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Summary. A discussion of a modified fractional Brownian motion, which appeared
in this journal, is largely incorrect.

The fractional-Brownian-motion process (fBm) is the Weyl’s fractional integro-dif-
ferential of the ordinary Brownian-motion process of Wiener. It is originally defined
by ManperLeror and Van NEss (1) as
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where B(t) is Wiener’s Brownian process. The index W, which stands for Weyl, has
been added here to avoid ambiguity in the sequel. Together with a bilateral version,
Byy(t) has proven very wvaluable (2).

For reasons he does not disclose, MACCONE (3) chooses to substitute the Riemann-
Liouville fractional integro-differential, thus forming the function
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Again, the index L, for Liouville, iz added here to avoid ambiguity (MACCONE preserves
my original notation, while changing its meaning). The function Byg(f) had been written
down in passing by L#vy, who did not explore it.

The central claim in ref. (3) resides in its eq. (4.1): in the present notation
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This assertion is incorrect. Indeed, denote by (4.1-) the nonnumbered displayed
formula which preceeds (4.1) in ref. (3), and by (4.1-—) the displayed formula which
preceeds (4.1-). The claim that (4.1-) follows from (4.1--) involves an error of caleulus.

In any event, the expression (4.1) could not possibly be valid, because a Gaussian
random function X(f) that satisfies (X () X(£)> = G[min (4, 1,)] takes the form X(t) =
= B[+/@(1)] : its increments are independent but highly nonstationary. To the con-
trary, fractional integration is an integral operation that injects infinite dependence,
but the increments of Byy(f) are stationary, and those of Byy(f) become asymptotically
stationary as {— oo, because, for large t, Byy(t) ~ Byylt).

The correlation being inapplicable, the eigenfunction expansions of §8 and §10
are also inapplicable to Byy(l). If correct (which I did not check), they apply to the
function B(tH).

Furthermore, the restriction of the exponent H to satisfy 0 < H < 1 (which does
apply to Byy(f), as shown in ref. (3)) is not applicable to Byy(t). Any value H > 0 is
suitable.

The meaning of the « Papoulis spectrum » described in sect. 6 escapes me entirely,
but the result to which it leads happens to coincide with the well-defined speetrum

that applies to Byg(f). Due to this spectrum’s forms, Biyg(f) is a « 1/f noise ».
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