagram of log R(t, s)/S(t, s)
versus log s for a sequence of independent ran- 3
dom variables with low kurtosis. These variables
were obtained by truncating a normal random
variable so severely as to make its distribution
almost uniform. The validity of the §** law in the
mean is no more affected by the low kurtosis of
the process used in this fizure than it was affected
by the high kurtosis of the processes used in
Figures 3 and 5. The relative dispersion of s%¢
R /S is perhaps larger than in the Gaussian case.
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TYPEI, H=0.9

1000

Fig. 7. The first 1000 values from a 9000 value sample of a Type 1 approximation to the
fractional noise with # = 0.9 and M = 10,000. The whole sample of 9000 has been normalized
to have zero mean and unit variance. This figure is reproduced from Mandelbrot and Wallis

[19695b].

of R/S were found to cluster closely along a
funetion of the form s” with H > 0.5. The find-
ing that H > 0.5 was originally made by Hurst
[1951], although Hurst’s estimates of H involve
a far-reaching conceptual error discussed in
Mandelbrot and Wallis [1969d]. After Feller
[1951] proved that the empiric s¥ law is in-
compatible with the idea that the records in
question are generated by an independent Gaus-
sian process, several authors, including Moran
[1964; 1968], have conjectured that the empiric
s law eould be explained by postulating that the
records are generated by a random process with
independent values and a very skew marginal

e .
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Fig. 8. Pox diagram of log R(¢, s)/S(t, s)
versus log s for 9000 values of a Type 1 approx-
imation to the fractional noise with H = 0.9 and
M = 10,000 (including and continuing the sample
of Figure 7). This figure is reproduced from
Mandelbrot and Wallis [1969b]. The R/S in-
tensity of statistical dependence is clearly equal to
E—10.9.

After an initial transient until s*

distribution. These authors thus postulated that
the empiric s¥ law relates to the Noah Effect.
The results in the present paper show that this
Noah explanation is' insufficient. Earlier
[Mandelbrot 1965; Mandelbrot and Van Ness,
1968; Mandelbrot and Wallis, 196957 the Noah
explanation was shown to be also unnecessary,
since it was shown to be possible to explain the
s law by the Joseph Effect.

More specifically, Moran [1968, p. 495] has
attempted to illustrate his proposed explanation
of Hurst’s empiric law by considering Gamma
distributed random variables of demsity [T
(y)]17 27 e, where the parameter y is assumed
very small. Moran’s illustration is fallacious,
as we shall now proceed to demonstrate.

The key fact is that a very skew Gamma proc-
ess X (t) exhibits a Noah Effect so extreme in its
intensity that unless ¢ is made extremely large,
of the order of 1/y, there is a very high prob-
ability for X*(t) = =,/ X(u) to be almost
indistinguishable from maxoc.<: X(u). As a
result R(Z, s) is nearly equal to maxe<,.<, X (£ + u).
In addition, 2,.:*X%(t 4+ u) is nearly equal to
[maxocu<, X (¢ + u)]2 and St(t, s) is nearly equal to

' max X(t + w)]°

0<u<s

s [max X(t + w)]’

0<u<s

—[S

=5 '(1.— s Y[max X(t + w)]*
0<u<s

Finally we find R(t, s)/S(t, s) to be nearly
equal to s*° (1 — s%)™*% independently of ¢.
becomes €
1, say up to s = 10, one has R(t, 8)/8(t, s) =
&*° with negligibly small statistical scatter. This
argument ceases to apply when s exceeds 1/,
but it suffices to show that Moran’s claims were
unfounded.
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Fig. 9. The first 1000 values from a 9000 value sample of a hyperbolic non-Gaussian
fractional noise. To construct this sample, we preserved the same moving average kernel
already used to construct a Type 1 fractional Gaussian noise [Mandelbrot and Wallis,
1969c]. However, the variables to be averaged were hyperbolic, a concept defined in the legend
of Figure 5. The largest values of this sample of hyperbolic fractional noise are very large
indeed, a symptom of a very strong Noah Effect. In fact such extrema exceeded the bounds of
the graph and had to be sharply truncated. This means that at the instants where X(¢) ap-
parently equals the maximum plottable value of X(t) the actual value is much larger. Each
large value has strong and long-lived aftereffects.

Incidentally, we do not question Moran’s
mathematics. His error lies elsewhere, in be-
lieving that Hurst’s empiric findings applied
to the range itself and not to the ratio R/S.
The behavior of R(t, s) will be examined below
in a subsection devoted to monrobust variants
of R/S.

Formal definition of R/S tndependence. The
examples we considered introduce a distinction
between two kinds of random process: those
for which the limit lim,.., s=0-8 &[R(¢, 5)/S(t, s)]
is nontrivial (positive and finite) and those for
which the limit in question is either trivial or
nonexistent. This alternative has purposefully
been stated in such terms that every random
process falls on one or the other side, and this
alternative can therefore be used as the basis
of the following formal definition of dependence:
Every process such that lim s—-5 §[R(¢, 5)/S(t, s)]
is finite and positive will be said to be RB/S
independent. All other processes will be said
to be B/S dependent.

Definition of R/S testing and the relativity
of the concepts of short run and long run. The

above definition suggests that having computed
the values of R(%, s)/8(t, s) corresponding to
some available finite sample of X(¢)’s one
could try to determine the category to which
the process that generated X(¢) is likely to
belong from the behavior of the sample values
of B/S. However, this proposed statistical tech-
nique immediately raises a major conceptual
difficulty: the concept of R/S dependence was
defined by the asymptotic behavior of R(t, s)/
S(t, s). It remains to interpret R/S for finite
samples of ordinarily available size.

Given a sample of size T so that the values of
R(t, 8)/S(t, s) are known up to s equal to a finite
T, the ideal case occurs when the variations
of the sample average of s% R(f, s)/S(, s)
die out for s much less than 7. Two conclusions
can then be drawn: (1) the value near which this
sample average stabilizes can be taken as an
estimate of the asymptotic limit lim,.., s
&[R(t, s)/S(t, s)], and (2) one can say not only
that there is no long run R/S dependence in
X (f) but also that the R/S dependence of X(f)
has a span much shorter than 7.
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Fig. 10. Pox diagram of log R(¢, s)/8(t, s)
versus log s for 9000 values of the hyperbolic non-
Gaussian fractional noise, part of which was
plotted on Figure 9. The "7 law clearly holds both
in the mean and in distribution, indicating that
R /S analysis is blind to the extremely non-Gaus-
sian character of the marginal distribution (strong
Noah Effect) even when very long run dependence
(strong Joseph Effect) has been built into the
process in question.

The alternative case is when there is a
tendency for the observed averages of s°
R(t, s)/8(t, 3) to continue to vary greatly while
s approaches its upper bound T. This has two
possible causes: either (1) X(¢) is RB/S inde-
pendent, but the transient zone of R(t, s)/
S(t, 8) is longer than T, or (2) X(t) is R/S
dependent. From a sample of finite duration T,
one cannot conceivably distinguish between the
above two possibilities.

In summary, given a sample of duration T,
R/S testing consists in deciding which is more
likely among the following possibilities: (1)
the span of R/S dependence is much less than
T, or (2) the span of R/S dependence is either
of the order of magnitude of 7 or greater or
even infinite.

Relation between R/S dependence and other
forms of long run dependence. The idea of
forming the ratio R/S first arose in hydrology,
R(t, s) being related to Rippl’s ideal minimum
capacity of reservoirs for long term storage
[Hurst, 19517. The distinetion between R/S de-
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pendence and R/S independence is therefore
likely in one field at least to be praectically use-
ful. The examples we studied show, moreover,
that the concept of /S independence catches
some of the aspects of the intuitive idea of long
run statistical independence, but it does not
catch all aspects. We may add that it is unlikely
that any single definition of the long run inde-
pendence will ever catch all aspects of this con-
cept and that alternative definitions for long
run independence will always exist. For in-
stance, random processes may be R/S de-
pendent but long run independent according to
other criteria [Mandelbrot, 1969], but this is
not the proper place to discuss this feature. Also
some processes are [/S dependent but inde-
pendent according to other criteria. The princi-
pal example of this last possibility is provided
by processes with both a sinusoidal cyelic com-
ponent and a noise component. The presence of
the sine expresses that there is a very long run
statistical dependence, but it will be shown that
such processes are B/S independent.

Effect of strong cyclic components on R/S
analysis. The best known kind of long run
dependence is not R/S dependence but is ex-
emplified by the pure sine wave A sin (27t/L + ¢).
The wavelength L is to be thought of as pre-
scribed, and the amplitude 4 and phase ¢ are
both chosen at random in advance according
to any specified probability distribution. For
this process the covariance between X(f) and
X(t+ s) is itself a sine function that cscillates
up and down without limit. Now consider the
ratio B/S of the pure sine. Clearly, lim, ... R(, s)
= AL/m and lim,. S( s) = A4/2, so that
lim,... [R(t, 8)/8(, §)] = 2 L/w = .636 L (see
Figure 18). Division by -5 yields lim, . s70-5
E[R(t, s)/S(t, s)] = 0, so that pure sine waves
are /S dependent. In other words, B/S depend-
ence is not in conflict with pure sine dependence.

When G(t), a white Gaussian noise of zero
mean and unit variance, is added to the sine
wave to obtain

X(®) = Asin (27 t/L+¢) + G,

the situation changes radically. One can check
that X*(t) satisfies the double inequality

G*(t) — AL/2r < X*(t) < G*(f) + AL/2r

Since for ¢t — @, AL/27 becomes negligible in
relative value, the ranges of the two processes
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Fig. 11.

Alternative plot of a greatly enlarged detail of the variation of R (¢, s)/S(%, s)

for a hyperbolic process different from the process used in Figure 10. This figure is not a pox
diagram. Several starting points ¢ having been selected, the sample path of R(¢, s)/S(¢, s) '
as function of s was plotted. It is visible that this sample path rarely stays at one side of "
the pox diagram. It rather tends to flip up and down. This makes £/S analysis more reliable |
than it would have been if sample paths did not constantly cross the trend line. ]
¥
E

X(t) and G(t) are asymptotically identical, and
lim,.. s—-& §[R(t, s)] = 1.25. On the other hand
it is readily seen that &S:(f, s) = 1 4+ A/2.
Consequently for the process X(#) one has
lim, ., s70-5 E[R(E, s)/8(t, )] = 1.25 (14 A/2)-0-5.
That is, in the case of a sine wave plus a white
noise of arbitrary amplitude, the s°-5 law in
the mean is valid and there is no /S dependence.

The values of lim... s 8[R(t, s)/S(t, s)] as
well as the speed with which this limit is attained
are, however, highly dependent on A. Two things
happen as A increases: the limit of s9-5 §(R/S)
tends to zero, and s &(R/S) takes an ever
longer time to reach its limit. For example in
the case where L = 100 we found that the point
where the asymptotic s°% behavior prevails
is beyond 9000 when A = 3 but is about 200
when A = 0.5.

Sharp eyeclic components rarely occur in
natural records. One is more likely to find mix-
tures of waves that have slightly differing wave-

lengths but greatly differing high subharmonies.
As a result a number of eycles covering a whole
band of frequencies will perturb R/S analysis!
less than would a single sharp sine of compa-!
rable total energy. '

Statistical robustness of the mean variance s°-5
law. The relative deviation of R/S is defined as
v/ Var [R(, 8)/SC, 9))/EIR(, 5)/S(, ). For thel
stationary process of independent Gaussian
variables this relative deviation tends as s —
towards lim,.. v/ Var [R(t, 5)]/8[R(t, s)]. Feller
[1951] showed that quantity to be v/x/3 — 1,
which is about 0.217 and which we consider
small. For other processes we studied, independ-
ently of whether R/S dependence is strong or
absent, we again found the relative deviation
of R/S to be small. More precisely, the relative
deviation is smaller for B/S than for any alterna-
tive expression we thought might be used to
study long run dependence. '

Tt will be convenient in the sequel to use the:
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Fig. 12. Effect on the value of the R/S intensity of a transformation with fairly strong
nonlinearity applied on an approximately fractional Gaussian noise. The initial process

exhibited a strong Joseph Effect but no
moderate Noah Effect, but the E/S intensity of
The practical importance of such nonlinear

Noah Efiect. The transformed process exhibits a
dependence is unaffected by the transformation.
transformations is exemplified by the cases of

tree rings and river levels. The thickness of a tree’s rings is an increasing but probably

nonlinear function of the total yearly
maximum and minimum of a river’s leve

precipitation in the site of the tree. The yegrly
Is are presumably increasing but nonlinear functions

of the yearly discharge. We studied a fourth power merely to illustrate such nonlinearity. The

result shown on this figure strongly suggests

ring thickness (resp., from river levels) can reasonably

precipitation (resp., to yearly flows).

term ‘mean variance s°:5 law’ as an abbreviation
for the combination of the two statements that
the limit lim, . s~°-¢&[R(, 8)/S(¢, s)] is nontrivial
and that the limit of the relative deviation
\/Var [R(t, 5)/8(, 8)/8[R(t, 5)/S(, 5] is small.

The basis of the R/S tests for noncyelic long
run independence can now be rephrased in
terms of the statistical concept of robustness.
The extent to which Feller’s results hald if X(t)
is not independent Gaussian is the extent to
which statistics based upon R(t, s)/S8(t, s) are

that the R/S intensity that is estimated from tree

be expected to apply also to yearly

robust. Before we tackle this issue, it may be
good to remind the reader of the definitions of
the classical terms, ‘statistic’ and ‘robust.’
Definition of the term ‘statistic. Given either
T values of a random process X(t) or T re-
corded observations thought to have been gen-
erated by a random process, the term ‘statistic’
is an awkward but entrenched synonym of one-
dimensional or multidimensional function of the
T arguments X (¢). The best known one-dimen-
sional statistics are the sample moment for



978

MANDELBROT AND WALLIS

1000.
g XitE
WITH X(t) A TYPEI,H=0.8
M=10000 ¢¢“’
FRACTIONAL NOISE + +$$
100.— % §§
&
r [0.—
% # TREND DRAWN WITH
;¥ SLOPE 0.8 FROM TIME 20
TR
L— % é ¥
O+, %
+ MOMENTS OF DATA
+
Ml =0.00
+ %
i M2 = 1.00
o M3 = 39.32
M4 = 2277.42
K
0.0|L = ’ : :
I ) 100 1000 10000
TIME

Fig. 13. Effect of an extremely nonlinear

transformation on a fractional Gaussian noise.

Note that the values of X (£) are near the origin. This is why e® is called more extremely

nonlinear than (10 4 X)* The apparent R/8
trend line of this diagram over the span of

intensity of dependence, which is the slope of the
values of s that has been considered, is much

smaller than H. This shows that extremely nonlinear transformation need not preserve the
E/S intensity of an original process and in fact may lead to resulting processes that have no

well defined R/S intensity.

given k, namely T =,.," X*(t), the sample
covariance for given lag s, namely either 77
Beey' » X(t) X + 3) or (T — @) B, ;™
X(t) X(t + s), the sample lag correlation be-
tween X(¢) and X(¢ + s) for given lag s, and
the Fourier coefficient of X(f) at given wave
number £, for example

Pt ZT:X(t) sin  (2wkt/T)

Corresponding multidimensional statistics are
the sets of all sample moments, correlations, or
Fourier coefficients. Similarly the present work
is concerned with statistics involving the re-

scaled range exemplified hy

T=g

(T — 97" 20 R(t, 9/5(t, s)

Definition of the term robustness. A statistic
is called robust if its distribution or the con-
clusions to which it leads are not drastically de-
pendent upon specific assumptions about the
process generating X (t). The usual assumption
against which robustness is assessed is that the
process is Gaussian. But even then robustness
is not a uniquely defined concept, since one can
consider many different aspects for every sta-
tistic and since each of these aspects can he

—
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Fig. 14. The first 1000 values from a 9000 value sample of a locally Gaussian random
process. Having been introduced in Mandelbrot [1969a] in order to resolve certain paradoxes
encountered in attempts to model economic time series by strictly Gaussian processes, locally
(Gaussian processes are an especially tough challenge to data analysis.

The process plotted here is constructed as the expression Qy(¢) = N2 Zn=." Wall),
where each Wn.(t) is a core process constructed by the following three steps. In a first
step, one constructs a stationary renewal process, that is, a stationary sequence of points T
such that the intervals Upr = Tws. — T% are independent random variables all satisfying
Pr (Us > u) = w?’. In a second step, one selects for W.(T:) a sequence of independent
Gaussian random variables of zero mean and unit variance. In a third step, one identifies
the interval from 7% to 7% :: in which the instant ¢ is located, and one makes Wwm(t) equal
to Wam (T%). Thus each W..(¢) is a step function representing a trend that changes at the
instants 7% Over any prescribed sample size from ¢ = 1 to ¢ = 7, the random function
Qu(f) tends to a fractional Gaussian noise as N — . When N is finite, however, Q.(¢) is
merely locally Gaussian. In this figure, 8 = 1,4 and N = 10.

studied with respect to many different kinds of
deviation from the independent Gaussian.

Nonrobusiness of the precise value of the limal
lim, .. s9-5 E[R(t, s5)/S{ s)]. Feller [1951]
has proved, as we already noted, that for the
process of independent Gaussian random var-
iables, the value of this limit is equal to ap-
proximately 1.25. The same limit is also attained
for every process with a finite variance. When
the variance is infinite, however, the limit is
different, typically between 1.25 and 1.

In addition the value of this limit can be arbi-
trarily modified by introducing short run sta-
tistical dependence, so that the property
lim, ., s7°-8 §[R(t, 5)/S(t, s)] = 1.25 is not robust
with respect to short run deviations of X(t)
from the independent Gaussian process.

Consider for example the stuttering white
(Gaussian noise which is the stationary process
such that its values for even instants of time
t = 2k are independent Gaussians G (%), and
its value at odd instants of time equals its value
at the following even instant. When the value
of s is large, the range R,(t, s) of the stuttering
white Gaussian noise can be shown nearly to
equal V2 R(t, s) with R(t, s) the range of the
independent Gaussian white noise G(%), while
the standard deviation S,(¢, s) nearly equals the

standard deviation S(t, s) of G(k). Thus

lim 8[s™"°Ry(t, 5)/ 8o(t, 9)]

s—40

= V2 lim &[s " °R(t, 5)/8(t, )] = 1.25 V2
If the very short run dependence due to stuttering
is made stronger, the limit of &[s—°-5 R({, s)/S(, 8)]
is further modified.

Extreme robusiness of the mean variance s°-5 law.
As we have already said, for every process of
independent values we examined, including
extremely skew log normal processes (Figure 3)
and processes with an infinite population variance
(Figure 5), &[R/S] is asymptotically proportional
to 05, and the reduced variable s R/S has
small variance. If anything, the variance is
smaller in cases when X (f) is a very long tailed
random variable than in cases when X(f) is
Gaussian. We can now rephrase this result as
saying that the mean variance -5 law is ex-
tremely robust with respect to changes in the
marginal distribution of X (f).

Nonrobustness of the statistic R(t, s). None
of the many variants of E/S that we studied is
as robust as R(t, s)/8(t, s). While some alterna-
tives to the R/S ratio retain the property that
their expected value is asymptotically propor-
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Fig. 15. Pox diagram of R (¢, s)/8(¢, s) for 9000 values of a locally Gaussian noise, including
and continuing the sample of Figure 14.

tional to s*°, none has as small a variance as
R/S. In the present paper we shall be content
to demonstrate the nonrobustness of R(¢, s) by
examining two classes of non-Gaussian processes.

First class of examples. Consider the random
process of independent hyperbolically distributed
values for which R/S is studied on Figure 5.
The marginal distribution is extremely skew
and,/or long tailed in this case, and it is possible
to show [Mandelbrot, 1963b; Moran, 1964] that
ER(t, s) ~ s''= for this process, with & between
1 and 2 so that 1/« is between 0.5 and 1.
On the other hand the asymptotic population
variance of s7/* R(t, ¢) is infinite for the process
of Figure 5 which implies that sample values of
s R(t, s) are extremely erratically behaved,

making it easy for sampling fluctuation to over-
whelm and hide the functional dependence of
R(t, s) on s. As a consequence one may con-
jecture this: Had Hurst’s rough graphic analysis

been carried on R(%, s) itself, given the highly |

non-Gaussian character of some of his records,
Hurst might well have concluded that his
records follow no simple law of general validity,
and the topic might have been dropped. In
other words, since on one hand sophisticated
analysis is needed to make sure how R(t, s)
depends upon s and on the other hand sophisti-
cated analysis is not ordinarily earried out unless
there is evidence that it is worthwhile to do so,
it is possible that ways to handle long run
hydrologic effects would have been discovered
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Fig. 16. The first 1000 values from a 9000 value sample of another locally Gaussian random
process. The construction proceeded as for the function plotted on Figure 14, except that we
selected for Wam(Tx) a sequence of independent binomial random variables of zero mean and
unit variance equal to +1 or —1 with probabilities 0.5. In this figure N = 3.

much later if Hurst had plotted R instead of
R/S.

Second class of examples. Now consider the

~ behavior of R(t, s) for the process of independent

log normal values (Figure 4). The corresponding
behavior of B/S was reported on Figure 3. This
example shows that random processes exist
for which &R ~ s°f holds asymptotically, but
the asymptotic behavior takes extraordinarily
long to prevail. In the long transient that precedes
this asymptote, the dispersion of R around
&R may be enormous.

Similar remarks apply to Gamma distributed
random processes, which (as we have noted
already) were injected into this topic by Moran.
For small values of s the range of such a process
was found by Moran to satisfy &R ~ s, but it
is readily seen that the scatter of sample values
around this expectation is enormous. Therefore
the relation ER ~ s has no practical relevance.

Robustness of the R/S ~ 505 law with respect
to short run statistical dependence. Now consider
random processes in which statistical dependence
is present but intuitively felt to have a short
range or, more accurately, to have a finite range.
Examples are Markov random processes, finite

autoregressive processes, and processes of finite
moving averages of independent random vari-
ables. In such cases the value of lim,.. s7°-%
&[R(t, 5)/S(t, s)] is always positive and finite
though much affected by details of the process.
To eliminate this influence, one may consider
the reduced random variable [R(t, 5)/S(t, )1/
&[R(t, s/8(t, s)]. It can be shown that the lim
for s— o of that reduced variable is unaffected
by the details of short run dependence.

Thus if it were legitimate to look at things
from an asymptotic viewpoint, one could eall
the R/S ~ s> law robust with respect to the
introduction of short run statistical dependence.

From a finite nonasymptotic viewpoint, how-
ever, things are always more complex, as we
stressed earlier in this paper and in our pre-
ceding works.

R/S ESTIMATION
Abstract of this section. The behavior of
R(t, 5)/S(t, s) as s — oo can serve to define
the concept of R/S intensity of dependence,
which is a form of intensity of noneyelic long
run statistical dependence. For that, one must
divide the class of processes with long run
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Fig. 17. Pox diagram of R(¢, s)/8(t, s) for 9000 values of a locally (Giaussian noise, including
and continuing the sample of Figure 16.

dependence more finely so that each subclass
contains processes for which noncyelic long run
dependence can be said to have the same in-
tensity. With this finer subdivision we shall be
able to proceed from the already discussed prob-
lem of testing for long run dependence to the
problem of estimating the E/S intensity of
a record precisely.

Definitions. We shall say that a random
process satisfies the R/S ~ s¥ law in the mean
if lim,w 577 E[R(Z, 5)/S(t, )] is defined and is
positive and finite. We shall see that such proc-
esses exist for every IT between 0 and 1. Following
a common mathematical terminology, it is
useful to say that all processes satisfying the
R/S ~ s¥ law in the mean with identical H

form a class of equivalence. The special class
H = 0.5 corresponds to the absence of R/S
dependence. If a process falls within the class
H # 0.5, then H — 0.5 may be said to measure
the R/S intensity of interdependence. Positive
intensity expresses persistence. Negative Ine)
tensity expresses a tendency of the values
of X(t) to compensate for each other to prevent,
X#(t) from blowing up too fast. Perfect com-
pensation oceurs in the pure sine wave, for!
which we saw that H = 0.

Remark. We could also have exhibited proc-:
esses that do not satisfy in the mean any s®
law with 0 < H < 1. Such processes Wheul
taken as a body constitute an additional class of
equivalence, namely, a remainder class of proc-




Rescaled Range
SINE WAVE,WAVELENGTH 100
100—
S
< NSHoR R
@ e e
e @ RN e oD
i
@
= MOMENTS OF DATA
0 MI = 0.000
4 M2 = 1.000
' M3 = 0.005
M4 = 1500
10 | | | | | | | |
50 100 200 300 400 600 700

TIME

Fig. 18. Pox diagram of log [R(¢, s)/5(L, s)] versus log s for a pure sine wave with L =
100. First examine the values of time of the form s = kL that correspond to subharmonics
of the sine wave. There R (¢, 5)/S(l, s) is independent of ¢ and of k, as can be seen from the
theory. Big lobes are, however, visible for other values of s. Had the values of R(t, s)/8(¢t, s)
been computed for s in a grid that eventually merges with the grid of the subharmonics of the
pure sine, R(¢, s)/8(t, s) would rapidly attain its asymptotic limit. However, if the grid is
selected independently of the value of I, it is more likely to fall within the lobes. This could
vield a pox diagram of log [R (¢, s)/S(¢, $)1 versus log s having a positively sloped trend line.
Thus a small sample of a pure sine wave could be R/S estimated to have a small but positive
value of H. This conclusion would he incorrect.

This behavior of R/S is reflected in the remaining R/S pox diagrams and teaches important
lessons. When cyclic effects are suspected but it is either undesirable or impossible to process
data to eliminate cycles, one should compute R(t, s)/8(¢, s) or its average for as many values
of s as one can manage. We have shown previously [Mandelbrot and Wallis [19696]1 that,
contrary to what happens in spectral analysis, it is quite unnecessary to smooth out the
behavior of R(t, s)/S(t, s) by averaging its values over neighboring values of s. We now
see, in addition, that such smoothing would alse mix the cyclic effects with noneyelic long
run dependence to produce an apparent value of H devoid of significance.
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' esses to which no R/S intensity can be ascribed.
' But as of today, processes in this remainder
class lack praetical application.
. Transformations with respect to which the
' R/S intensity of dependence is invariant. We
- must first return briefly to R/S testing, namely
to the robustness of the s*° law, because it will
' be useful to restate such robustness in an
| alternative fashion. It may be observed that
’every random process of independent non-
| Gaussian values X (%) can be written as a non-
| linear function of a process of independent
| Gaussian values G(t). If for example X(t) is
log normal, one simply has X(tf) = ¢ exp

[b6G(t)] where ¢ and b are arbitrary constants.
The robustness of the mean variance s law dis-
cussed in the section on R/S testing can thus
be rephrased by saying that this law is invariant
with respect to nonlinear transformation of the
white Gaussian noise. When discussing R/S
testing, we also saw that the class of processes
that exhibit no RB/S dependence is left invariant
by transformations that introduce short-term
dependence.

We shall now address ourselves to the ques-
tion of whether the equivalence classes with
positive or negative R/S dependence are also
left invariant by such transformations. It will be
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seen that fewer such transformations are ad-
missible, so that the robustness under trans-
formation is less when long run dependence is
either positive or negative than when it is
Zer0.

To describe the transformations we con-
sidered, let us take as a point of departure the
fractional Gaussian mnoises of exponent H
[Mandelbrot and Van Ness, 1968] and two
approximations to fractional Gaussian noises
[Mandelbrot and Wallis, 1969b]. Our Type 2
approximation is the grosser and less important
of the two, but it is easier to define. It is given
by the two parameter moving average

(H — 0.5) _Zij“ (t — "
G(u) + QIJG(t)

Fy(t|H, M)

Il

M
(H—0.5 2 v '

u=1

-Gt — u) + QuG(Y

In this definition G(u) is a sequence of inde-
pendent Gauss random variables of zero mean
and unit variance. The constant Qs depends
upon H, as follows:

Qu

0 4t 0.5 < H.<1, and

Il

0.5 —H) 2« if0<H<O0.5

u=]

Qn

The final M parameter called the memory of
the process is some very large quantity.
Originally [Mandelbrot, 1965] M was set to
M = oo, but in Mandelbrot and Wallis [1969b]
M was varied from 1 to 20,000.

The definitions of discrete fractional Gaussian
noise itself, as well as of Type 1 approximation
to it, are more cumbersome and they need not
be repeated. It will suffice to recall that every
variant considered in Mandelbrot and Wallis
[1969h] is a linear function of independent
Gaussian variables G'(u). Indeed, according to
the definition in Mandelbrot [1965], fractional
Gaussian noises are moving averages of the
form fK(t — u)G(u), wherein the kernel K (u)
behaves for large values of w proportionately
to u#F % The appearance of a typical fractional
(faussian noise is illustrated in Figure 7, and
the corresponding R/S graph is plotted in
Figure 8.

MANDELBROT AND WALLIS

The words linear and Gaussian are crucial in
answering the questions of whether, after various
transformations have been applied to a frae-
tional Gaussian noise of exponent H, the B/S ~
s law continues to hold. We considered in detail
two kinds of transformations:

(A) Replacement of the input variables G'(u) '-

by extremely non-Gaussian variables, that is,
nonlinear transformation of the input variables
before they are combined linearly. We found
that such transformations leave our classes of
equivalence invariant (Figures 9, 10, and 11).
(B) Nonlinear transformation of intermediate
variables obtained as linear forms of the input
variables. We found that nonlinearity must be
moderate if a class of equivalence is to stay
invariant. For example, start from the function
Fy(t|H, =), whose R/S intensity of dependence
is H. In the range of values of 2 between —8
and 8, the nonlinearity of the function (10 -+
X)* is sufficiently moderate for the R/S in-
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Fig. 19. The pox diagram of log R(¢, s)/S(t, s)
versus log s for the sum of a pure sine wave and
of a white noise of comparable amplitudes. The
behavior of this function is a hybrid to which the
behaviors of each of the functions plotted on
Figures 2 and 18 contribute very clearly. Had the
sine amplitude been stronger, the asymptotic of
slope 05 characteristic of the noise component
would have failed to prevail for the lags plotted on
this figure. Had the sine amplitude been smaller,
the wiggles and lobes characteristic of the pure
sine component would have been less visible.
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Fig. 20. The first 1000 values from a 9000 value sample of the sums of a [ractional noise
and a moderately strong sine wave.

tensity of [10 + F.(t|H, «)]* to remain equal
to H. But the function exp(X) is so nonlinear
that the R/S intensity of exp [F.(t|H, )] is
below H (Figures 12 and 13).

It will be interesting to combine the trans-
formations (A) and (B) and to consider other
transformations.

ADDITIONAL COMMENTS ON CYCLIC COMPONENTS

The effect of one eyclic component has al-
ready been studied under the assumption that
H = 0.5 and that s is large. If more than one
pure sine wave is added and H is made = 0.5,
the asymptotic R/S intensity of dependence is
nunchanged, as might have been expected, but the
nonasymptotic effects are not so obvious. The
following unsystematic comments are meant as
elaboration of what has been said earlier.

First examine in detail the graph of the
R(t, s)/S(t, s) function for the pure sine A
sin (2 = t/L + ¢) (Figure 18). The subhar-
monies of L, that is, the values of s multiple of
L, stand out in two ways. First, when s is a
subharmonic of L, the sample values of
R(t. s)/S(t, s) have no scatter, that is, are in-
dependent of ¢. Second, between those subhar-
monics, one finds lobes of decreasing amphtude
with the seatter greatest halfway between sub-
harmonies.

Next consider the function
X(t) = A sin 2wt/L + ¢) + G(t)

- where G(f)’s are independent Gaussian with zero
~ mean and unit variance and L is large in com-
: parison with the duration of the transient range

~ before R/S ~ s'¢ takes hold (Figure 19). When

the lag s lies between the duration of the transient
and T, the sine wave A sin (2w{/L) is practically
a constant. Adding this constant to G(t) leaves
e
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M2=1.00
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Fig. 21. Pox diagram of log R(t, s)/S(t, s)
versus log s for a sample of 9000 values of the
sum of fractional noise and a sine wave. For high
values of H, such as H = 09, the presence of a
comparatively strong sine component leaves the
5% law in the mean valid. Thus it does not much
affect R/S estimation. When the value of H is
smaller, the effect of the cyecle is more visible.
Note also that the scatter of sample points around
their trend line narrows near s = 200. This means
that the convergence towards the $” law in dis-
tribution is postponed to higher values of s when
a sine wave is added. This tightening of the graph
is even clearer on Figures 23 and 24 and will be
discussed in the legend of Figure 24,
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Fig. 22. The first 1000 values from a 9000 value sample of the sum of a fractional noise and
a sine wave of very large relative amplitude, comparable to that of meteorologic records.

R(t, ) and S(t, s) practically unaffected and
leaves s—0-5 &[R(t, 5)/S(i, s)] near Feller's asymp-
totic value 1.25. Eventually s—0-5 E[R(, 8)/8(¢, )]
attains its asymptotic value, derived earlier
in the paper, of 1.25 [I + A/2]-5. But the
transition from the initial value 1.25 to the
final value 1.25 [1 + A/2]-°% is not smooth
and progressive; it proceeds in a series of wiggles
that reflect the lobes of the function R(t, s)/S(, 8)
of a pure sine wave. For s near L and also (but
less markedly) for s multiple of L the scatter
of R(t, 5)/S(t, s) is greatly reduced.

Figures 20 to 24 refer to sums of a fractional
Gaussian noise and various pure sines. The
legends are self-explanatory.

MATHEMATICAL DIGRESSION CONCERNING
ASYMPTOTIC SELF-SIMILARITY

In pursuing the study of B/S analysis it be-
comes important to study the distribution of
the ratio R(t, s)/8(t, s). In the present paper
we have studied only its mean and variance.
Simplest and most interesting are the processes
such that as § — oo the distribution of the ex-
pression s R/S tends towards a nontrivial
limit, that is, tends towards the distribution of
a random variable that does not reduce to either
zero or infinity. Consider for example the in-
dependent Gaussian process. An argument due
to Feller [1951] can be readily extended to
show that in this case s° R/S has a nontrivial
limit. This process and all others for which
s# R/S has a nontrivial limit can be said to
satisfy the B/S ~s" law in distribution or to be
asymptotically R/S self-similar. This last con-
cept generalizes ordinary self-similarity, which
is discussed in Mandelbrot [1967], Mandelbrot

1000

and VanNess [1968], and Mandelbrot and 3
Wallis [1969¢; 1969d]. |

MATHEMATICAL DIGRESSION CONCERNING
THE SCOPE OF R/S ANALYSIS

As we noted when discussing the eclassical
covariance analysis, &[X()X(t + s)] is inde-
pendent of ¢ if X(f) is a stationary random
progess. But the converse is not true: the property
that EX()X(t + s)] is independent of ¢ does
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Fig. 23. Pox diagram of log [R(t, s)/8(¢, s)]
for a sample of 9000 values that includes and con-
tinues the function of Figure 22. The effect of the
sine wave is very strong. The eritical bend starting
at s — 100 is shown in detail on Figure 24.
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Fig, 24. Greatly enlarged detail of Figure 23.
The single bend observed there is seen to divide
into a richer structure of narrowings at the values
of § corresponding to the subharmonics of the sine
wave, with broad lobes between these narrow
points. Both features reflect the properties noted
on Figure 18 relative to the pure sine wave. As
s —> oo, the lobes die out and the contribution of
the noise again becomes determinant. However,
unless the total available sample size is much
larger than the wave length of the pure sine, the
apparent R /S intensity is greatly decreased by the
addition of a strong sine wave.

not require that X(t) be stationary. A non-
stationary process such that E[X()X({ + )]
is independent of { will nevertheless appear
gtationary as long as examination is limited
to the viewpoint of covariance analysis. Therefore
it has been found useful to give a name to such
processes: they have been called covariance-
stationary (or weakly stationary or second
order stationary) processes.

Similarly nonstationary random processes
may exist for which &[R(¢, s)/S(¢, §)] is inde-
pendent of . When such processes are R/S
analyzed but not studied from other viewpoints,
they will appear stationary; it might therefore
be useful to call them R/S stationary in the
mean. Any such process may moreover satisly
the R/S ~ s¥ law in the mean, strict stationarity
of X(t) being unnecessary. If not only the expec-
tation but the whole distribution of the random
variable R(f, s)/S(¢, s) is independent of ¢, X (1)
would be called strict E/S stationary. Such
processes may well satisfy the B/S s7 law in
distribution, strict stationarity of X(¢) being
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again unnecessary. Thus R/S analysis may
also apply to certain processes that are not
stationary.

NOTATIONS
A, (maximum) amplitude of a sine
wave;
o, The parameter of a hyperbolic dis-
tribution (also called Paretian);
8, the basic parameter of a locally

Gaussian process;

C(s), the covariance function of a sta-
tionary random function;

¥ the parameter of a Gamma dis-
tribution;

I'(y), the Eulerian Gamma function of
the parameter v;

&, expectation, also called expected
value, population mean or first
moment;

Fyo(t | H, M), Type 2 approximation of fractional

Gaussian noise;
&, the phase of a sine wave;

Gu), sequence of independent Gaussian
random variables;
I the principal parameter of a

fractional noise. Also, the asymp-
totic slope of the plot of log &
(R/8) versus log s if such plot is
asymptotically straight;

k wave number in Fourier analysis;

K(u), a kernel function serving to com-
pute a moving average;

I wavelength (period) of a sine wave;

M, memory parameter of an approx-
imate fractional noise, that is,
point at which the sum defining
such a noise is truncated;

N, the number of core functions added
to construct a locally Gaussian
function;

P probability;

Qu, a constant;

R(i, s), sample sequential range for lag s;

s, time lag;

S2(t, s), the variance of s values of X (¢ 4 1)
<+« X(¢ + 8) around their sample
average;

e, o't the scale parameters of the positive
and negative tails of a hyperbolic
distribution;

t time;

12X total available sample size;

u, ‘dummy’ variable, that is, the
index in a summation or inte-
gration;

X(@), a discrete time fractional noise;

X*(), Zu=1t X(u);

Y ), the random process X (t) X (¢ -+ s);

W), a core function serving to define
a locally Gaussian random function;

Z(t), a bilateral hyperbolic random func-
tion; ,

Qs (), a locally Gaussian random function.
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