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This note is a discussion of H. A. Simon’s model (1955) concerning
the class of frequency distributions generally associated with the
name of G. K, Zipf. The main purpose is to show that Simon’s model is
analytically cireular in the case of the linguistic laws of Estoup-Zipf
and Willis-Yule. Insofar as the economic law of Pareto is concerned,
Simon has himself noted that his model is a particular case of that of
Champernowne; this is correet, with some reservation. A simplified
version of Simon’s model is included.

I. A GENERALIZATION OF THE LAW OF PARETO. LAWS OF TYPE (£)

There is a wide class of phenomena, mostly found in social sciences,
which follow laws very similar to that of Pareto. That is, by using a cer-
tain (rather unnatural) notation, one can express these laws in a single
analytic form. To exhibit this expression, consider a (possibly infinite)
discrete population of #tems, each of which carries a label chosen from a
(also possibly infinte) discrete set. Let f(4,k) be the number of different
labels, each of which occurs exactly 7 times, in a sample of & items."

One then finds in a number of situations that, for large values of &,

15) = QU)o
with some p > 0. One will say that such phenomena follow a law of type

1 The “sampling’ method need not be the same in all the examples, and more
will need to be said about it, in each case. Anyway, in some cases one has no
actual control over the sample size, and one cannot compare samples of different
sizes. One cannot be sure, then, of the sampling method which has generated the
closed collection which one observes. The present method of exhibiting the data
for a fixed k has the advantage that the sampling method need not be known; but
this also makes the similarity between the examples below quite questionable,
a priori. This impression becomes stronger as the study of any such law is de-
veloped in greater detail. We hope to take up this topic on another occasion.
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() [in honor of G. K. Zipf (1949), who has been most active in studying
various oceurrences of such laws]. These will always be “weak” laws, in
the sense that they break up either for small ¢ or for large ¢, depending
upon the specific example. The function G/(k), which must have positive
values, need not be the same function of k in the different cases to be con-
sidered. In any case (¢ also depends upon p and upon the form of fin the
region where the law (Z) does not apply any more.

ALTERNATIVE Form oF (Z)

Frequently, one is presented with rough data in which the labels oc-
curring between ¢ and ¢” times each have already been grouped and
counted together (the interval ¢”—" may refer, for example, to an “in-
come bracket’’). Ifurther, these <" may vary along the seale of 4. In
these cases, it i3 more convenient to plot the numbers of items, r, each
of which occurs more than ¢ times as a function of 4. If ¢ is large, one
may approximate the sum » ¢ “™ by an integral, and one obtains:

e J_Z:_f(j, E) ~ GR)s %

One may further order all labels by decreasing numbers of occurrences
in a sample. In this ordering, the preceding r(¢) becomes the “rank” of
a label oceurring ¢ times. It is then often eonvenient to read the above
funection as giving the number of occurrences, 7, as a function of the rank,
7. Obviously,

i=Gk)"Pp VP = @(k)r® (with B = 1/p)

The most obvious property of any of these alternative forms of (%)
is that, if plotted on log-log paper, they all are represented by straight
graphs. This is exactly how all the instances of laws (Z) were first dis-
covered and are best studied now. For example, one should find that:

log f(i,k) = log G(k) — (p + 1) log ¢
log #f(7,k) = log G(k) — plog s
log i = log G'(k) — Blogr
II. THE THREE BEST EXAMPLES OF LAWS OF TYPE (Z)

IncoME DISTRIBUTION AND THE Law oF PaArmTO

One can make the items of the population be quantized units of money,
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and make the labels be the names of the persons by whom each unit of
money was earned (or, alternatively, to whom each unit of money be-
longs at a given time; but this oceurrence of the law (Z) is less well es-
tablished). Then f(7,k) will be the number of persons earning exactly 4
units of money, out of a total income equal to k. The law (Z) holds best
for large incomes. This is the classical prototype of all laws of type (Z)
and it due to V. Pareto (1897). One always has p > 1.

Sizes orF Taxonomic GENERA, AND THE Law or WiLLIs

Let now the items be taxonomic species, and the label on a species be
the name of the genus to which it belongs. Then, in a total taxonomic
“family” of & species, f(z,k) will be the number of genera with 7 species
each. The law (Z), as interpreted in this fashion, was discovered by J.
C. Willis (1922) in the context of biological taxonomies. His work was
made known among statisticians by papers of G. U. Yule (1923) (re-
ferred to in Ieller’s book, 1957, p. 404). The same law was later found
by Zipf (1949) to hold also for nonbiological taxonomies such as names
of professions, business catalogs, etc. In all these cases p is always less
than one, and usually it is close to 4. The sampling process leading to
(Z) is anything but clear, and one needs a delicate argument to see which
quantity is a random variable here. [See B. Mandelbrot (1956).]

Worp Frequencies axp THE Law or Esroup-Zipr

Let the items of the population be the words of a homogeneous run-
ning text of a single author, that is, typographical sequences of letters
contained between successive “space” symbols. Two words will carry
the same label, if they are identical sequences of letters. Then, f(i,k)
will be the number of different word-forms, each of which occurs exactly
1 times, in a total sample of & words (different or not). The law (Z), as
applied in this context, was apparently first noted by J. B. Estoup
(1916), but now—and even more than the other laws (Z)—it is mainly
connected with the name of Zipf. The region where the law (Z) is best
satisfied is that of rare words, that is, of large values of », in (4,r) co-
ordinates, and of small values of 7. One finds, in general, that p < 1 for
word frequencies; that is, B = 1/p > 1. The few cases where p > 1 are
also quite exceptional in other respects (e.g., Modern Hebrew about
1935). The parameter p is a characteristic not only of the language used
but chiefly of the author of the sample under study. One finds that p
inereases with the speaker’s “intelligence” or “wealth of voeabulary.”
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In some of his earlier writings, Zipf claims that he has established em-
pirically the stronger result that p = 1 in all cases. This has not been
vindicated. One may also point out that the law (Z) does not at all ap-
ply to words defined as the lexical units, or to nouns, verbs, ete., taken
separately. This was strongly established by G. U. Yule (1944, p. 55).

III. THE CHALLENGE TO EXPLAIN THE LAWS (Z)

There are many more concrete examples of the type of analytic be-
havior for f{4,k), which characterizes the family (%), although the evi-
dence is nowhere as strong as in the above three cases. These examples
differ in all possible respects, even from the analytical viewpoint, since
the function G(k) may take different forms in different cases. However,
the form of (Z) is so striking, and also is so very different from any clas-
sical distribution of statistics, that it is quite widely felt that it “should”
have some basically simple reason, possibly as “weak” and as general as
the reasons which account for the role of the Gaussian distribution. But,
in fact, the laws (Z) turn out to be quite resistant to such an analysis.
Thus, irrespective of any claim as to their practical importance, the
“explanation’ of their role has long been one of the best defined and most
conspicuous challenges to those interested in statistical laws of nature.
We have devoted several papers to what we hope to be positive contri-
butions to this subject. The present paper is, on the contrary, of critical
character, and will discuss H. A. Simon’s attempt to find a single unified
model for all the distributions (Z) by constructing a variant of the so-
called birth (or birth-and-death) process.

IvV. SIMON'S MODEL

The postulates of this model are made clearer by the following pre-
liminary step. Start from a sample of £* items, with the distribution
J*(4,1:*). Assume then that the sample may be modified by letting k in-
crease beyond k*. (This is a fairly reasonable assumption in the case of
word frequencies, since a text is indeed generated word by word. But a
national income is surely not distributed dollar by dollar.) Look now for
a chance process whereby f*(7,k*) could be extrapolated to k > k* in a
“stationary” fashion. Let f*(4,k) be the expected value of f(4,k), given
the initial condition f*(7,k*).

The most obvious procedure is to “‘estimate” that the probability that
the next label will be one of those which has already occurred 7 times, is
exactly 2/k. This determines, at every step, the population from which
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the next label is drawn. If so, the increase f(<,k + 1) — f(4,k) is made
out of the difference between (a) those cases where one draws a label
which had previously oceurred 7 — 1 times (and which now comes into the
class of labels occurring 7 times) and (b) those cases where one draws
a label which had previously occurred 7 times (and which now comes out
of the class of labels occurring 7 + 1 times). Thus, f(Z,k) and also
f*(2,k) satisfy the difference equation:

FrEE+ 1) — 6k = (/B — 1) f¥(¢ — Lk) — ¢f*(i,k)]

Let us approximate this by a differential equation.” One then obtains af-
ter a few steps

Glogf*(m 9 log (z'f*)) __dlog (if*)
dlogk \ dlogk / dlog 1

Hence, obviously , there must exist some function /' (x), such that
if*(4,k) = F'(i/k)
f*(i,k) = (1/k) F(i/k) with F(z) = (1/z) F'(x)

The function F' is determined by the initial conditions f*(7,k*), and it
is defined only for (i/k) > 1/k* With different initial conditions, one
may get any function f*(4,k) whatsoever, a quite obvious result.

However, the “estimation-theoretical”” extrapolation does not allow for
the possibility of sometimes drawing some entirely new label. Simon
deals with this difficulty by postulating that there is a well-determined
probability, «(k), for such an event. His model therefore strongly de-
pends upon the possibility of generating his sample item by item, and
(a priort) it is more appropriate for word frequencies than for income
distributions.

If «(k) is known, the probability that the next item will carry a label
which has already occurred ¢ times could then reasonably be taken to be:

(1 — «)(4/k) (instead of i/k)

? Bimon does not do this, but at the end of his argument he approximates an
eulerian beta function by a power, which amounts to the same thing. Note also
that Simon’s funetion f*(7) is defined (between formulas 2.9 and 2.10) to be in-
dependent of k. Then, (in formula 2.21) it is derived to have the form f*(i) =
kaB(i, p + 1)/(2 — a). Further (between formulas 2.17 and 2.18), it is stated that
f*(@) should be a “proper distribution funetion,” which would require that
3% iB(, p+ 1) converge as k — . This restriction actually excludes any prob-
ability distribution function with an infinite mean value.
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This is easy to visualize (at least in the case of word frequencies) and it
is sufficient to derive f(7,k). But it is in contradiction with other experi-
mental facts concerning possible stochastic processes generating the data
following the law (Z). To avoid this difficulty, Simon puts together all
the labels which had already occurred ¢ times and he assumes their joint
probability to be (1 — «)(i/k)f(4,k). Therefore the stochastic model
with which he works from then on remains compatible with a great many
actual processes. The fundamental differential equation finally becomes

3 log (f*) d log (#f*)
=t = (]l — @) "
dlog k dlog
Case WHERE p > 1
Tirst, Simon assumes «(k) to be a constant ¢ (independent of k).
Then the solution of the fundamental equation is:
i*(ik) = F(ki®) withp = (1 — )™’

Further, a(k) = dn(k)/dk, where n(k) = 2_i=y f*(4,k) is the total num-
ber of labels in a sample. Therefore, n(k) = aok. This requirement may
in particular be satisfied by picking the so-called ‘“‘steady-state’ solu-
tion, in which each f* is already proportional to k. This gives

F(ki®) = (constant) k7 "
or
if*(i,k) = (constant)-kz *

This is, indeed, the form (Z) with the restrictions that p > 1 and G(k) = k.
Actually, f* ~ k cannot be considered as being a steady-state require-
ment, and if this condition is dropped, /* becomes (roughly speaking)
undeterminate. We hope to take up this topic on another occasion, and
wish only to show here that even the presant approach is undoubtedly
inadequate for p < 1.

CaseE WHEREp < 1

To derive (Z) within Simon’s framework, one is now obligated to as-
sume that o (k) varies with k. In fact, if (Z) is to hold one must somehow
find that

a log (if*)
dlogt
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Hence the requirement:

d log (if*)
becot SRV (SRR
3 log F (1 — a(k)]e
Since o« < 1 and p < 1, then (1 — &) p < 1. This means that the num-
bers #f* increase less than linearly with %, and so does the total number
of labels n(k) = 2_f*(4,k). Finally, a(k) = dn(k)/dk must tend to zero
for k — o, so that, for k& >> 1, it is sufficient to approximate f* by the
following expression:
if*(4,k) = (constant in k) -£”

But it has been postulated that

if*(4,k) = (constant in 7)-7 °

Therefore, one must have (that is, one wishes to obtain as a result):

if*(4,k) = (econstant)-(7/k)™"
This requires that

k o0

n(k) = 3 Gk ~ 3 FHEER) ~ B Y i
1 1
n(k) ~ (constant)-k°

and

a(k) = dn(k)/dk = (constant) k"

To sum up: if one wishes to obtain the law (Z) with p < 1, one must
postulate explicitly that (k) = (constant) -k° 1. No other a(k) would lead
to (Z). This result was unfortunately not explicitly written down in
Simon’s paper.

V. CONCLUSION

Simon’s model 1s not adequate as an explanation of the whole of the fam-
iy (Z). It may conceivably be made acceptable if p > 1, (if the steady-state
requirement may be motivated, or is added as a hypothesis). But the model
18 certaznly to be abandoned of p < 1.

The point is as follows: Simon showed that the law (Z) with p > 1,
may be derived from «(k) = «a. This criterion is a most difficult
one to comprehend in the Pareto case, since this case is also precisely
one for which the generation of the sample item by item is least justi-
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fied. But this form of «(%) is still far simpler than that of (Z), to be ex-
plained. Thus, the reduction of (Z) to «(k) fits into one of the universal
aims of scientific explanation, which is to reduce the complicated to the
simple—even if this simplicity is at a level difficult to comprehend. (For
example, the physicist finds it quite acceptable to base statistical thermo-
dynamics upon the equiprobability of all microcanonical configurations,
a conjecture which nobody can possibly ever check). Stmon’s model, then,
should be followed up and improved in the cases where p > 1, such as
Pareto’s case. Such a study will be practically identical to that of the
more general model of Champernowne (1953).

Suppose now that p < 1 (this includes the word frequency case, for
which the generation word by word is sensible). In this case, Simon at best
reduces f(7,k) (an easily observed fact) to «(k), which is quite con-
jectural and difficult to check experimentally, and besides is analytically
identical to f(2,k) and therefore altogether exactly as untractable. Any-
way, he makes no attempt to explain this e(k), and does not even write
it down explicitly. From reading his paper casually, the impression could
be derived that if p < 1, any smooth and slowly decreasing function a(k)
could explain the law (Z) just as well. Actually this is not so, and the
model ts circular, from the viewpoint of the analytic form of the premises and
of the conclusion. This invalidates Simon’s model, insofar as it concerns
the Willis-Yule law and the usual (p < 1) case of the Estoup-Zipf law.

The objection does not apply to those Estoup-Zipf data for which
p > 1. But, even there it is found experimentally that in a first approxi-
mation the rank order of words varies little with & and that ¢/k must
tend to some limit for each r. On the contrary, Simon finds that

i/k = (constant) -k

which tends to zero as & — . Therefore the “steady-state” condition,
from which this result follows, is in contradietion with a well-established
experimental fact.

It is true, of course, that this first approximation is rather crude. In
every text there are some words occurring with an exceptionally high
frequency which cannot be explained by chance fluctuations only. In
fact, these words carry most of the information concerning the “topic”
of a text. But they are so few in number (see the work of H. P. Luhn)
and their behavior is so little known experimentally, that it seems un-
likely that any model could, at the present time, have the desirable fea-
ture of accounting for their behavior.
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VI. CONCERNING MANDELBROT’S THEORY
OF THE ESTOUP-ZIPTF LAW

Against our theory of this linguistic law (1953, 1957a, 1957b) Simon
presents two main objections, both of which appear to be ill-founded.

(a) He objects to the use of the maximizing procedure to show that
the state of a text in which the listoup-Zipf law is true is the “most prob-
able” state, or the state of greatest information. He states that thermo-
dynamies (which is the original model of our theory) “prefers averaging
procedures.” This is undoubtedly so, but it is only a matter of taste and
of convenience and, for large systems, both methods are known to lead
to the same result. Actually, in our paper (1957b), we have used the
average-state argument, instead of a maximization.

However, one advantage of maximization is that the logarithm of the
probability of a state may be interpreted as an information, and the most
probable state is then also interpreted as being the state of largest in-
formation. This is a most interesting property, even if the maximization
of information is not taken more literally than the maximization of
entropy in the stationary state of thermodynamies,

(b) But, precisely, Simon objects a prior: to our use of the concept of
information, stating that “numerous doubts (which he shares) have been
expressed as to the relevance of Shannon’s measure of information for the
measurement of semantic information.” We may say that, in our eyes,
there should be no doubt on this account: “information’ is utterly irrele-
vant to “semanties,” and its use in linguistics only shows that some mat-
ters in that field may be explained without any semantics whatsoever.

REecE1IvED: November 17, 1958,
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