Reprinted from

JOURNAL OF MATHEMATICAL PHYSICS

Printed in US.A.

VOLUME 35, NUMBER 2 FEBRUARY 1964

On the Derivation of Statistical Thermodynamics from
Purely Phenomenological Principles

Benorr MANDELBROT

Harvard University, Cambridge, Massachusetts and
I.B.M. Research Center, Yorkiown Heights, New York

Szilard pointed out in 1925 that it is possible to base the foundations of statistical thermody-
namics upon ‘“phenomenological’” principles, analogous to those of the non-statistical “‘classical”

theory. This approach is discussed and developed.

1. INTRODUCTION

HERE is a widespread belief among physicists
that statistical thermodynamies cannot be
derived from “phenomenological” principles relative
to macroscopic experiments, however idealized.
Actually, in an admirable paper, Leo Szilard" has
shown the two aspects to be quite compatible.
Unfortunately, the paper is difficult, complicated
and even confusing, and is unduly pessimistic
about its own scope. But its general idea should
be revived and further developed. Moreover, while
Szilard’s mathematical and conceptual framework
is quite isolated within physics, we have earlier
shown® that it leads itself readily to the introduetion
of certain powerful methods of probability theory
and mathematical statistics as yet unexploited in
! L. Szilard, Z. Physik 32, 753 (1925). Do not confuse this

reference with Z. Physik, 53, 840 (1929).
2 B. Mandelbrot, Ann. Math. Stat. 33, 1021 (1962). For

an early announcement of this result, see Compt. Rend. 243,
1835 (1956).

thermodynamics. (Refs. I and 2 have been utilized
in a recent treatment of the statistical thermo-
dynamics of equilibrium®). The present paper will
summarize® and will discuss several problems
related to the place within phenomenological
statistical thermodynamics of the second principle
and of several alternative concepts of entropy.

It will be noted that, since a part of the laws
of statistical mechanics can be obtained without
any mechanical consideration, the term “statistical
thermodynamics” will be used to designate the
results of the statistical theory, without implying
anything about the method used to derive them,

We insist, with the classical thermodynamicists,
on a strict separation between the results linked
to the zeroth and first principles, and those also
requiring the second. For example, our zeroth
principle differs sufficiently from that of Szilard
to make the second principle unnecessary in order

3 L. Tisza and P, M. Quay, Ann. Physics 25, 48 (1963).
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to derive Gibbs’ canonical distribution, and the
concept of qualitative temperature.

Being parallel to statistical mechanics and
thermodynamics, our method stresses more than
is usual the parallelism existing between the two
classical approaches. As a matter of fact, we shall
stress the following: from the viewpoint of statistical
mechanies, the physical statements upon which it is
based may be considered as being “principles”,
and it happens that they can be associated one-to-one
with the classical “principles” of phenomenological
thermodynamics.

The random variable “energy” is designated by
U and Gibbs’ canonical distribution—as applied
to isolated states—is written as

exp (—pBu)/Z(B).

However, from our purely phenomenological view-
point, there is no sense in considering the states
themselves; we rather have to consider surfaces
of given energy, or sets made up of a number
of such surfaces. As a result, we need a less precise
form of the canonical law. Let us write F(u | 8)
for the probability that the system be found in a
state of cnergy equal to w or smaller. Then, des-
ignating by G(v) the equivalent of the number
of states of energy equal to u or smaller, we write
Gibbs’ distribution as follows:

dF(u | B) = d[Pr (U < w)] = dG(w) exp (—Bu)/Z(p).

This law plays the central role in our considerations.
It is more than a convenient auxiliary mathematical
device.

We shall need to repeat ecertain well-known
arguments, in order to insert them within our
development; we hope that these repetitions will not
be too bothersome.

2. DERIVATION OF GIBBS’ CANONICAL DISTRIBU-
TION FROM “ZEROTH” AND “FIRST” PRINCIPLES:
TERMINOLOGICAL COMMENTS UPON THE
STATISTICAL-MECHANICAL APPROACH

It is well known that Gibbs’ law can be obtained,
as an asymptotic approximation, from the distribu-
tion of a small part of a large physical system.
The latter distribution is itself deduced from the
tollowing assumptions:

(0) A system known to have an energy U contained
between « and w + du can be found with equal
probabilities in either of dG(u) “states”, where G'(u)
is a nondecreasing function of u.

(1a) Energy is the unique invariant of certain
physical transformations, those resulting from
“thermal interaction”.
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(1b) When thermal interactions are weak, the
energy is an additive expression.

(1a) and (1b) have an obvious connection with
the “first principle of thermodynamies” and (0)
serves to first introduce the concept of temperature,
and can therefore be associated with the ‘“zeroth
principle”. That is, even if one succeds in deriving
this principle from mechanics by some “ergodic”
argument, such a derivation would be foreign to
thermodynamics; from the viewpoint of that
science, (0), (1a) and (1b) should rather be con-
sidered as “principles”. The only purpose of the
present scetion is to recommend such a nomenclature.

3. DERIVATION OF GIBBS’ CANONICAL DISTRIBU-
TION FROM A “ZERQOTH” AND A “FIRST”
PRINCIPLE: A PURELY PHENOMENOLOGICAL
APPROACH

Let us now summarize the results of our previous
paper.” Its purpose is to show that, the zeroth
and first principles can be rephrased so as to remain
fully ‘“phenomenological”’, while permitting a
derivation of the canonical distribution, without any
mechanical interpretation of G(u).

The concept of a representative space, or “‘A-space”.

By definition, the set of all possible outcomes
of all the macroscopic measurements performed
upon a system will constitute an “A-space” for
that system. It will depend upon the physical
structures of both the system and its environment
and will not require or provide any microscopic
mechanical substratum.

A stochastic concept of thermal equilibrium.

We assume that, when a system is in thermal
equilibrium with its environment, the position of
the corresponding “A-point” is random.

Conditioning.

A physical conditioning is any set of operations,
which can be realized by purely macroscopic
physical operations, and which impose some math-
ematical relation upon the A-point of a physical
system.

Iror example, let the system S be made up of M
parts S,, and let the combinations of the energies
U, of these parts be the only macroscopically
measurable characteristics of S. If 8 is in contact
with an infinite environment, its A-point, of coor-
dinates U,, is any point of the positive hyper-
quadrant of M -dimensional Euclidean space. If
the environment is finite and of total energy w,
the A-space is the domain in which all U,, = 0
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and > U, < u. If §is “isolated”, the A-space is
the domain in which all U,, > 0 and > U, = u.

The physical content of our “zeroth principle”.
phy

When appropriate mathematical restrictions are
imposed upon the A-space and upon conditioning
relations, the following two paragraphs will express
a physical principle that can be referred to as being
the “zeroth”, although its relation with the state-
ment that usually goes under this name may only
transpire gradually.

The nature of “thermal equilibrium” is such that
when a system is in equilibrium under a condition
R’, more stringent than an earlier condition R”,
the distribution of the A-point no longer depends
upon the parameters that have characterized R".

Moreover, the equilibrium distribution under the
physical condition R’ may be obtained as follows:
begin by the distribution relative to any less-strict
condition R/, consider R’ as being a mathematical
relation and apply the rules of probability theory
relative to conditioning.

We may consider this statement of the zeroth
principle as referring to a kind of equilibrium
between a system and its parts.

The first principle.

We shall express the first principle by the unicity
portion of the statement made in Sec. 2. The
additivity portion of that statement will rather be
replaced by the following statement.

The auxiliary principle of the existence of heat
TEServoirs.

There exists a family of physical systems, to be
called the “heat-reservoirs”, which can simultane-
ously serve as environments for several distinet
systems S,, and are such that the corresponding
phase points are statistically independent random
variables.

Dertvation of the canonieal law.

It was shown in Ref. 2 that the canonical law
can be derived from the combination of the zeroth,
first, and auxiliary principle, with the help of certain
known theorems.

Reference to statistical sufficiency.

The preceding statements are somewhat isolated
in the context of physics, but they happen to be
intimately related to a branch of mathematical
statistics, called the theory of sufficiency. For
technical details, we must refer to the textbooks
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of statistics,* but we may say that a probability
distribution is said to possess a sufficient statistic
if the following is true: Suppose that one wants to
“estimate’ 8 from a sample of M values u,, of U;
this means that, given a finite sample, one wants
to “‘guess” reasonably the value of the parameter
of an infinite population from which the sample
has been drawn. It is obvious that such guessing
cannot be performed without some ambiguity and
that even the best-trained people may disagree
about the best method of estimation. Therefore,
if one does not want to prejudice the statistician’s
procedure, it is in general necessary to furnish him
with the complete collection of values of u,,. This is
of eourse unwieldy, so that data collectors are very
pleased when—irrespectively of their statistician’s
preferences—the data can be summarized exhaus-
tively and without loss by giving a small number
of functions R;(u,, --- uy). For example, if the
parent population is Gaussian, the set of u, can
with no loss be summarized by Y u,, and Y (u,)"
Such a set of numbers R; is what is called a “suffi-
cient statistic”.

Clearly, such a set of functions exists if, and
only if, the probability distribution of the random
variables U, given the R;, is independent of the
value of the parameter 8. This has a close counterpart
in physics; indeed, the joint distribution of the
energies of M systems, given their total energy,
is known to be independent of the temperature
of the heat reservoir with which the M systems
used to be in contact. The purpose of our previous
paper’ was to exploit this general idea more fully
and more rigorously, in particular in deriving the
canonical distribution.

4. DERIVATION OF THE CONCEPT OF ENTROPY
FROM A “SECOND PRINCIPLE”: THE
STATISTICAL-MECHANICAL APPROACH

This section purports to stress a conceptual
viewpoint that completes that of Sec. 2, and to
suggest the corresponding terminology. Onece the
canonical law has been derived, and the concept
of heat has been introduced, it is well known that
the path-integral of the expression “# 8 dQ” can
be written as:

SBEW)] — § {0/26) 108 265, ) i
D> U dF@ | 8, 7) (au/aV;,):I de} ,

¢« C. R. Rao, Advanced Statistical Methods in Biometric
Research, (John Wiley & Sons, Inc.,, New York, 1952). R. B.
Hoag and A. T. Craig, Introduction to Mathematical Statistics
(The Macmillan Company, New York, 1959).
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where V, of coordinates V,, is the vector of external
parameters of the system, and (du/dV,) is the
“adiabatic change” of the energy of a system
when the external parameter ¥V, is varied alone
(in See. 7, we shall return to this concept).

For this “¢ B d@” to be path-independent,
it is sufficient that the following be true:

() —8 [ aF@ |8, V) @u/aVy
= (2/aV) log (5, 7).

If this is indeed the case, one can write

fﬁ AQ = Ptinal stato — Pinitial states

where h is the entropy, defined as
h = BE(U) + log Z(B, V).

In turn, condition (*) is satisfied if G'(u) satisfies
the condition of “adiabatic invariance”. This
statement, seldom as much emphasized as in the
writings of Paul Ehrenfest,® can of course be proven
from mechanics. However, we think that—from
the viewpoint of thermodynamies—it should rather
be considered as being a basic “principle’”’, namely
the ‘“‘second principle of statistical mechanies”.
(It is in fact somewhat surprising that, in view
of the popularity of ‘“conservation principles,” the
present one should have been discussed so little.)
The simplest case is that of nondegenerately
quantized energy, where G(u) varies only for a
denumerable number of values u; of energy, and
where dG(u;) = 1 for all 7. Let us recall that
adiabatic invariance means that every energy level
is a function of ¥ over the same range of values
of ¥; no energy level is either created or annihilated
by a change of volume. More generally, the function
G(u) is defined only up to multiplication by an
arbitrary function of ¥V (which vanishes from the
distribution of «) ; this multiplier must be susceptible
of being chosen in such a fashion that, when %™ and
u~ perform a free adiabatic transformation, G(u™) —
G(u”) remains invariant.

The above classical result has an important, but
less well known, classical partial converse: Ehrenfest
(Ref. 5, p. 347) has indeed shown that, in order
that ¢ B d@ be path-independent and equal to Ah,
adiabatic invariance is not only sufficient but also
necessary.

6 P. Ehrenfest, Collected Scientific Papers (Interscience
Publishers, Inc., New York, 1959).
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5. DERIVATION OF THE CONCEPT OF ENTROPY—
AND OF ADIABATIC INVARIANCE—FROM THE
USUAL SECOND PRINCIPLE OF
THERMODYNAMICS

Of course, adiabatic invariance could also be
added to the zeroth and first principles, as stated in
Sec. 3. However, it would have little meaning
beecause G(u) has no mechanical interpretation
there. It is therefore fortunate that our zeroth
and first principles ean be continued by any of the
classical forms of the phenomenological second
principle.

For example, we can postulate directly that the
Pfaffian form d has an integrating multiplier B.
This quantity cannot be a function of the external
parameters, and can therefore only be a function
of the “qualitative temperature” 1/8 introduced
by Gibbs’ canonical law. [Or else, the existence of
the multiplier B can be deduced from Carathéodory’s
principle, as applied to the mean values of the
random variables in question: “in the neighborhood
of any mean state of a system (as defined by 8
and by V) there exist states that cannot be reached—
on the average—by any transformation in which
the initial and final state of the environment
are indentical.”]

Let us now show that adiabatic invariance is a
necessary consequence of the fact that the integrating
multiplier of df) is a function B(8); and, moreover,
that this integrating multiplier must be 8 itself.
This result will of course be stronger than Ehrenfest’s
classical statement referred to in See. 4, because
we shall not require a priori that 8 itself be the
integrating multiplier, and we shall not require
that the integral be equal to the variation of &,
as defined classically.

The smooth case.

First suppose that all the quantities of interest
are continuous and derivable as often as required.
Then, if the integrating multiplier is independent
of V, the following must hold for every couple
of parameters V' and V'':

i?i all —Bu
3 PN G'(u)e ™ du -

U~y —Bu

3V G (H)G du

anI -
f Q' (e ™ du

d

av’
f G (we ™ du

This in turn leads to the requirement that

du G g Uy —pu
an 6V” e du 3 aV{ G'e du
f G'e™ du f Qe du
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G’ —pu du 3G’ g
Jav7e &‘: v av ¢ W
j’G’e‘B" du fG’@“‘?“ du
O G du f ¢ du
(D
fG’egﬂ" du fG’ e

Every term of this identity is the canonical
average of some function f(u); if the systems are
very large, one can write:

f f)G'e™™ du

~ flE(U)] +
fG’e_ﬁ" du

3" [BE(U)ID

where D is the variance of U. Naturally, in order
that (1) be satisfied, it is necessary (and we shall
see that it is also sufficient) that it be satisfied
up to terms of second order, for every value of
E(U), i.e., of 8. This yields the requirement

_<9|:610gG’] 9 |:6u:|
dul ov" oV’
[543
~ du v’ aulov' ]’

so that the following ratio must be independent
of 8 and of the ¥:

(8/0u)[d log G'/aV]
(8/0w)[ou/o V]

= constant = C°.

This in turn requires the existence of a function
W°(V) such that

d log G’

o 6‘u
o %+ W)

The term in C° can be eliminated by a trivial
renormalization in which G’ is multiplied by
exp (—Cu) and the origin of @ is translated by C°.

The term in W°(V) amounts to the multiplication
by exp [ W°(V) dV] of both the numerator and
the denumerator of the canonical distribution.
Henece, this term vanishes,

To sum up, the second principle requires that—up
to trivial renormalization—the function G he
independent of ¥, which means that it is adiabat-
ically invariant. We know already that this condition
is also sufficient to prove the second law, and that
the integrating multiplier of dQ is in that case
equal to 8.

BENOIT MANDELBROT

6. PERFECT GASES

In order to measure the 8 derived in the preceding
sections, an instrument is needed. The usual proce-
dure is to use a perfect gas thermometer, which is
a physical system such that

u/aV = uf(V).

7. GENERALIZATION OF THE SECOND LAW TO
INDIVIDUAL CANONICAL SYSTEMS: THE
RANDOM FORM OF THE CONCEPTS
OF ENTROPY AND OF HEAT

Let us return to the situation at the end of Sec.3,
where the canonical law has been established from
either set of zeroth and first prineiples. The concept
of “heat”, as used in Seecs. 4 and 5, was assumed
to have been obtained by the usual method, which
averages everything very early over a canonieal
distribution.

As a result, both Secs. 4 and 5 involve the non-
random entropy

h = BE(U) + log Z(B).

However, one frequently wishes to
“entropy” by the random expression:

h = BU + log Z(B).

For example, h is necessary to give meaning to
“Boltzmann’s principle”, that

interpret

“entropy = —log (probability of a state).”

This principle is in turn necessary to generalize
the concept of entropy beyond its original context
relative to equilibrium (that is, to the canonical
law). Similarly, the methods based upon averaging
raise difficulties concerning heat. In the verbal
explanations of what is thermodynamics, one states
that “heat” is a noncontrollable and presumably
random portion of energy, while “work” is controll-
able and presumably nonrandom. However, by
defining ¢ AE(dQ) with the sign E, that is by
defining it for ensembles and not for systems,
one immediately cancels out this distinction.

The above remarks describe the motivation of
this section. We shall study the expression ¢ 8 dQ
for an individual system, without averaging from
the outset. “Heat” will remain a random quantity,
but ‘“work” will not; however, the averaging
involved in the concept of “work” will be based
on different grounds than is usual. The second
law will be shown to apply to the unaveraged entropy
and the Boltzmann’s principle will be fully meaning-
ful. Part of our discussion is closely related to
that of Refs. 1 and 6.

¢ L. Rosenfeld, Physica 27, 67 (1961).
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Let us consider a physical system for which
the path, that is, the sequence of its values of 8
and of the V,, is an alternation of ‘zigs” during
which 3 alone varies, and of “zags” during which
B8 remains invariant, and let us parametrize the
path by an index y, taking successive integral
values at the points where one passes from one
zig-zag to the next. The following graph summarizes
various definitions.

- u"ly)
wy+n[--~-—-~ -"----1!——”—

zig noy la— zag no.y

3

vip LY by } Ju

Viy
|
1

i
1

. :
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Variation of temperature at fixed volume.

During a ‘“zig”, let our system be successively
put in contact with a series of heat reservoirs,
of slowly varying 8, and let each contact be very
long. The energy exchanged during each contact
is of course a random variable and it will be in-
terpreted as “heat”. Clearly, the averaged “path-
integral” & BdE(Q) = & B dE(U) is trivially path-
independent. But the unaveraged ¢ 8 dU might
have depended upon intermediate random elements.
Our main purpose here will be to show that such
is not the case. For that, begin by dividing the
“zig” into steps corresponding to equal increments
of 8. Then

éﬁdU

> B@[U@) — Ul — da)]
U'pBy) — Uy — 1By — 1 — dx)
— > U@[BE) — B — 1],

the sum on the preceding line being carried over
all the values of x except the first and last one.
Let all the steps become infinitesimally small,
while the contact with each successive heat reservoir
remains sufficiently slow for the U(z) to remain
independent random variables. An casy application
of a form of the strong law of large numbers shows
that, with probability one,

56 8dU = U'y)B) — Uy — 1By — 1)

- $ BV |8 ds,

the averaging being due to a theorem and not to
the fact that one has decided a priort to take account
of ensemble averages exclusively.
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Free and normal adiabatic changes of voluine;
the pressure.

Similarly, during the yth zag, the system acquires
the random energy U”(y) — U'(y) = Ul[B(y),
Vi + 1) — UBw), V(y)]. But this is not the
whole story, since only part of this energy was
contributed by heat reservoirs, the rest bheing
contributed by the outside forces that changed V.
These two parts are respectively called “heat”
and “work”. Suppose that each zag is further
subdivided into small steps, between which the
system is put back into contact with a heat reservoir
of temperature 1/8(y). Each minute change of
volume requires an addition of energy which depends
upon the initial and final volume and upon the
initial energy, but not upon earlier values of energy;
in particular, it is independent of the earlier tem-
perature, and it can be designated by (du/dV,)d V.
Such a change of volume is called “free adiabatic”
and it does not in general preserve the canonical
distribution: That is, let the same dV, be applied
to the members of a family of systems with a
canonical energy; the energy of the perturbed
systems needs not be canonical. Therefore, one
replaces the “free adiabatic” changes by “normal
adiabatic” changes, in which contact is recurrently
reestablished with the heat reservoir of temperature
1/8. Thanks to this canonical averaging, the
exchange of energy due to changing V, becomes
independent of the intermediate energies of the
system. By a further easy application of a variant
of the strong law of large numbers, one finds that
(with probability one) the exchanges of energy
directly traceable to the changes dV, are

Z%fﬁmmﬁwwwmwk

= > p.dV, = dW.

The p:. defined by this equality are called ‘‘gen-
eralized pressures”, and dW defines the concept
of “work”, an asymptotically nonrandom part of
the energy communicated to the system from
the outside.

Consider now the rest of the energy exchanges,
that is the exchanges during the successive inter-
mittent contacts with the heat reservoir. This part
is random and uncontrollable and it is natural
to identify it as “heat”

Note that the above argument derives the
concept of pressure and of work for individual
canonical systems going through a series of small
transformations. The wusual verbal distinetion
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between the ‘“‘disorderly” character of heat energy
and the “orderly’”’ character of work is formalized
as the difference between random and nonrandom.

Now, putting the zigs and the zags together,
one finds that

$ a0 = vrEBW)

= G0} = 5£{E(U | 8, V) dB

+ 8 Z [f dFu | 8, V) (au/aV;.):l} av,.

Coneclusion.

This leads us to the point where the usual discus-
sion begins. The last integral is path-invariant if
and only if its expected value is path-independent,
If so,

dQ = Hfina.l = f[initial»
where H is the random entropy
H = U + log Z(B).

(This shows the invalidity of Khinchin’s" assertion,
that H does not satisfy the ‘“‘second law’) Note
that, when the path is closed, the entropy change
does not necessarily vanish, because the initial and
final values of U need not be equal.

Noncanonical systems, for which an entropy can be
defined without using additional axioms.

Szilard® has shown that, when entropy is written
85 D Datate 10Z Putare, it can also apply to systems
obtained from canonical systems by a free adiabatic
transformation.

8. INCREASE PROPERTIES OF THE
CANONICAL ENTROPY

We want to stress that the concept of entropy
requires the second principle, which is unnecessary
to derive the canonical law. This is why we insist
upon avoiding any derivation of the canonical law
that uses anything resembling entropy (or Shannon’s
“information’). More precisely, even if the use
and the maximization of “log W’ or “—p log p” is
motivated on some axiomatic grounds, the maximum
values of these expressions cannof be identified with
entropy unless one introduces some additional
statement equivalent to the second principle. But,
if a second principle is used, one can derive the
canonical law and the form of entropy. Let us

7 A. 1. Khinchin, Mathematical Foundations of Stalistical
Mechanics (Dover Publications, Ine., New York, 1949).
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show that one can also derive some ‘“‘increasing”
properties of this entropy.

Irreversible changes of temperature.

Returning to the expression for & 8 dU; before
the steps of 8 are made infinitely small & 8 dU
depends upon intermediate energy exchanges and
can be greater or smaller than its limit for con-
tinuously varying B. But, considering expected
values, one has

E[Z BAU — deU:| - [ W) as

- 2 EU@IBE) — B — 1),

where E[U(B)] is a decreasing function of 3. Then,
if B increases the above expression is the difference
between the integral and a lower Riemann sum
of a decreasing function. If 8 decreases, the above
expression is the difference between an wupper
Riemann sum and an integral. Hence, for a closed
loop, the expected value of 2 BAU — [ 8 dU is
the difference between an upper and lower Riemann
sum and it ¢s positive.

Irreversible variation of volume.

The same argument holds, assuming that pressure
is a decreasing function of every V.

9. GENERALIZATION OF THE SCOPE OF THERMO-
DYNAMICS TO SYSTEMS WHICH ARE NOT IN
EQUILIBRIUM AND CANONICAL

From the viewpoint of the core of results appli-
cable to macroscopic systems, the results of the
preceding sections are not a substantial improve-
ment over the results of See. 5, relative to means.
Moreover, for large systems, the fluctuations due
to contact with a heat reservoir are so small in
relative wvalue, that the canonical theory gives
acceptable predictions concerning most charac-
teristics of isolated systems of fixed energy. However,
to be able later to generalize thermodynamics
beyond the results linked with the basic principles,
it is necessary first to explicitly define a temperature
and an entropy for isolated systems. For that,
one must distinguish between work and heat.
The path of the system, as sequence of wvalues
of (u, Vi, V), will again be approximated
by zig-zags. The “zigs” are free adiabatic and the
energy change is the “work” D, (du/aV.)dV..
The ‘‘zags” correspond to an energy addition of
du — 2 (0u/dV,)dV;, which is all heat. Temperature
would be defined as a function of the V, and of w,
constituting an integrating divisor for heat; un-
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fortunately, the existence of such a multiplier
requires a condition upon the expressions (du/dV,),
which was not necessary in the eanonical case and
has no reason of being generally satisfied. Hence,
this method of generalizing the scope of thermo-
dynamical concepts fails.

Of course, the definition of temperature for
isolated systems is usually approached very differ-
ently. This temperature was discussed in reference 2.
One knows that it loses all meaning when the energy
u is known, but it is found econvenient to give
the same name to either one of a variety of functions
of u, which converge for very large systems but
differ for small ones. In reference 2 we have analyzed
these functions and have noted that the choice of
a definition of temperature bears the closest con-
nexions with the basic problem of mathematical
statistics: knowing that the quantity « is a sample
value of a random quantity U, and that the distribu-
tion of U depends upon a parameter 8, ‘‘estimate”
the value of 8 from the value of w. It is intuitively
true, and is confirmed by the theory, that estimation
is a kind of guessing and is indeterminate except
if one has a large number of sample values. But
both the practice and the apparent intent of the
operation ‘“to define a temperature for an isolated
thermodynamical system’” can be interpreted as
really meaning ‘“to estimate the temperature of a
heat reservoir, with which the isolated system
should be presumed to have been in contact”.
For large systems, many estimates are equally good.

Let us now examine entropy. For isolated systems,
the distinction between work and heat lacks here
the clarity which it had in the canonical case.
In order to define heat or work, one must define
pressure and this is also done by an estimation
procedure. By choosing appropriately a set of
definitions of temperature and of pressure, one
can arrange for the integral ¢ B dg to be path-
invariant and thus define I. As a result, the number
of useful definitions of entropy will be at least as
large as the number of useful temperatures-in-
isolation. The best known groups of definitions are
the following:
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Boltzmann’s definitions. Temperature 1/8, is such
that

u = E[UB)] = — log Z(8,)/8,.

The pressures are —(1/8,) 8 log Z(8,)/0V:, and
entropy is

fbb = lébu + log Z(Bb) = mein {rBu + log Z(8)}.

Gibbs’
given by

differential definitions. Temperature is

B, = (8/0u) log [dG()].
The pressures are (8/3V,) log [dG ()], and entropy is
hys = log [dG(w)]

Gibbs’ integral definitions. One replaces dG(u)
in the differential definitions by G'(u).

Note that nothing can be said in general con-
cerning the sign of the difference between the
Boltzmann and the Gibbs’ entropies, the reason
being that log [dG(u)] depends heavily upon the local
regularity properties of (f(u), while the Boltzmann
entropy does not.

Generalization of enfropy. The usual generaliza-
tions of the concept of entropy are based upon a
formal broadening of the conditions of applicability
of either of the two relations:—Boltzmann’s:
“entropy = min {—log [Pr (each “state’” of energy
)]} ’—Gibbs’ differential: “entropy = log (number
of “‘states” of energy u)”.

Either of these methods (and presumably other
methods as well) will lead to a generalized theory.
But the choice between them is largely arbitrary
and hence controversial (they represent two methods
of deseribing the role of the observer and of “informa-
tion” in thermodynamies). One knows that, adding
the right maximization criteria, either of the gen-
eralized definitions can replace the “zeroth principle”
either in the classical sense or in our phenomeno-
logical sense. Hence, one may say that the generaliza-
tion of thermodynamics hinges upon the zeroth
principle.



