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New methods in statistical economics

• Chapter foreword. An interesting relationship between the methods in
this chapter and renormalization as understood by physicists is described
in the Annotation for the physicists that follows this text. •

 ✦ Abstract.  This is an informal presentation of several new mathematical
approaches to the study of speculative markets and of other economic
phenomena. My principal thesis is that to achieve a workable description
of price changes, of the distribution of income, firm sizes, etc., it is neces-
sary to use random variables that have an infinite population variance.

This work should lead to a revival of interest in Pareto's law for the
distribution of personal income. The scaling distribution related to this
law should dominate economics. ✦

AMONG TODAY'S STATISTICIANS AND ECONOMISTS, Pareto's law
for the distribution of income is well-known, but is thoroughly neglected
for at least two reasons. It fails to represent the middle range of incomes,
and lacks theoretical justification within the context of elementary proba-
bility theory. I believe, however, that Pareto's remarkable empirical
finding deserves a systematic reexamination, in light of the new methods
that I attempt to introduce into statistical economics.

 I. INTRODUCTION

Pareto claimed that there exist two constants, a prefactor C and an expo-
nent α > 0, such that for large u, the relative number of individuals with
an income exceeding u can be written in the form P(u) ∼ Cu− α.
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That is, when the logarithm of the number of incomes greater than u
is plotted as a function of the logarithm of u, one obtains for large u a
straight line with slope equal to − α. Later, the same relation was found to
apply to the tails of the distributions of firm and city sizes. In fact, the
search for new instances of straight log-log plots has been very popular
and quite successful, among others, in Zipf 1941, 1949.

This book reserves the term “law of Pareto” to instances that involve
the empirical distribution of personal income. The tail distribution
P(u) ∼ Cu− α is denoted by the neutral term, scaling distribution, that is
useable in many sciences and was not available when the paper
reproduced in this chapter was published for the first time. The quantity
α will be called scaling exponent.

Notwithstanding the abundant favorable evidence, Zipf's claims met
strong objections from statisticians and economists. Those objections were
so strong as to blind the critics to the evidence. In sharp contrast, I
propose to show that the scaling distribution literally cries for our attention
under many circumstances. Those circumstances include (1) taking seri-
ously the simplified models based on maximization or on linear aggre-
gation (2) taking a cautious view of the origin of the economic data or (3)
believing that the physical distribution of various scarce mineral resources
and of rainfall is important in economics.

In addition, I shall show that, when the “spontaneous activity” of a
system is ruled by a scaling rather than a Gaussian process, the causally
structural features of the system are more likely to be obscured by noise.
They may even be completely “drowned out.” This so because scaling
noise generates a variety of “patterns;” everyone agrees on their form, but
they have no predictive value. Thus, in the presence of a scaling “sponta-
neous activity, validating a causal relation must assume an unexpectedly
heavy burden of proof and must acquire many new and quite perturbing
features.

We shall see that the most important feature of the scaling distribution
is the length of its tail, not its extreme skewness. In fact, I shall introduce
a variant of the scaling distribution, which is two-tailed, and may even be
symmetric. Hence, extreme skewness can be viewed as a secondary
feature one must expect in variables that have one long tail and are con-
strained to be positive.

Much of the mathematics that I use as tool have long been available,
but viewed as esoteric and of no possible use in the sciences. Nor is this
paper primarily an account of empirical findings, even though I was the
first to establish some important properties of temporal changes of specu-
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lative prices. What I do hope is that the methods to be proposed will con-
stitute workable “keys” to further developments along a long-mired
frontier of economics. Their value should depend on (1) the length and
number of successful chains of reasoning that they have made possible; (2)
the number of seemingly reasonable questions that they may show to be
actually “ill-set” and hence without answer; and last, but of course not
least, (3) the practical importance of the areas in which all these develop-
ments take place.

This paper will not attempt to treat any point exhaustively nor to
specify all the conditions of validity of my assertions; the details appear in
the publications referenced. Many readers may prefer to read Section VI
before Sections II-IV. Section IX examines Frederick Macauley's important
and influential critique of Pareto's law.

II. INVARIANCES; “METHOD OF INVARIANT DISTRIBUTIONS”

The approach I use to study the scaling distribution arose from physics. It
occurred to me that, before attempting to explain an empirical regularity,
it would be a good idea to make sure that this empirical identity is
“robust” enough to be actually observed. In other words, one must first
examine carefully the conditions under which empirical observation is
actually practiced. The scholar observes in order to describe but the entre-
preneur observes in order to act. Both know that most economic quanti-
ties can hardly ever be observed directly and are usually altered by
manipulations. In most practical problems, very little can be done about
this difficulty, and one must be content with whatever approximation of
the desired data is available. But the analytical formulas that express eco-
nomic relationships cannot generally be expected to remain unaffected
when the data are distorted by the transformations to which we shall turn
momentarily. As a result, a relationship will be discovered more rapidly,
and established with greater precision, if it “happens” to be invariant with
respect to certain observational transformations. A relationship that is
noninvariant will be discovered later and remain less firmly established.
Three transformations are fundamental to varying extents.

Linear aggregation, or simple addition of various quantities in their
common natural scale. The distributions of aggregate incomes are better
known than the distributions of each kind of income taken separately.
Long-term changes in most economic quantities are known with greater
precision than the more interesting medium-term changes. Moreover, the
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meaning of “medium term” changes from series to series; a distribution
that is not invariant under aggregation would be apparent in some series
but not in others and, therefore, could not be firmly established. Aggre-
gation also occurs in the context of firm sizes, in particular when “old”
firms merge within a “new” one. The most universal type of aggregation
occurs in linear models that add the (weighted) contributions of several
“causes” or embody more generally linear relationships among variables
or between the current and the past values of a single variable
(autoregressive schemes). The preference for linear models is of course
based on the unfortunate but unquestionable fact that mathematics offers
few workable nonlinear tools to the scientist.

There is actually nothing new in my emphasis on invariance under
aggregations. It is indeed well known that the sum of two independent
Gaussian variables is itself Gaussian, which helps use Gaussian “error
terms” in linear models. However, the common belief that only the
Gaussian is invariant under aggregation is correct only if random variables
with infinite population moments are excluded, which I shall not do (see
Section V). Moreover, the Gaussian distribution is not invariant under our
next two observational transformations.

One may aggregate a small or a very large number of quantities.
Whenever possible, “very large” is approximated by “infinite” so that
aggregation is intimately related to the central limit theorems that describe
the limits of weighted sums of random variables.

Weighted mixture. In a weighted lottery a preliminary chance drawing
selects one of several final drawings in which the gambler acquires the
right to participate. This provides a model for other actually observed
variables. For example, if one does not know the precise origin of a given
set of income data, one may view it as picked at random among a number
of possible basic distributions; the distribution of observed incomes would
then be a mixture of the basic distributions. Similarly, price data often
refer to grades of a commodity that are not precisely known, and hence
can be assumed to be randomly determined. Finally, the very notion of a
firm is to some extent indeterminate, as one can see in the case of subsid-
iaries that are almost wholly owned but legally distinct. Available data
often refer to “firms” that actually vary in size between individual estab-
lishments and holding companies. Such a mixture may be represented by
random weighting.  In many cases, one deals with a combination of the
above operations. For example, after a wave of mergers hits an industry,
the distribution of “new” firms may be viewed as a mixture of (a) the dis-
tribution of companies not involved in a merger, (b) the distribution of
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companies that are the sum of two old firms, and perhaps even (c) the sum
of more than two firms.

Maximizing choice, the selection of the largest or smallest quantity in a
set.  It may be the case that all we know about a set of quantities is the
size of the one chosen by a profit maximizer. Similarly, if one uses histor-
ical data, one must often expect to find that the fully reported events are
the exceptional ones, such as droughts, floods or famines (and the names
of the “bad kings” who reigned in those times) and “good times” (and the
names of the “good kings”). Worse, many data are a mixture of full
reported data and of data limited to the extreme cases.

Although the above transformations are not the only ones of interest,
they are so important that it is important to characterize the distributions
that they leave unchanged. It so happens that invariance-up-to-scale holds
asymptotically for all three transformations, as long as the parts themselves are
asymptotically scaling. In the case of infinite aggregation, invariance only
holds if the scaling exponent α is less than two. To the contrary (with
some qualifications), invariance does not hold – even asymptotically – in any
other case.

Hence, anyone who believes in the importance of those transforma-
tions will attach a special importance to scaling phenomena, at least from
a purely pragmatic viewpoint.

This proposition also affects the proper presentation of empirical
results. For example, to be precise in the statement of scientific distrib-
utions, it is not sufficient to say that the distribution of income is scaling;
one must list the excluded alternatives. A statistician will want to say that
“it is true that incomes (or firm sizes) follow the scaling distribution; it is
not true that incomes follow either Gaussian, Poisson, negative binomial
or log-normal distributions” But my work suggests that one must rather
say: “It is true that incomes (or firm sizes) follow the scaling distribution;
it is not true that the distributions of income are very sensitive to the
methods of reporting and of observation.”

III. INVARIANCE PROPERTIES OF THE SCALING DISTRIBUTION

Of course, the invariance of the asymptotic scaling distribution holds only
under additional assumptions; the problem will surely not be exhausted
by the present approach. Consider N independent random variables,
Un(1 ≤ n ≤ N) that follow the weak (asymptotic) form of the scaling distrib-
ution with the same exponent α. This means that
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Pr{Un > u} ∼ Cnu− α if u is large.

The behavior of Pr{Un < − u} for large u will be examined in Section VII.

Let me begin with mathematical statements that imply that the scaling
behavior of Un is sufficient for the three types of asymptotic invariance-up-
to-scale. Short proofs will be given in parentheses, and longer ones in the
Appendix. The symbol ∑ will always refer to the addition of the terms
relative to the N possible values of the index n.

Weighted Mixture. Suppose that the random variable UW is a weighted
mixture of the Un, and denote by pn the probability that UW is identical to
Un. One can show that this Uw is also asymptotically scaling and that its
scale parameter is CW = ∑pnCn, which is simply the weighted average of the
separate scale coefficients Cn. (Proof. It is easy to see that

Pr{UW > u} = �pnPr{Un > u} ∼ �Cnpnu− α
n = Cwu− α.)

Maximizing choice. Ex-post, when the values Un of all the variables Un are
known, let UM be the largest. One can show that this UM is also
asymptotically scaling, with the scale parameters CM = ∑Cn, the sum of the
separate scale coefficients Cn. (Proof. Clearly, in order that UM ≤ u, it is
both necessary and sufficient that Un ≤ u is valid for every n. Hence, Π
denoting the product of the terms relative to the N possible values of the
index n, we have

Pr{UM < u} = ΠPr{Un ≤ u}.

It follows that

Pr{UM > u} = 1 − Pr{UM ≤ u} ∼ 1 − Π(1 − Cnu− α) ∼ �Cnu− α = CMu− α.)

Aggregation. Let UA be the sum of the random variables Un. One can
show that it is also asymptotically scaling, with a scale parameter that is
again the sum of the separate weights Cn. Thus, at least asymptotically for
u → ∞, the sum of the Un behaves exactly like the largest Un (see M
1960i{E10} for further details). Mixture combined with aggregation is an
operation that occurs in the theory of random mergers of industrial firms
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(M 1963o). One can show that it also leaves the scaling distribution
invariant-up-to-scale.

The converses of the above statements are true only in the first
approximation; for the invariance-up-to-scale to hold, the distributions of
the Un need not follow the scaling distribution exactly; but they must be
so close to it as to be scaling for many practical purposes.

Strictly invariant distributions that also enter as limits. To introduce
two distributions due to Fréchet and Lévy, respectively, and relate them to
scaling, let us imitate (with a different interpretation) a principle of invari-
ance that is typical of physics: We shall require that the random variable
Un be strictly invariant up to scale with respect to one of our three trans-
formations.

Let N random variables Un follow – up to changes of scale – the same
distribution as the variable U, so that Un can be written as anU, where
an > 0. I shall require that UW (respectively, UM or UA) also follow – up the
changes of scale – the same distribution as U. This allows one to write UW
( UM or UA) in the form aWU (aMU or aAU), where aw, am and aA are positive
functions of the numbers an.

As shown in the Appendix, it turns out that the conditions of invari-
ance lead to somewhat similar equations in all three cases; ultimately, one
obtains the following results:

Maximization. The invariant distributions must be of the form
FM(u) = exp( − u− α) (Fréchet 1927, Gumbel 1958). These distributions are
clearly scaling for large u and correspondingly small u− α, since in that
range FM can be approximated by 1 − Cu− α. They also “happen” to have
the remarkable property of being the limit distributions of expressions of
the form N− 1/α max Un, where the Un are asymptotically scaling. There
are no other distributions that can be obtained simply by multiplying the
mass Un by an appropriate factor and by having N tend to infinity. But
allowing the origin of U to change as N → ∞, yields the “Fisher-Tippett
distribution,” which is not scaling and not invariant under the other two
transformations.

Mixing. In this case, the invariant distributions are FW(u) = 1 − Cu− α,
which is the analytical form of the scaling distribution extended down to
u = 0. This solution corresponds to an infinite total probability, implying
that, strictly speaking, it is unacceptable. However, it must not be rejected
immediately because in many cases U is further restricted by some
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relation of the form 0 < a ≤ u ≤ b, leading to a perfectly acceptable condi-
tional probability distribution.

Aggregation. Finally, aggregation leads to random variables that are the
“positive” members of the family of “L-stable distributions,” other
members of which will be encountered =later (Lévy 1925, Gnedenko &
Kolmogorov 1954). These distributions depend on several parameters, the
principal of which is again denoted by α and must satisfy 0 < α ≤ 2. The
density dFA(u) has a closed analytic form in a few cases. The limit case for
α = 2, is the Gaussian distribution (which, however, is not itself scaling).
The density of the positive L-stable distribution is also known in the case
α = 1/2, which plays a central role in the study of the return to equilib-
rium in coin tossing. In other cases, no closed analytic expression is
known for the stable distribution FA(u). But Lévy showed that they
asymptotically follow the scaling distribution with exponent α, except in
the limit case α = 2 (for α just below 2, their convergence to their scaling
limit is slow).

The L-stable variables yielded by the present argument can take nega-
tive values if 1 ≤ α ≤ 2, as is readily seen in the Gaussian case. But there is
a very small probability that they take large negative values. I have shown
how this can be handled in practice by suitably displacing the origin.

L-stable distributions have another important property: they are the
only possible non-Gaussian limits of linearly weighted sums of random
variables. Hence, even though they cannot begin to compare with the
Gaussian from the viewpoint of ease of mathematical manipulations, they
both share the fundamental properties of that distribution from the view-
point of linear operations. The corresponding forms of the non-classical
central limit theorem show that the sum of many additive contributions
need not be Gaussian; if one wishes to explain by linear addition a phe-
nomenon that is ruled by a skew distribution, it is not necessary to assume
that the addition in question is performed in the scale of U itself. This
also shows that the log-normal distribution is not the only skew distrib-
ution that can be explained by addition arguments, thus removing the
principal asset of that distribution (which is known in most cases to
underestimate grossly the largest values that can be taken by the variable
of interest).

One can see that the probability densities of the three invariant fami-
lies differ throughout most of the range of u. However, if 0 < α < 2, their
asymptotic behaviors coincide. Hence, the scaling distribution is also
asymptotically invariant with respect to applications of an arbitrary suc-



E3  ♦ ♦ NEW METHODS IN STATISTICAL ECONOMICS 9

cession of the basic transformations. When α is close to 2, the practical
application of this property requires additional qualifying statements.

It should be noted that Fréchet's and Lévy's distributions attract sub-
stantial attention from mathematicians. However, the scaling maximum
distributions have few generally known applications and the scaling sum
distributions (L-stable distributions) have practically none.

It is true that a celebrated treatise on stable distributions, Gnedenko &
Kolmogorov 1954, alludes to forthcoming publications specifically con-
cerned with applications of L-stability. However, when I discussed this
allusion with Professor Kolmogorov in 1958 (ten years after the original
Russian edition,) I found that these papers had not materialized after all –
for lack of applications! Basically, the only fairly well-known practical
instance of a stable distribution is the distribution due to Holtsmark (but
often rediscovered,) which rules the Newtonian attraction between ran-
domly distributed stars (see Section 2.8 of M 1960i{E10}). Thus, Gnedenko
& Kolmogorov 1954 did not pre-empt my plea that stable distributions
should be counted among the most “common” probability distributions.

IV. SIGNIFICANCE OF THE EVIDENCE PROVIDED BY DOUBLY
LOGARITHMIC GRAPHS

Limitations on the value of a lead to another quite different aspect of the
general problem of observation. It concerns the practical significance of
statements having only an asymptotic validity. Indeed, to verify empir-
ically the scaling distribution, the usual first step is to draw a doubly loga-
rithmic graph: a plot of log10 1 − F(u)  as a function of log10u. One should
find that this graph is a straight line with the slope − α, or at least that it
rapidly becomes straight as u increases. But, look closer at the sampling
point of the largest u. Except for the distribution of incomes, one seldom
has samples over 1,000 or 2,000 items; therefore, one seldom knows the
value of u that is exceeded with the frequency 1 − F(u) = 1, 000− 1 or
2,000− 1. That is, the “height” of the sampling doubly logarithmic graph
will seldom exceed three units of the decimal logarithm of 1 − F. The
“width” of this graph will be at best equal to 3/α units of the decimal log-
arithm of u. However, if one wants to estimate reliably the value of the
slope a, it is necessary that the width of the graph be close to one unit. In
conclusion, one cannot trust any data that suggest that α is larger than 3.
Observe that the resulting practical range of α's is wider than in the case
of stable distributions.
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Looking at the same question from another angle, take doubly loga-
rithmic paper and plot the following distributions: Gaussian, lognormal,
negative binomial and exponential. Because all these distributions are
very “short tailed,” the slope of the graph will become asymptotically infi-
nite. However, in the region of probabilities equal to one-thousandth, the
dispersion of sample data is likely to generate – on doubly logarithmic
coordinates – the appearance of a straight line having a high but finite
slope. In the words of Macaulay 1922 (see Section IX): “The approximate
linearity of the tail of a frequency distribution charted on a double loga-
rithmic scale signifies relatively little, because it is such a common charac-
teristic of frequency distributions of many and various types.” However,
linearity with a low slope signifies a great deal indeed. Figure 1 further
illustrates this difference between different values of α.

There is another way to describe curve-fitting using special paper.
One may say that the maximum distance between the sample curve and
some reference curve – preferably a straight line – defines a kind of
“distance” between two alternative probability distributions. Any special
paper, whether it be log-normal or scaling, should be used only in ranges
where the distances that it defines are sensitive to the differences that
matter to the particular problem. Hence, the most conservative approach
is often to consider several hypotheses, that is, to use several kinds of
paper.

In summary, if one considers mixtures, maximizations and practical
measurement, the range of values of α is reduced to the interval from 0 to
3. If one also takes aggregation into account, α must fall between 0 and 2
(actually, the range of “apparent” α's is somewhat wider).

V. FINITE SAMPLE BEHAVIOR OF RANDOM VARIABLES WITH
INFINITE POPULATION MOMENTS

When α is not small (in a sense we shall describe shortly), a scaling dis-
tribution is extraordinarily long-tailed, as measured by Gaussian stand-
ards. In particular, if α < 2, the population second moment is infinite. It
should be stressed, however, that the concept of infinite variance is in no
way “improper.”

It is of course true that, since observed variables are finite, the sample
moments of all orders are themselves finite for finite sample sizes; but this
does not exclude the possibility that they tend to infinity with increasing
sample size. It may also be true that the asymptotic behavior of the
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samples is practically irrelevant because the sizes of all empirical samples
are by nature finite. For example, one may argue that the history of
cotton prices is mostly a set of data from 1816 to 1958, speculation on
cotton having been very much decreased by the 1958 acts of the United
States Congress. Similarly, when one studies the sizes of United States
cities, the statistical populations have a bounded sample size. Even for
continuing series, one may well argue for “après moi, le déluge” and
neglect any time horizon longer than a man's life. Hence, the behavior of
the moments for infinite sample sizes may seem unimportant. But it actu-
ally implies that the only meaningful consequences of infinite population
moments are those relative to the sample moments of increasing subsets of
our various bounded universes.

In Figure 2, the predictions of the mathematical theory are illustrated
by computer simulations. Distinct samples of scaling random variables
with α = 1 were obtained by inverting samples of random variables dis-

FIGURE C3-1. Five doubly logarithmic plots: (A) Two exponential distributions
(very curved solid lines) with very different expectations. (B) Two distributions
which are uniformly scaling from u = 1 and have, respectively, the exponents
α = 1/2 and α = 1. (C) One asymptotically scaling distribution, with the expo-
nent α = 4, a large value. The relations between these graphs demonstrate
graphically that distributions similar to (C) can readily be confused with the
exponential, but small values of the α exponent are reliable.
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tributed uniformly over the interval [0, 1]. Plots of the variation of the
first and second moments are then created. The sample first moments
illustrate what happens when the population moment is given by a barely
divergent integral; the sample second moments illustrate what happens
when the population moment is given by a rapidly divergent integral.
The sample moments do not converge, and – even more impressive – their
growth is erratic and very sample-dependent.

Let us now return to experimental data. In some cases, the sample
second moment is observed to “stabilize” rapidly around the final value
corresponding to the total set. If so, it is unquestionably useful to take
this final value as an estimate of the population second moment of a con-
jectural infinite population from which the sample could have been drawn.
But Figure 3 shows that the sample second moments corresponding to
increasing subsets may continue to vary widely even when the sample
size approaches the maximum imposed by the subject matter. From the

FIGURE C3-2. Monte Carlo runs of the sequential first moment (lower graphs) and
the sequential second moment (upper graphs) of three independent samples
from a scaling population of exponent α = 1. The term “sequential moment”
means that, in each run, the moment is computed for every sample size from
1 to 1,000. This figure suggests the degree to which the sample moments of
scaling variables can be erratic and sample-dependent.
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viewpoint of sampling, this expresses that even the largest available
sample is too small for reliable estimation of the population second
moment. In other words, a wide range of values of the population second
moment are equally compatible with the data. Now, let us suppose that –
as in Figure 3 – the appearance of the sample data recalls Figure 2. Then,
the reasonable range of values for the population moment will frequently
include the value “infinity,” implying that facts can be equally well
described by assuming that the “actual” moment is finite but extremely
large or by assuming that it is infinite.

To support the alternative that I prefer, let me point out that a realistic
scientific model must not depend too critically on quantities that are diffi-
cult to measure. The finite-moment model is unfortunately very sensitive
to the value of the population second moment, and there are many other
ways in which the first assumption, which of course is the more reason-
able a priori, is also by far more cumbersome analytically. The second

FIGURE C3-3. Sequential first moment (left) and the sequential second moment
(right) of the numbers of inhabitants in United States cities with over 50,000
inhabitants. The cities have been ordered alphabetically. As city sizes have a
scaling exponent of about α = 1.1, the sample first moment tends – very slowly
– to a limit, while the second moment increases less rapidly than in the simu-
lations reported in Figure 2.
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assumption, on the contrary, leads to simple analytical developments, and
the rapidity of growth of the sample second moment can be modulated to
lead to absurd results only if one applied it to “infinite” samples, that is, if
one raised problems devoid of concrete meaning.

In other words, there is nothing absurd in assuming, as I am con-
stantly led to do, that intrinsic bounded variables are drawn at random
from infinite populations of unbounded variables having an infinite
second moment. But all these infinities are a relative matter, entirely
dependent on the statistician's span of interest. As the maximum useful
sample size increases, the range of the estimates of the second moment
will steadily narrow. Hence, beyond a certain limit, the second moments
of some variables may be considered as finite. Conversely, there are vari-
ables for which the second moment must be considered finite only if the
useful sample size is smaller than some limit.

Actually, this use of infinity is common in statistics, insofar as it con-
cerns the function max {u1, u2, ..., uN} of the observations. From this view-
point, even the use of infinite spans would seem improper. However, it is
well known in statistics that little work could be done without using
unbounded variables. One even uses the Gaussian distribution to repre-
sent the height of adult humans, which is surely positive!

The unusual behavior of the moments of scaling distributions can be
used to introduce the least precise interpretation of the validity of the
notion of scaling. For example, suppose that the first moment is finite, but
the second moment is infinite. Then, as u tends to infinity, the function
1 − F(u) must decrease more slowly than 1/u2 but more rapidly than 1/u.
In this case, the behavior of F(u) in the tails is very important, and a very
useful approximation may be Cu− α, with 1 < α < 2. This approximation is
completely harmless as long as one limits oneself to consequences that are
not very sensitive to the actual value of a. The situation is very different
when the tail is very short, for example, when the population moments
are finite up to the fourth order. In that case, the behavior of the function
F(u) for large u is far less important than its behavior elsewhere; hence,
one will risk little harm with interpolations by the Gaussian or the log-
normal distribution.

VI. DIFFICULTIES CONCERNING STATISTICAL INFERENCE AND
CONFIRMATION OF SCIENTIFIC DISTRIBUTIONS, WHEN THE
ERRORS (THAT IS, THE “BACKGROUND NOISE”) ARE SCALING
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It is well known that second moments are heavily used in statistical meas-
ures of dispersion, or “standard deviation,” and in “least-squares” and
“spectral” methods. Hence, whenever the considerations of Section V are
required to explain the erratic behavior of sample second moments, a sub-
stantial portion of the usual methods of statistics should be expected to
fail. Examples of such failures have, of course, often been observed empir-
ically and may have contributed to the disrepute in which many writers
hold the scaling distribution; but it is clearly unfair to blame a formal
expression for the complications made inevitable by the data that it repres-
ents. If 2 < α < 3, second moments exist, but concepts based on third and
fourth moments, – for example Pearson's measures of skewness and
kurtosis – are meaningless.

I am certain that for practical purposes some of those difficulties even-
tually will be solved. However, as of today, they are so severe that we
must reexamine the meaning of the popular but vague concept of “a
structure.” It is indeed a truism, especially in fields where actual exper-
imentation is impossible, that one must carefully distinguish between pat-
terns that can only be used for “historical” description of his records and
those that are also useful for forecasting some aspect of the future. A
useful vocabulary considers the search for distributions a kind of
extraction and identification of a “signal” in the presence of “noise.” In
particular, as we have seen, modern inference theory teaches us always to
list both the accepted and the rejected possibilities. The scientist's major
problem is frequently to determine whether a conjectured “relation” is sta-
tistically significant with respect to what may be generally called “sponta-
neous activity,” which is the resultant of all the influences that one cannot
or does not want to control in the problem at hand and which is conven-
iently described with the help of various stochastic models.

It is not enough, however, that all members of a cultural group agree
on the patterns that they read into a historical record. Indeed, although
there is unanimity in the interpretation of certain Rorschach inkblots, they
have no significance from the viewpoint of science as a system of predic-
tions. Broadly speaking, a pattern is scientifically significant when it is felt
to have a chance of being repeated, meaning that, in some sense, its
“likelihood” of having occurred by chance is very small. Unfortunately,
the tools of statistics have been mostly designed to deal with Gaussian
alternatives and, when the chance alternative is scaling, they are not at all
conservative or “robust” enough. One will often be able to circumvent
this difficulty, but not always. In fields where the background noise is
scaling, the burden of proof is closer to that of history and autobiography
than of physics.
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The same thought can be presented in more optimistic terms by saying
that, if “mere chance” can so readily be confused with a causal structure,
the effect of chance is itself entitled to be called a structure. The word
“noise” may perhaps be reserved for the Gaussian error terms, or its
binomial or Poisson kinds, which are seldom respected as sources of any-
thing that looks interesting.

The situation is worse in models known to be very structured (for
example, to be autoregressive) with scaling noise. Compared to the case
of Gaussian noise, one should expect the data to be much more influenced
by the noise and much less influenced by the structure.

The association between the scaling distribution and “interesting
patterns” is nowhere more striking than in the game of tossing a fair coin,
which Henry and Thomas have been playing since sometime in the early
eighteenth century. When the coin falls on “heads,” Henry wins a dollar
(or perhaps rather a thaler); when the coin falls on “tails,” Thomas wins.
We disregard what happened to the game before we break in at time t = 0,
and we denote by T the time it takes for Henry and Thomas's fortunes to
return to the state that they were in at the moment when we broke into
the game. For large values t of T, one has the well-known relation:
(Feller 1950, Vol. 1).

Probability { that the fortunes return to their initial states
after a time greater than t} = (constant) t− 1/2.

This relation involves the scaling distribution with exponent α = 1/2.

However, gamblers are notorious for seeing an enormous amount of
interesting detail in the past records of accumulated coin-tossing gains; far
more than in the non-cumulative sequences. That is, gamblers are pre-
pared to risk their fortunes on the proposition that these details are not
due to mere chance. Several of my papers were based on the idea that
very similar phenomena should be expected whenever the scaling distrib-
ution applies. If so, one could associate with those phenomena some
stochastic models that dispense with any kind of built-in causal structure
and yet generate sample curves in which both the unskilled and the
skilled eye can distinguish the kind of detail that is usually associated
with causal relations. In the case of Gaussian processes, such details
would be so unlikely that they would surely be considered significant for
forecasting; but, this is not true in the scaling case. From the viewpoint of
prediction, those structures should be considered perceptual illusions: they
are in the observer's current records and in his brain but not in the mech-
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anism that has generated these records and that will generate the future
events.

Bearing in mind the existence of such models, let us suppose that we
have to infer a process from the data. A non-structured scaling universe
accounts very well for many observations; as a result, it is extremely diffi-
cult, at best, to choose between it and an alternative model that postulates
causal relations. It is very difficult to challenge someone's belief in the
existence of “genuine” structures. But to communicate such a belief to
others, with the standards of credibility that are current in physical
science, requires much more than the statistical tests of significance that
social scientists shrug off at the end of a discussion. Such a situation
requires a drastic sharpening of the distinction between patterns that –
however great the scholar's diligence – can serve only for historical pur-
poses and those patterns that are useable for forecasting.

The question that I have in mind can be well illustrated by the
problem of the significance of “cycles.” Both the eye and sophisticated
methods of Fourier analysis, suggest that almost any record of the past is
a sum of periodic components. But the same is also true for a wide
variety of artificial series generated by random processes with no built-in
cyclic behavior. Furthermore, skilled cycle researchers seldom risk firm,
short-term forecasts. Could we then ask two questions that paraphrase
Keynes's comments on early econometric models, “How far are these
curves meant to be no more than a piece of historical curve-fitting and
description, and how far do they make inductive claims with reference to
the future as well as the past?”

It may also be noted that, because of the invariance of the scaling dis-
tribution with respect to various transformations (see Section III), one
cannot hope that a simple explanation will be provided by arguing that
only the genuine structures will be apparent to all observers. The only cri-
terion of trustworthiness is replicability in time.

In an important way, the models of scaling spontaneous activity differ
from the standards of “operationalism” suggested by philosophers.
Indeed, to explain by mere chance any given set of phenomena, it will be
necessary to imbed them in a universe that also contains such a fantastic
number of other possibilities that billions of years may be necessary to
realize all of them. Hence, within our lifetime, any given configuration
will occur at most once, and one could hardly define a probability on the
basis of sample frequency. This conceptual difficulty is common know-
ledge among physicists, and it is to be regretted that the philosophical dis-
cussions of the foundations of probability seldom investigate this point. In
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a way, the physicists freely indulge in practices that for the historian are
mortal sins: to rewrite history as it would have been if Cleopatra's nose
had a different shape. My sins are even worse because their actual histo-
ries turn out to be very close to some kind of “norm,” a property which
my models certainly do not possess.

The foregoing argument is best illustrated by two separate re-
interpretations of the coin-tossing record plotted in Figure 4. First, forget-
ting the origin of that figure, imagine that it is a geographical cross-section
of a new part of the world in which all the regions below the bold hori-
zontal lines are under water. Imagine also that this chart has just been
brought home by an explorer; the problem is to decide whether it was due
to cause or to chance. The naive defense will resort to the Highest Cause.
Presenting our graph as fresh evidence that God created Heaven and
Earth using a single template, it follows that such concepts as a
“continent,” an “ocean,” an “island,” an “archipelago” or a “lake” are pre-
cisely adapted to the shape of the Earth. However, a devil's advocate
would argue that the Earth is a creation of blind chance and that the pos-
sibility of using such convenient terms as “continent” and “island” just
reflects the fact that the areas above water happen often to be very short
or very long and are rarely of average length.

The preceding example is not as fictitious as it may seem: the distrib-
ution of the sizes of actual islands happens to be scaling (M 1962n).
Hence, our hypothetical debate emphasizes the two extreme viewpoints
realistically, even though – the Earth having been presumably entirely
explored – no actual prediction is involved in the choice between the inter-
pretation of archipelagoes as “real” or as creations of the mind of the
weary mariner.

Another example, also chosen for its lack of direct economic interpreta-
tion, is the problem of clusters of errors on telephone circuits. Suppose
that a telephone line is used only to transmit either dots or dashes, which
may be distorted in transmission to the point of being mistaken for each
other. It is clear – again, according to the defender of a search for causes
– that whenever an electrician touches the line, one should expect to
observe a small cluster of such errors. Moreover, since a screwdriver
touches the line many times during a single repair job, one should expect
to see clusters of clusters of errors and even clusters of higher order.

Actual records of the instants when errors occurred do indeed exhibit
such clusters in between long periods of flawless transmission. A good
idea of the distribution of the errors is provided by yet another look at
Figure 4. Consider the sequence of points where the graph crosses the
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FIGURE C3-4. Record of Henry's winnings in a coin-tossing game, played with a
fair coin. Zero-crossings seem to be strongly clustered, although intervals
between crossings are obviously statistically independent. This figure is
reproduced from Feller 1950 (Volume I).

To appreciate fully the extent of apparent clustering in this figure, note
that the unit of time is 2 coin tosses on the first line, and 20 coin tosses on the
second and third lines. Hence, the second and third lines lack detail and each
apparent zero-crossing is an imperfect representation of a cluster or a cluster
of clusters. For example, the details of the cluster centered around the 200th
coin toss are clearly separated on line 1.
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line that, in an earlier interpretation, had represented sea level. According
to the searcher for causes, the precise study of such past records will
improve the prediction of errors and will help minimize their effects. On
the other hand, precisely because of the origin of Figure 4, those beautiful
hierarchies of degrees of clustering can very well be due to a “mere
chance” devoid of memory (see Berger & M 1963).

Similar devil's advocates can be heard in many contexts, and someone
should take this role in relation to every important problem, without for-
getting that the devil's advocate must always be on the side of the angels.
An interesting example of a stable truce between structure and chance is
provided by the study of language and of discourse, where the traditional
kind of structure is represented by grammar and – as one should expect
by now – the chance mechanism is akin to the scaling distribution (see
Apostel, M & Morf 1957 and M 1961b).

VII. TWO-TAILED AND/OR MULTIDIMENSIONAL STABLE
DISTRIBUTIONS

Until now, we have followed tradition by associating the scaling distrib-
ution with essentially positive random variables, the distribution of which
has a single long tail, making its central portion necessarily quite skew.
However, I have discovered important examples in economics of distrib-
utions having two scaling tails; the most striking example is that of relative
changes in the prices of sensitive speculative commodities. The argument
of invariance under maximization cannot extend to them. But invariance
under mixture simply leads to the combination of the scaling distribution
of positive u and the scaling distribution of negative u. Invariance under
aggregation is satisfied by every random variable constructed by adding
or subtracting two arbitrarily weighted “positive” stable variables of the
kind studied earlier in this paper. In particular, these general stable vari-
ables can by symmetric; the Cauchy distribution provides a prime
example. But their study depends very little on the actual degree of
skewness. Hence, the asymmetry of the usual scaling variables is less
crucial than the length of their single tail.

Another remarkable property of the stable distributions is that, like the
Gaussian, they have intrinsic extensions to the multivariant case, other
than the degenerate case of independent coordinates. Very few other dis-
tributions (if any) share this property. The reason for this is innately
related to the role of stable distributions in linear models. It is indeed
possible to characterize the multivariate stable distributions as being those
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for which the distribution of every linear combination of the coordinates is
a scalar stable variable. This property is essential to the study of multidi-
mensional economic quantities, as well as to the investigation of the
dependence between successive values of a one-dimensional quantity,
such as income (see M 1961e{E11}).

VIII. THE ROLE OF THE SCALING DISTRIBUTION IN ECONOMICS
AND A LINK WITH THE PHYSICAL SCIENCES

The arguments of this paper show that there is a strong pragmatic reason
to undertake the study of scaling economic distributions and time series.
This category includes prices (M 1963b{E14}), firm sizes (M 1963o) and
incomes (M 1960i{E10}, as amended in M 1963p, and also M 1967j{E15},
1962g), hence making the study of scaling of fundamental importance in
economic statistics. Similarly, the example of the distribution of city sizes
stresses the importance of the scaling distribution in sociology (M 1965m).
Finally, strong indications exist of its importance in psychology, but I shall
not even attempt to outbid George Kingsley Zipf in listing all the scaling
phenomena of which I am aware; their number seems to increase all the
time.

However, it is impossible to postpone “explanation” forever. If indeed
a grand economic system is only based on aggregation, choice and
mixture, one can prove that for a system to be scaling, it must be triggered
somewhere by essentially scaling “initial” conditions. That is, however
useful the method of invariants may be, it is true that it somewhat begs
the question and that the basic mystery of scaling cannot be solved by
pushing around the point where such behavior is postulated. Indeed, if it
were true, in accordance with “conventional wisdom,” that physical phe-
nomena are characterized by the distributions of Gauss and social phe-
nomena are characterized by that of Pareto, we may eventually have to
explain the latter using the “microscopic” economics models, such as the
“principle” of random proportionate effect, which I prefer not to empha-
size in my approach.

I claim, however, that this situation need not be the case. Quite to the
contrary, the physical world is full of scaling phenomena that one can
easily visualize as playing the role of the “triggers” that cause the eco-
nomic system to be also scaling. For example (M 1962n), I have found
that single-tailed scaling distributions, with trustworthy values for α, rep-
resent the statistical distributions of a variety of mineral resources, which
are surely not influenced by the structure of society. This is the case with
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the areas of oil fields and the sums of their total past production and their
currently estimated capacity). The same is true for the valuations of certain
gold, uranium and diamond mines in South Africa. Similar findings hold
for a host of similar data related to weather, which is barely influenced by
man as yet. Some weather data, such as hail records, have a direct influ-
ence on important risk phenomena, namely, insurance against hail
damage. Other weather data, such as total annual rainfall, obviously
influence the sizes of crops and hence, by the distributions of supply and
demand, influence the changes of agricultural prices.

If this paper proposed to contribute to “geo-statistics,” it should, of
course, examine the degree of generality of my claim. But, for the purpose
of a study of economic time series, it will be quite sufficient to note that
the trigger of a scaling grand economic system can very well be found in
statistical features of the physical world. For example, natural resources
and weather influence prices, which in turn influence incomes. Since the
systems to which we refer are spatio-temporal, there is nothing disturbing
in our association of economic time series with geological and geographical
spatial distributions.

I shall not attempt to say anything about the actual triggering mech-
anism since I doubt that a unique link can be found between the social
and the physical worlds. After all, quite divergent values of the scaling
exponent α are encountered in both worlds so that the overall grand
system cannot possibly be based only upon transformations by linear
aggregation, choice and mixture.

I wish, finally, to point out that the scaling phenomena of physics
have also turned out to include some phenomena with no direct relation
with economics. For example, Section 3 mentioned that a three-
dimensional stable distribution occurs in the theory of Newtonian
attraction. Moreover, the distribution of the energies of the primary
cosmic rays has long been known to follow a distribution that happens to
be identical to that of Pareto with the exponent 1.8 (Fermi's study of this
problem includes an unlikely but rather neat generation for the scaling
distribution). The same result holds for meteorite energies, an important
fact for ionospheric clatter telecommunications. Also, as discussed in
Section VI, the intervals between successive errors of transmission on tele-
phone circuits happen to be scaling with a very small exponent, the value
of which depends on the physical properties of the circuit.

There are many reasons for believing that many scaling phenomena
are related to “accumulative” processes similar to those encountered in
coin-tossing.
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IX. FREDERICK MACAULAY'S CRITICISM OF PARETO'S LAW

Having accumulated so many reasons to view the scaling distribution as
extraordinarily important, I am continuously surprised by the attitude
described in the first sentence of Section I. I eventually realized that it
had deep roots not only in the apparent lack of theoretical motivation for
that distribution but also in several seemingly “definitive” criticisms, such
as that of Macaulay 1922.

Macaulay's essay is most impressive indeed and – even though I disa-
gree with its conclusions – I strongly recommend it. It disposed of the
claim that the α exponent in Pareto's law is the same in all countries and
at all times and of the claim that the scaling distribution describes small
incomes or the incomes of the lower paid professional categories.
Macaulay is also very convincing concerning scaling distributions with a
high exponent (see Section V).

I believe, however, that his strictures against “mere curve fitting” have
been very harmful. His ideal of a proper mathematical description is so
restrictive that he rejects the scaling distribution outright because the
sample empirical curves do not “zigzag” around the simple scaling
interpolate but rather cross it systematically a few times. This illustrates a
basic difference between the care economists bring to statistics and the
seeming carelessness of the physicists. For example, when the Boyle law
was found to differ from the facts, the physicists simply invented the
concept of a “perfect gas,” that is, a body that follows Boyle's law perfectly.
Naturally, perfect gas approximations are absurd in some problems but
are adequate in many others, and they are so simple that one must con-
sider them first. Similarly, scaling distribution approximations should not
even be considered in problems relating to low incomes, but in other
investigations they deserve to be the first to be considered.

Therefore I can summarize Macaulay's criticism of the scaling distrib-
ution by saying that it only endorses the asymptotic forms. In many
cases, however, I believe that it is legitimate to consider more seriously
certain “relatives” of the scaling distribution, such as the stable distrib-
utions.

APPENDIX: SOME MATHEMATICAL DERIVATIONS

Characterize U by its distribution function F(u) = Pr{U ≤ u} and its gener-
ating function G(s), which is the Laplace transform of F(u), namely



24 JOURNAL OF POLITICAL ECONOMY: 71, 1963, 421-440 ♦ ♦ E3

G(s) = ∫
∞
−∞ exp( − us)dF(u). In order for G(s) to be finite, it is necessary that

dF → 0 very rapidly as u → − ∞. Then, invariance-up-to-scale is expressed
by the following conditions:

Weighted Mixture. It is necessary that stability hold for equal pn. In
particular, it is necessary that the function F satisfy the condition that
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Maximization. Now, it is necessary that F(u/aM) = ΠF(u/an); in other
words,

� log F


u
an


 = log F


u
aM


.

Aggregation. It is necessary that

� log G(ans) = log G(aAs).

It turns out that the three types of invariance lead to “functional
equations” of almost identical form, although they refer to different func-
tions, respectively, FW, log FM and log GA(s). Therefore, general solutions of
these equations are alike. They assume the following forms

FW(u) = C′ − Cu− α, FM(u) = exp( − Cu− α), and GA(s) = exp( − Cs− α).

One easily verifies that aα
M = aα

A = ∑anα and aα
W = (1/N)∑aα

n .

I shall now show that the above conditions are not sufficient, and that
additional requirements must be imposed upon C′, C and α.

Maximization. The distribution function of a random variable must be
non-decreasing such that FM(∞) = 1. This requires that C > 0 and α > 0,
which leaves us with FM(u) = exp( − Cu− α).

Mixing. In order that FW(u) be non-decreasing and satisfy FW(∞) = 1, it
is necessary that C′ = 1, α > 0 and C > 0.

Aggregation. In order that GA(s) be a generating function, one can
show that it is necessary that 0 < α < 1 with C < 0 or 1 < α ≤ 2 with C > 0.
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&&&&& POST-PUBLICATION APPENDIX  &&&&&

THREE ASPECTS OF THE NOTION OF RENORMALIZATION

1. Footnote 4 in the original, and comment. The many footnotes in the
original, except one, were easily integrated in the text. But Footnote 4 did
not fit, and it cried out to be emphasized, because it was an early allusion
to the theme of self-similarity that came to dominate my life and led to
fractals. This footnote 4 read as follows:

“The various criteria of invariance used by physicists are somewhat
different in principle from those I propose in economics. For example, the
principle of relativity was not introduced to explain a complicated empir-
ical relation, such as scaling. I am indebted to Harrison White for sug-
gesting that I should stress the nuances between my methods and those of
physics.”

Harrison White is a sociologist with a background in hard science, and
his comment was made after a seminar I gave in Cambridge in 1962-3,
while I was visiting as professor of economics at Harvard. At that time,
little did anyone expect that 1963-4 would still find me at Harvard, having
moved over from Littauer Hall to teach applied physics in Pierce Hall.
This was in the right place to be reminded of a topic I had studied at
Caltech in 1948, namely the 1941 “Kolmogorov” theory of turbulence. The
“K41” theory concluded that the spectrum of turbulent velocity should be
k− 5/3. Robert W. Stewart's group at Vancouver had been the first to
observe k− 5/3 in an actual experiment, and Stewart was also visiting Pierce
Hall. At this point, it became clear that my version of the method of
invariances has far less to do with Einstein than with Kolmogorov.
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2. The physicists' concept of “renormalization” and the economists'
concept of “aggregation.” Section 3 will discuss the relation between the
method of invariances used in this chapter, and the physicists' renormaliza-
tion. This last term may be unfamiliar to economists, but is conceptually
close to the notion of economic aggregation. The latter addresses the ques-
tion of how, starting with the economic rules that apply to individuals,
one can obtain rules relative to families and larger aggregates. It may be,
but one cannot be sure, that colleagues' interests in this aggregation
helped inspire me to ask how the rules relative to daily price change can
be transformed into rules relative to price change over weeks and longer
periods.

3. Annotation for the physicists. Only a few years after the events
described in Section 1, reporting on the original Footnote 4, a current in
the mainstream of “physics” turned very successfully, to the study of the
“critical points” of thermodynamics. In the resulting intellectual context,
the main themes of this paper are very easy to introduce.

The scaling distribution is known in physics as a “power-law” or
“algebraic” distribution.

The operations with respect to which the tail of the scaling distribution
is invariant are known in physics as “renormalizations.” Three different
renormalization are used in this chapter, one linear and two non-linear
ones. Each has its own “fixed point,” namely, its own “exactly
renormalizable” distribution. Therefore, the key fact of this chapter may
be described as reporting a property of the asymptotically scaling distrib-
ution: it is “asymptotically renormalizable” in three different ways.

Given that this paper was written during the years preceding the ori-
ginal publication in 1963, it could in no way be affected by the later devel-
opment that introduced renormalization into physics proper.


