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INTRODUCTION

Fractional Gaussian noises (fGn) are a farmily of simple but peculiar random
processes which, following Mandelbrot (1965), many authors have used to
their satisfaction as a tool of hydrologic modeling. They are statistically sta-
tionary, but an unfortunate error in a well-known textbook has thrown
doubt on this fact. Also, the evaluation of the moments of fGn involves a few
technicalities which I am sorry I did not touch on in earlier papers on the
subject. These technicalities have been a source of concern to some students.
Both points have recently been brought to my attention by Mr. Dong H. Kim,
and I think my clarifying remarks to him may be of wider usefulness. The
fGn comes in many variants; the simplest — to be adopted here — is an infinite
moving average of the form:

G, ()= 25K, (5)G(t-)
s=0

where the G are a sequence of independent Gaussian random variables of

zero expectation and unit variance; and where K is a prescribed weighting
kernel such that, fors >> 1, K (s) ~ s" 7.

The parameter H satisfies 0.5 < H <1, from which it follows that 2 X (8) = oo,
The value of H is to be fitted to the data — preferably through the R/S statis-
tic. It is the paramneter occurring in Hurst’s phenomenon.

STATIONARITY
Moving averages of the form X(t) = £ K(s)G(t—s) are mentioned in Box and

Jenkins (1970), where it is claimed repeatedly that, according to Grenander
and Rosenblatt (1957), X(¢) is stationary if, and only if:

K(s) <o
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and the generating function, defined as the sum of the Taylor series:

> K(s)z°
=0

is an analytic function for |z| < 1. If this claim had been correct, fGn would
have failed to be stationary. In fact, on p. 70 of Grenander and Rosenblatt,
it is clearly stated that said Taylor series is ““analytic for |z| < 1 since
Z|K(s)|* < e”’. Therefore, the claim in Box and Jenkins is merely the result
of an incorrect transcription, and the stationarity of £Gn raises no problem
whatsoever.

This issue deserves amplification because the condition:

>3 K(s) < oo

s=0

does indeed occur in the theory of moving average processes, albeit in a dif-
ferent role. It expresses that the spectral density S(f) of said process is bound-
ed, and in particular that it is finite for f = 0. Processes for which such is the
case do not have much power at low frequencies. For fGn, on the contrary,
the fact that Z K(s) = « implies S(0O) = o=, which expresses the presence of
substantial power near f = 0. At the same time, it follows from Z K?(s) < =
that the total power of a discrete time fGn is finite, because it is governed by
the integrated spectral density , ['S(f)df. Finally, nonstationary processes are
typically characterized either by an infinite power at exactly f =0, or (in the
case of moving averages) by the condition that £ K*(s) = 0 and therefore

o J'S(f)df = «. Before the publication of Mandelbrot (1965), most model ma-
kers thought they were limited to a choice between the first and the third

of the above possibilities, namely between S(0) < e and § [1S(f)df = . I feel
that — quite apart from the detail of its definition — the most basic contribu-
tion of fGn has been to point out that there also exist processes in which low-
frequency components are sufficiently rich to account for the observed strong
long-run effects, and at the same time sufficiently weak for the process to
remain perfectly stationary. It is most regrettable, therefore, that transcrip-
tion errors in Box and Jenkins should make anyone doubt the validity of this
new intermediate possibility, often the most suitable one.

THE EXPECTATION
A naive evaluation of EX(t) yields:

EG,(t)=E Y K, (s)G(t—s) ={ % KH(S)} EG(t—s) = =.0
s=0 s=0
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The fact that this last expression is indeterminate seems to suggest that EG,, ()
is somehow undefined. In fact, a less naive evaluation of EG,, (t) shows there
is no problem whatsoever. Indeed, the sequence of approximating Gaussian
random variables:

n
G, (tn) = 7, K, (8)G(t—s)

s=0
converges to a limit which is, in agreement with intuition, a Gaussian random
variable of zero mean and expectation £K . (5)? < oo,

Proof

The continuity theorem 2 of Feller (1971, p. 508) applies (trivially!) to the
sequence:

n
G, (t;n) [ > KH2(s)j| —
=0

Indeed, using Feller’s notation, the sequence of the corresponding characte-
ristic functions ¢_ remain for all n identical to the characteristic function
of the reduced Gaussian. Hence, this sequence has a “limit”, which — like
every term in the sequence — is the reduced Gaussian.
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