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Being one of the oldest branches of operations research, actuarial science
has accumulated a substantial store of knowledge about the risks asso-
ciated with living. The present paper will discuss one such question.
Although it is relative to a specific problem of fire casualty, it illustrates
more generally why the Paretian distribution of incomes and fortunes
should constitute ‘‘a source of anxiety for the risk theory of insurance.”
Very similar mechanisms apply in many other problems.

N A somewhat simplified form, the following statement summarizes an em-
pirical law established by Lars-G. BENCKERT AND INGVAR STERNBERG:

The damage to a house due to fire reaches different amounts with probabilities
that obey a frequency function deduced as follows from Pareto’s hyperbolic law:
If the damage is greater than a minimum threshold = =$20 and smaller than the
maximum destroyable amount M of the building, the probability that the damage
be equal to  has the density s(z) —ax™*'m*  The probability that the maximum
destroyable amount 3/ be actually destroyed is equal to (M /m)™% the integral

from M to infinity of the law of Pareto applicable to damages smaller than /.

This law applies to all classes of Swedish houses outside of Stockholn.
The values of « were found to oscillate between 0.45 and 0.56; it seems fair
therefore to begin by investigating the consequences of an assumed value
a=14

A MODEL OF FIRE DAMAGE AMOUNT

TaE Law of Pareto of exponent 0.5 plays classically a central role as the
distribution of the returns to equilibrium in the game of tossing a fair coin.
This theory is developed in most textbooks of probability (such as reference
3), and it can be translated into insurance terms as follows.

Suppose that the intensity of a fire is characterized by a single number,
designated by U, which can only take integral values; there is no fire when
U =0; a fire starts when U becomes equal to 1, and it will end either when
U becomes equal to 0 again, or when all that can possibly burn has already
burned out.

Suppose now that, at any instant of time, there is a probability p=14

that the fire encounter new material so that its intensity increases by 1,
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and the probability ¢=14 that the absence of new materials or the action
of fire-fighters decrease the intensity by 1. In the preceding statement,
‘time’ is to be measured by the extent of damage. If there is no finite
maximum extent of damage, and no lower bound to recorded damages,
the duration of a fire will be an even number given by a classical result
concerning the return to equilibrium in cointossing:

P o YN
Pl(dmat]onofﬁre—x)—E(x/z)( 1),

Except for the first few values of x, this expression is proportional z **,

Hence, if one assumes that very small damages, smaller than m, are not
even properly recorded, the duration of a fire (i.e., the extent of damage)
will be given by the law of Pareto with exponent 14:

Pr(duration of fire>z>m)= (z/m)""".

Suppose finally that one takes account of the fact that the fire must
end if and when all has burnt out. One then obtains precisely the interpre-
tation of the Benckert-Sternberg findings that we gave above.

RELATIONS INVOLVING THE SIZE OF THE PROPERTY AND THE
EXPECTED AMOUNT OF THE DAMAGE DUE TO FIRE

It 18 easy to compute the expected value of the random variable considered
in the opening section.

M
Expected amount of damage= f (1) e - M (M fm)

=24/Mm—m.

This mean value tends to infinity with 4.1

On the other hand, according to von SaviTscs AND G. BENKTANDER,
the expected number of fires per house in the course of a year iz a linear
function of M. If this is indeed so, it would imply that, for large values
of M, the rate of isnurance should be proportional to /M.

Note also that, when the distribution of property sizes M is known, one
has:

[2]

Pr(amount of dama.ge>a:) =Pr(M>z)(z/m)™"
If moreover the von Savitsch inference is correct, one has
d Pr{amount of damage per year>x) = CedPr(amount of damage>x)
= Cxd[Pr(M >z)(z/m)~"".

t Random variables with infinite population moments are often considered to
be mathematical devices with no practical application. Such is certainly not the
case; see reference 4.
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Let the distribution of M be itself Paretian with the exponent o, as is
the case of all kinds of liability amounts.”™ The distribution of damage in a
single fire will then be Paretian with exponent «*+14, and the distribu-
tion of damage per year will be Paretian with exponent o®—14. This
demonstrates that mathematical manipulations based on Pareto’s law
are especially convenient,

GENERALIZATION

Tur raxpom walk with p=g¢=14 represents a kind of equilibrium state
between the fire and the fire-fighters: if indeed the quantity of combustible
property were unbounded, a fire following the rules given above will surely
die out, although its expected duration would be infinite. On the contrary,
if p> g, the fire-fighting efforts would be inadequate, and there would be
a nonvanishing probability that the fire continue forever.

If p<gq, the probability of running forever would again be zero and the
expected duration of the fire would be finite. The law giving the duration
of the fire would then take the form

d Pr(duration of firezz>m)~c"exp(—cz )z~ dz,

where ¢ and ¢ are two constants depending upon m, p, and ¢. If z is
actually bounded, and if ¢g—p (and hence ¢) is small, the above formula
will be indistinguishable in practice from a law of Pareto with an exponent
slightly greater than 14; this is perhaps an explanation of the more precise
experimental results of Benckert and Sternberg.

We shall not stop to rephrase the generalization of the random walk,
provided by any other of the many classical models of diffusion. Nor shall
we go into the details of a random walk model in which there is the pos-
sibility that the intensity of the fire remain unchanged from one instant
of time to the next. This would not add anything beyond a change in
time scale.

ANOTHER APPLICATION

The results of Benckert and Sternberg strongly resemble those of Lewis
F. Richardson,”™ ™ and the model that has been sketched above is easy to
translate in the terms of Richardson’s problem. It would be fascinating
to ponder how relevant that translation may be.
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