FOREWORD OF THE REVISED REPRINT (1962)

In this reprint, several misprints have been corrected and a host
of side~-remarks and references have been eliminated. The reader is,
however, asked to substitute by himself, all through, "Gibbs' distribution"
for "Maxwell-Boltzmann distribution''.

Most of the technical contents of this paper have been superseded
by the following articles by the same author:

""The role of sufficiency and of estimation in thermodynamics'',

The Annals of Mathematical Statistics, Vol. 33, September 1962.

"Derivation of statistical thermodynamics from purely phenomeno-

logical principles', IBM Research Report NC-106.

"A critical Note on Information Theory and statistical mechanics",

IBM Research Report NC-107.

However, none of these new publications touches the methodological
problems which are discussed in the present older work.
The present paper had been summarized in a short Note in French,

in the Comptes Rendus de 1'Académie des Sciences, Vol. 243, 1956, pp 1835-

1838.
The Parts II and III,announced in the original of this paper, have not
been written as such. A summary of Part III was published as a short Note

in French, in the Comptes Rendus de 1' Académie des Sciences, Vol. 249,

1959, pp 1464-1466.
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Summary. '"Beltzmann's problem' of statistical
thermodynamics is that of eliminating the para-
doxical incompatibility of structure, existing
bhetween the irreversibility of classical phen-
omenological thermodynamics, and the revers-
ibility of kinetic model$§.

One {inds that, in
order to consiruct kinetic "amlogs'' to the laws
of phenomenological thermodynamics, the dynam=
ics of large assemblies of molecules (Liouville
theorem, etc. ...} must be completed by some
hypotheses of randomness, Once established,
this randomness can be followed up in its
development with no new conceptual paradox,

but the introduction of randomness still raises
entirely uncleared problems. Since,therefore,
the kinetic foundations of thermodynamics are
not sufficient in the absence of further hypotheses
of randomness, are they still quite necessary in
the presence of such hypotheses? Or else, could
not one ''short-circuit" the atoms, by centering
upon randomness.

intreduced by the process of observation? Our
aim is te show (partly after Szilard) that . sub-
stantial results, usually obtained
through kinetic arguments, could be obtained by
postulating from the outset a statistical distri-
bution for the properties of a system, and follow-
ing up with a purely phenomenological argument,
The spirit of the theory is extremely close to
that of the Copenhagen approach

to quantum theory,

Randomness is introduced by following
the modern statistical theory of the estimation of
non directly observable intensive variables of
state, such as the temperature. The discussion
of the methodological foundations of modern
statistics can thus be translated into a full-fledged,
and possibly significant jcounterpart of the
discussion of the kinetic foundations of thermo-
dynamics. Statistics is thus provided with a
particularly concrete example for some of its
more involved methods; thermodynamics appears
clarified in its classical aspects,

1. Introduction

1.1. The nature of the problem.

The aim of this paper differs in one essential
respect from that of mo=t investigations on
statistical problems,

This difference should be stated at the
outset, in order to avoid certain misunderstand-
ings. Most authors in statistics are concerned
with broadly engineering problems, and Uhey

assume that a sufficiently
complete understanding and description of the
necessary laws of nature has already been
acquired elsewhere,

Qur problem is precisely
the opposite: we wish to improve the knowledge
and presentation of
physics,

Any degree of success, we could achieve,
would be new proof of the fact, which is of course
quite familiar, that well-chosen engineering
problems often bring out the essentials of a phy~-
sical situation, in a way that is useful in a far
wider context. Such used to be the role of heat
engines in thermodynamics. Later on, one
tried to use the problems of coding for the same
purpose : the starting point of those attempts
was the misleadingly simple-looking problem,
raised by the fact that the definition of Shannon 'g

information ¥ Jg :
mathematically identical tod classical definition



of entropy by Boltzmann, The study of this pro-
blem was brought together with that of Maxwell's
Demon , Buk~

none of the now numerou$4 attempts, to clarify
the relationship of information to entropy, is
generally felt to have brought much to either
communication or thermodynamics.

However, the more general problemof the role of

observation and of the observer in thermodynamics,

could now be studied in detail  with the help of the
statistical theory of estimation,
has become a -
model of

methodological
inductive behaviour
in the face of the unknown.?

It will be attempted to build a theory of therm-
odynamics, which will be statistical as well as
phenomenological, around the problem of the
statistical estimation of state variables; the
problem of entropy and inforrnation will constitute
an application of the theory (A previous attempt
by the author in chap 4 of 3 is now quite obsolete,
but the philosophy of models given in other chap.
of that reference stands fortified by the present
work}.

Szilard's 8 previous approach is of the greatest
relevance for the problem.

which

1.2, The nature of the result

) i One aim
of communication theory is to find ways and meang
satisfying certain criteria of quality, by which a
signal could be detected through a backgroung of
noise, It has been recognized for some time
that this problem is, in principle,simply one of
estimating ''at best" the emitted signal, S,,
knowing the received signal Sy, For that, S; is
considered to be an observation from a random
(because perturbed by noise) population of
signals, and S, is the parameter of this popu~
lation.

The distribution p(Sr]Se) is considered
to be a part of the engineer's scientific know=-
ledge of nature, that is : at worst, it must be
determined by special observation} at best, '

; * it is given by physical laws of
general validity: those of thermodynamics and
of quantum theory, We shall show that, con-
versely, the conventional laws of thermo-=
statls’ucs, ol

Can be obtained by caracterizing thermal
noise as being theleast diqturbing for the
physzmst’r}\ certain amount of imprecision in

what is thc least disturbing"will be shown to be _
allowed by a corresponding familiar imprecision
of thermodynamics, The main criterion in-
volved, that of "sufficiency of certain valuations
of observation', is not even a variational
criterion : it postulates the impossibility of a
certain inference, and is an authentic counter=
part of the exclusion of certain heat engines by
the Carnot principle. Anyway, the
arbitrary anthropo-centered character
in the theory, will be a counterpart of the arbit-
rary assumptions about molecules, required in
the kinetic models which aim to explain why
noise is the least disturbing for the observer
which is considered.

Further methodological discussion of the
approach will be made in § 4, when the systems
sutdied are defined (§2), and the Maxwell Botz-
mann distribution is derived in several ways
(§3). Final discussion will be included in §6.

sremaining



2. States of a statistical physical system

2.1 Restriction to one-parameter systems

In any truly stochastic physical theory, the
relationships between the various state variables
of a system are assumed, from the outset, to be
ruled by probability laws, The degree of com-
plication of a theory is then determined by the

ost complicated family of probability distri-
butions considered in that theory. We shall
start by a restricted problem, in which the only
families to appear will depend upon a single
real parameter.

2.2 Definitidons

Consider a set of methods of measurement,
defining a certain level of refinement of the
physical analysis. Physical variables can then
be of several kinds, distinguished as being, on
one side, extensive or intensive; on the other
side, as being observable or estimable,

Observable variables are those which can be
considered as random variables (r.v.)before
measurement (and expressed by capital letters,
such as U); and can be actually and directly
measured by - real
numbers (expressed by lower case 1ctters such
as u), The precision of results of measurement
will alwayq be taken as mfnute which means that

we shall consider
that,by measuring an observable, one actually
and physically puts the system in a '"'state' des=~
cribed by the value which has been found. The
measurement may of necessity be infinitely
slow. Of course, even then,the results of
measurement are usually given only within a
margin of possible error, relative to a"truer”
value; the latter would be a r,v., depending upon
the system itself, whereas the error would be a
r.v. depending upon the process of observation,
But in fact, there is no criterion for sharing the
contributions of the two sources of randomness;
at best, the "true'" value could be considered as
an estimable,

Consider now a system before measurement,
Its ''state' is a probability distribution function
(p.d.f.); it can be considered as a "mixture' or
"superposition' of ""states' after measurement,
If necessary, the state will be called "mixed",
as opposed to "pure' states after measurement,
This is a relative concept, since a state which is
pure with respect to one observable may also be
"mixed'" with respect to another. A pure and a
mixed state are complementary uncompatible
descriptions of a system. Measurement thus
involves an unpredictable sudden jump from state
to state, or rather from being partly in several

states into being in one: this has nothing shock-
ing in detection theory.

Estimable variables are those parameters
which express the dependence of the probability
distributions of the observables, upon the pro=-
perties of the physical system studied. One
must therefore consider populations of systems

having the same value for some estimable, When
such an equality can be considered as realised by
a physical interaction, the estimable is called
"intensive". However, much of the theory holds

for any estimables,

The obvious example of an ohgervable is the
energy U; the corresponding estimable variable
is the inverse temperature B (the '"observable"
character of the energy is an universal axiom of
physics, although sometimes hard to justify). A
measure of energy is, for example, obtained
with a so.called "thermometer'! by observing
the change in its geometrical shape when it
absorbs U, On the other side, the uniformity of
the B's of a set of systems can be ascertained
by letting them a sufficiently long time in ther=-
mal contact.

Let the probability
distribution and density of U be
given by P(y[8) and p(u[B) :

P(u[B) = Pr[UsulB] ; p(a]B)

Both kinds of variables have been defined
within a one-to-one transformation, only, Some-~
times, there exists a particularly intrinsic
determination of an observable which is additive,
i.e. such that the u of any union of disjoint sets
is the sum of the separate uj. The p(u]|B) is then
given, knowing the p; ('11'5) by "convolution",
iterating the h\,hcgeoj

J‘ P1 (uIiB) pz {u - ul\B} du; .

B is still an estimable variable of the sum; it is
also an estimable variable of any subdivision of
the system, if possible,

= dP/dB

2.3 The estimation of estimable variables

Consider now a system of known energy w,
Let the prior density p(u[B ) be positive for all
positive u, as is usual, Since the energy is
known, the very definition of estimable variables,
as parameters, fails. In fact, d single system
can be considered as being in "thermal equili-
brium' with any thermostat (i.e. an infinite set of
other systems in thermal equilibrium with each
other), since the addi ion of a single system,
having a possible value for u, does not perturb
the probability distribution of an infinite set,



From the viewpoint of prediction of future events
happening to the system, the population from
which it is drawn should have, intuitiveley, little
importance. )

Strictly,
to know B is therefore a problem of "retro-
diction'. But one may also wish to predicta
prior distribution, for the energy of other sys-
tems of the set from which the {irst was drawn,
and,for that,some reasonable guegsing of the
initial B would be useful. This B, although un-
known, is not a random variable. Except under
very rare conditions, where one has a prior
distribution for it (the "Bayes case'), there is
no limit-of-frequency sense, to be attributed to
the feeling that "some values of B are more
‘probable’ than others'. However, there is a
very clear meaning to statements of probability
of making an error by guessing a certain value
for B. One can then try to construct estimators,
or estimating intervals, so as to minimize
certain chosen probabilities of error. Mathe=~
matical statistics is a technique for doing so,
but it cannot ever justify any chosen criterion
of good guessing.

Any estimator is a single-valued function of
u; therefore, by applying it to parts of a whole
of uniform temperature, one obtains a classical
probability distribution of estimated "local
temperatures'': the parameter of this distribution
is the true B : therefore estimates of B are not
intensive variables. Many estimators are
consistent, i.e, the distribution of the local
temperatures gets more and more concentrated
around the true value, when the size of the samples
used increases, This makes it possible to
measure the temperature of an infinite set with
any precision. But for any sample size, the
estimation of B is an essentially irreversible
procedurc; R

Under these conditions, the replacement

of the knowledge of u, and of p{u}B), by a single
estimator £or by upper and lower bounds for
B] is an operation entirely different from the
measure of the random variable U. In the Bayes
case, however, it is very close to the operation of
prevision of the most probable or average future
evolution of a system ruled by probability laws,
The predicted evolution is of course different {from
the actual one, The point has lead to great
discussion in quantum theoryfsee von Nc-urnann13
§V.l.]. But a simpler case of the difference bet-
ween spontaneous random evolution, and noisy
estimation is given in informationtheory by a
comparison of Shannon's definitions of information
of a Markovian message and of a noise-perturbed
one, Both are specified by matrices

such that line sums are one, But the

ideas are entirely different,

In view of this irrevelibility of estimation, we
shall delay the consideration of specific methods
to §5, and first consider the case where there
exist intermediate steps of the estimation, which
are

such that if one takes them, one loses
"no information", in appropriate senses of
Minformation”(more general than Shannon's), Qunr
definition of reversibility will fully determine tne
Maxwell-Boltzmann distribution, that is : Ug Wil
characterize thermodynamics.

3, The reversible part of the estimation of B,
Derivations of the Maxwell Boltzmann dis-
tribution.

3,1 First derivation, based upon the concept of
sufficiency.

Criterion of sufficiency. Suppose that the exten-
sive observable u can be chosen to be additive :
this is indeed a very strong hypothesis, since it
excludes any interactions between neighbouring
systems, and a fortiori quantum interactions
between distant systems. Let us take several
sample systems from a population believed of
uniform B. Let u; be their energies, and

u = Eiui' One could estimate B, through ﬁ
either starting from u or from all the u;. In-
dependence of the result with respect to shgpe
or disposition of the systems,implies that B
should be a symmetric function of the uj. If
moreover any p. (u JB can be considered as the
distribution of A4 sum of still smaller variables,

) one can estimate ﬁ from finer and
tiner subdivisions of the system But B is con-
sidered as a "'macroscopic' intensive variable,
which roughly i mpha that from a certain level
down, no improvement of the estimation can be
obtained by measuring finer subdivisions,



Postulate this independence of the estimate,
relative to the knowledge of individual uj, to be
strict, and no more asymptotic. This means that,
for example :

(s) Pr (u]_lu, B) = Pr (u)fu)

independently of B. Nothing could then be drawn
from the observation of the sample distribution
of the energy among the different parts j no
Maxwell' s Demon could beat the macroscopic
observer in the estimation of B, by measuring
the partition of energy among molecules. In
R.A. Fisher's!? statistical terminology, u is then
said to be a sufficient statistic for the estimation
of the original B. '

it will
turn out that sufficiency is implicit in the
usual thermodynamics,

To sum up, the principle of sufficiency can be
considered as established by all the experiments
leading to the belief in the possibility of mac-
roscopic description: It is thus established only
below a certain level. On the contrary, the prin-
ciple of additivity is established only above a cer-
tain level. We postulate that both hold exactly
in a certain strip of sizes.

Maxwell Boltzmann (M.B,) distribution, Under
certain regularity conditions, the only distribution
for which u is a sufficient statistic for B is the
M.B. probability density :

p(ulB) = G7'(B) S(w) ep(-Bu)

The detailed statistics can be thus derived from
a single overall principle, a qualitative one, in

the sense that it answers to a’yes or no”alternative:

this cannot fail to recall Carnot's principle;-

the scale of B - 1§ fixed l”)f pi“-lﬁ 5 Hack
of u is fixed by'additivity,
One can prove from sufficiency that the best
estimate qf any function of B is that function of the
best estimate of B ; in the case of sufficiency,
estimation and functional transformation are
commutable.

The above result was proved independently, in
1936, by G. Darmois 10 , B. O.
Koopman” and E.J.G. Pitmanls: before them, it
was implicitly proved by L.Szilard® in 1925.
Under slightly weaker conditions of regularity,
the distribution need not have a density, and
may be of the form :

dP{u/B) = G7'(B) V() exp (-Bw)

S(u) and V(u) are the "structure function' and

the "integral structure function' of the system.
The "structure generating function" G is, because
of the requirement that fpdu =1, the Laplace

transform

(@)= S explBu) du - fexp(BYMY)

EU-E(WB)- foptct)au= - L2

ab
DU=D{UJB)- f{u-EW) pl/B)du
- d*log G(®

= iy
Note that G(B) may be defined only for

B :>Bg>0, and diverge for

B<By - It is impossible in ordinary thermo-
dynamics of matter, that By >0 ; but,
clearly,the present theory is much more general
than is required by matter, and there are except~
ional applications where a positive abscissa of
convergence of the Laplace transform is the
main feature;see 1,2,3,4,

\0‘5 6 (8)/B is identified to the '"free energy"
of a system , Xt is seen that the free energy
cannot be any function of B : its exponential
must have a posttive inverse Laplace transform
(it is also called ''completely monotone''; the
signs of successive derivatives alternate). This
fact has, surprisingly, never bean mentioned, to
our knowledge, in papers on statistical thermo-
dynamics : it is clearly because for very large
systems, it is irrelevant, cf. §6, so that there
is no need to justify it in large scale thermo-
dynamics,




Distribution of a sum of MB systems. Consider
the sum of two systems following MB distributions
with respectively structure and generating funct-
ions Sl. S;, Gl' Gy and same B. The distribution
of the energy of the sum of these systems will be

plu/B)- () Glorp (- BuSe -, )6 (8) expl B g
:[L"S,{u)ja‘(u-u.) du 4 ][G,(&)Ga(tb,ﬂxy(: Bu)

Thus, the distribution of the sum of MB .;systems
of same B is still MB : in the addition, structure
functions transform by convolution, generating
functions simply multiply, and th’ (B) functions
simply add.

The same results clearly hola
for finite sums of systems, and also for denumer-
able sums.

3.2. Szilard's derivation of the M, B.distribution

It turns out that the above derivation of the
M. B. distribution could have been an inverted
paraphrase of a derivation due to Szilard?

uften quoted( see
von Neumann13) but seldom analysed. Similar
considerations can be found in a paper by G.N.
Lewis",
Both authors wished to show how fluctuation
phenomena can be introduced into classical
thermodynamics, without destroying its structures
and spirit. "The second principle loses nothing in
rigour because of fluctuations, and in no way
becomes an approximate principle : it melts into
a higher harmony containing the laws of f{luctua-
tion,"

Szilard considers systems in random evolution,
i,e. such that their properties at one time determine
only probabilities at a later time; in particular,
energy exchanges between systems in contact are
only random. He assumes that the probability
distribution of a system at an instant of time
depends on one parameter only, the temperature,
that systems which have long been in "thermal" .
contact and have exchanged energy have equal
temperatures and may be considered to be in
thermal equilibriumj finally, that systems in
thermal equilibrium at one time remain in
thermal equilibrium. The existence of a single
number T, characterlmng thermal equxhbnum is
the"Zeroth principle”of thermodynamicd,

(The fact that energy does not
vary in the interactions,is the First Principle).
Temperature is not however assumed to deter-
mine a single energy, but only some super-
position of states of different energy)

this distribution is realized
among systems having long been in long thermal
contact with a '"thermostat''.

The infinity of possible energy distributions
will now be reduced, and the fact
that p(u"f‘) cannot be modified without
compensation

will be translated into
postulates about the more detailed nature of
thermal equilibrium, which are a priori only
"'reasonablel but a posteriori experimentally
correct,in the sense that they lead to the M.B.
distribution.

Let two systems, of energies uj and uj,
initially in contact with a thermostat, be sép-
arated and brought in very long thermal con-
tact with each other. Their initial energies
U]l and U, were independent random variables,
of same parameter T. Szilard assumes that
the nature of thermal equilibrium Is such, that
the energies U') and U' after long contact,are

“random variables having
distributions independent of the 1nitial
temperature and of initial values uj and ujy, and gna
conditioned only by the constant total energy u.

Similarly, Lewis considers that, when a
quantity is shared between two systems, the
ratio of specific probabilities of any couple of
partitions depends only upon the nature of the
two systems, and in no way upon their method of
connection, or upon the existence, nature or mode
of connection of other systems, He then post-
ulates that one should expect that the probab-
ilities of various partitions of a quantity U bet~
ween two systems depend only upon the total u,
and in no way upon the reservoir with which the
two parts are in connection. Thus, one would
expect the same partition, whether the two
systems are In very imperfect contact with
one reservoir, or whether they are in contact
with another reservoir, of very much higher
temperature, but have the same total energy
through a very rare {luctuation.

It is seen, with great pleasure, that both
authors have rediscovered the principle of
sufficiency, exactly in the form (S) of § 3],
but have interpreted it as a property of equilibriwmn,
not of observation, As already mentioned,

Szilard has even anticipated the derivation of the
M. B. formula,



Throug‘h a discussion of fluctuation sizes
for different systems, Szilard shows that T is
a universal temperature;

Principle of Onsager-Casimir. In the theory
of the irreversible decay of deviations from
equzhb):'mmzZ one has to assume that the same
laws apply to”small but macroscopic "deviations,
and to {luctuations. This amounts to postulating
that the way a deviation was reached is irrelevant,
and only its amplitude imports. This mark-
ovian hypothesis?3 a probabilistic form
of Huygens's principle,

leads to Onsager s relations of reciprocity. In
the theory of equilibrium,
one makes a weaker hypo-
thesis that independence from the past is attained
after a long time only. Thus, Onsager's theory
is a quite proper "interpolation' of the present
theory, with a full markovian hypothesis. It is
curious to note that a weakened probabilistic
Huygens's principle leads to the same resulis as
Carnot's principle.
3.3. Second derivation, based upon the concept of
efficiency.

Criterion of efficiency. It was mentioned in §3.1,
that, since the estimate of B is a non-random
function of u, it is a random variable, when referred
to the ensemble of constant B, from which the
system is drawn, Assume that the distribution of
the u is known, but not necessarily M. ., and
compare different possible methods of estimation,
all assumed to be unbiased, that is such that the
mean of the estimator is equal to the true value.
For that, compare their variances, i.e. mean
square deviations from the mean.

It can be shown ] )
that, which=

ever the distribution p( u\B) the variance of an
estimate of a function {(B) is necessarily

bounded below by the expression :

D[t {B)Jn(_f&) where T E(‘H%Pé@)g’: E( d*log PMB)) .

B?

F is called "Fisher's information' ., This
limit means not only that one does not know
how to perform a more precise estimation,
but that under certain conditions of
regulanty. one could not concewe of any such
estimation,

Maxwell-Boltzmann's distribution. Usually,
there are still closer lower limits to variance,
but Fisher's limit can be exceptionally attained.

Under certain conditions of regularity, the
Tower limit to variance can be attained only
with the M.B, distribution. Thus the overall
statisfics can also be derived from a variation-
al principle.

Then, Fisher's information takes the espec-
ially simple form

F-=2 log G(B) = D(E)

d.b"

= -31056/3‘

Uncertainty relationship.. Let {(B)

Fhem EXE GEN

The less well-known is the energy of a
system, when its true temperature 1s known,
T“f_rger” the system Em terms of its

Cng G (B ] and the better the temperature

can be estimated
And conversely,

Or else, disregard the true temperature,
Any estimation gives B together with DB
identif{y the estimator of B with the true B, but
only for the purpose of éstimating the DU of U
before the measurement. Then, the larger DU,
the smaller DB,

.



One cannot fail to note the formal identity of
this with Heisenberg's relationship,
or its equivalent in communication: Gabor's
relation "D{. Dt = V2" in the spectral analysis of
signals, In fact, all three
result from equality cases of Schwartz's inequality
for dual variables, It does not matter
whether the duality is Fourier, (quantum theory
and spectral analysis) or Laplace (here). But,

. in Heisenberg's
relationship, the observer can choose which
variable he wants to know with greater precision;
here, . '

B is known exactly only for
the infinite thermostat, and U exactly only when
it is certainly zero.

Proper scale. It would be pleasing to have a new
scale ol B, such that DB be independent of the
estimated B, that is, from the measured u, (This
seems to be what MacKay calls the ""proper scale'),
Clearly :

B
5,(8)- § [ 0E0 48

Wole thak £(B) = -dlogG(8)/dB
= E_(U’EB) . In other terms, the
estimation variance of the "true' value EU, is
equal to the fluctation of u around ‘its mean
value, This is not obvious, but a theorem which
should be brought together with the fact, ment~
ioned above, that when a sufficient statistic exists,
the estimate of a function of B is the function of
the estimate, The fact, that even when u
is assumed strictly xnown, there is a sense to be
attributed to the fluctuation of something very
close to U, is very comforting,in view of the
paradox in considering the measure as infinitely’
precise, But even this new noise has nothing to
do with "hidden variables',

3.4 Other derivations of the MDB distribution

The concept of sufficiency has many other
aspects;

sufficient
valuations of observations preserve "information"
in many different senses of the word, Fisher's,
and also Shannon's and in a generalisation of
both these senses due to Schutzenberger,

4. Discussion on the methodology of §3 :
Two complementary types of statistical thermo-
dynamics.

Let us interupt here the construction of the
theory, to comment upon what is being done,

We have succeeded (partly after Szilard) in
deriving, from purely phenomenological criteria,
some results of statistical thermodynamics, a
science considered to be so deeply related to
kinetic and such models, as to be also called
statistical mechnnics. The M.B. distribution is
no longer characferized as being the one which
would be steady under collision phenomena, but
as having certain good properties under obser-
valion. '

How does this fit into the classical scheme?

4.1 The two classical methods of thermodynamics.

At least since Clausius, one recognizes two
methods of mathematical structuration for
thermodynamics: the phenomenological, also
called macroscopic, pure, classical, axiomatic,
etc., and the kinetic, also called microscopic,
statistical, etc..,. The latter contains more
results than the former, in particularlt i'ﬂdudts the
statistics, and is also the older of the two (the
Greeks, Gassendi, the Bernoullis), and closer
to intuition, Despite this, it is considered as
conceptually subordinate to the other, since it
is required to derive the principles of the other
as theorems, whereas the reciprocal is usually
not considered,

How well is this explanation achieved? From
the viewpoint of rigor, notorously " poorly:
ere is.in fact a complete paradox in
any kinetic explanation: the fundamental
incompatibility of structure between the irrev-
ersibility of some principles of phenomeno-
logical thermodynamics, and the mechanical
reversibility of any purely kinetic model
of - these principles{e.g. the
paradoxes of Loschmidt and of ZermeloZ5),
These objections gradually forced Boltzmann to
add to the mechanical assumptions. Following
Uhlenbeck, let us call the problem of recc_mciling
the two viewpoints, Boltzmann's problem The
ideal would have been to derive the macroscopic
resultd fromm microscopic assumptions; but in
fact ones7 is more properly looking for
logical structures analogous to thermodynamics,
by adding to the kinetic models some rather
arbitrary randomness assumptions, often intro-
duced through the necessary inprecision of



"coarse observation': Any initial unevenness of

probability distribution, although strictly preserved,

because of Liouville's theorem, is supposed to
dissipate itself into thinner and thinner stream-
lines; so that any coarse density becomes uniform,
after an average time which increases when the
coarseness decreases,

A very old
system tends towards the situation, in which
there is a sharp discontinuity
of phenomena near infinitely sharp definition,
This recalls the singular phenomena observed
when the viscosity of a fluid tends to zero, which
also relate to irreversibility and dissipation),
Once established, this randomness can be follow=-
ed in its development, with no new conceptual
paradox, although with great technical difficulty,

But the introduction of randomness still
raises entirely uncleared problems.

4,2 Statistical thermodynamics without hidden
variables,

Since, therefore, the kinetic foundations of
thermodynamics are not sufficient, without a
further hypothesis of randomness,
are they still necessary in the presence of such
a hypothesis? After all, although statistical
thermodynamics owes its origin and development
to the theory of atomism, it need not always be
so. In fact, partly after Szilard”, we are in the
process of showing that one can "short.circuit"
the atoms by centering upon any element of
randomness, for example introduced through
necessarily unprecise observation, and we are
deriving a substantial part of the fundamental
results, usually obtained through kinetic argu-
ments, by following up the introduction of random-
ness in a purely phenomenological way.

The fact would have been of course more
striking, before the times when atomic theory
caased to be a doubtful conjecture. It is
also a pity, that' Szilard's original paper was not
more often quoted in contemprrary ( around 1925)
discussions about the '"causal interpretation' of
quantum theory through ""hidden variables'. In
fact, a rapid decline of interest in the phenomeno-
logical and ""energetist" approach to thermo-
dynamics was contemporary of the Copenhagen
approach to quantum theory,

There is however a renewed
interest now in causal reinterpretations. Take for
example von Neumann' sl3 proof of the impossibil-
ity of introducing hiddevariables, into the

Copenhagen approach to quantum theory,
This proof is part of

a reduction of a large part of the quantum rules
b a set of phenomenological and axiomatic
rules for observation, starting from a purely
stochastic viewpoint very similar to that used
here. The incompatibility between a quantum
structure and hidden variables, may therefore
be compared to the incompatibility between
thermodynamics and kinetic theory
Atgattempt
to go around those paradoxes, such as current
work of Bohm30, de Brogl ie3! and Vigier32,
be compared to the attempts to "solve"
Boltzmann's problem., This current work does
not actually attempt to build a theory of which
the quantum theory would be the '"thermo-
dynamics', but simply to disprove the imposs-
ibility of building such a theory, by introducing
randomness not fundamentally, but through'a
chaos hypothesis. It may be that the possibility
of . a twin set of quantum thgeries would how
appear less shocking in view of the existence
of a statistical thermodynamics without hidden
variables, apparently just as ""closed" as the
conventional quantum theory. However, even
if there some pleasure in the great
similarity of the words used to describe the
two situations, there is no question of math-
ematical identity,

can

This methodlogical discussion will be
continued through §6 and in the conclusion

5. The irreversible and final part of the
estimation of B.

5.1 First method of estimation: maximum
likelthood B and Boltzmann's most likely state.

Degeneracy.

“— To derive the M.B. distribution[ in §3J we
did not need to specify the actual arbitrary
method of estimation,

The function
linking B to u must now be specified, In
principle, rules of estimation should be
derived from the properties desired from the
estimate, In fact, however, the usual
rules of statistics were introduced for no
conscious reasons, except simplicity;
or they were first motivated by consid-
erations of ""degree of reasonable belief' quite
foreign to classical probability, &nd only later
justified by their properties7?, The estimation
theory of thermostatistics is only implicit,
though quite real; it will turn out, curiously
enough, that it has used exactly the same
procedures as statistics)



_Sta!‘t by is now obtained without the arbitrariness of

R.A., Fisher' SM theory of maximum the "maximum'" specification (which needs
likelihood estimation. To find a measure of no amplification in thermostatistics, see
rational belief in a value of B, when we are reas- Darwin and Fowler and Khinchin33) but the
oning from the sample to the population, Fisher same arbitrariness is found immediately at
inverts the function p(uiB), taking now u as a the next step.

parameter, and B as a variable: Of course, p(ujﬁ)
ceases then to be a probability distribution, and
B is no random variable., For example Sde;!:j;

therefore one cannot speak of the likelihood
of the set of all values of B, but only compare
likelihoods. Taking now the M.B. distribution : -
as having been derived in §3, maximize P 200 15 omitied.

log p(uJB)=- log G(8) + log S{x) - Bu
This requires that

=~ dlogG(B)/dB
B will be obtained by inverting this implicit
equation.

One cannot fail to note the identity of this
result with a classical formula by Boltzmann
Let us review the prof of that result. To define
the temperature of a system of given u, one
takes that only EU = u is known, then one derives
the "most likely' distribution of this energy
between the available (discrete) states. For that,
one maximizes the logarithm of the
likelihood, given EU = u, and El = 1. The derivat-
ion, using Lagrange multipliers, is too classical
to repeat. The reason for saying "likelihood"
instead of probability, will appear soon. This
gives the distribution

P (any stk of enngy w fB) = GdBVGL&)
as being the most likely (M.L..) This seems to
differ from the M.B. distribution, but in fact one
introduces the further assumption of ""degeneracy
that there may be S(W) different states of same
energy. Then ,the mo st likely
distribution of energy turns out to be the MB pdf;
without further arbitrariness, one gets a relation-
between B and EU -

EU=-dlog G(B)[dB.

Then one replaces herein E(U) by the known u,
and inverts to get B. Altogether, Boltzmann's
argument amounts to an implicit and improvised
theory of estimation, anticipating Fisher's
theory., Note that the assumption of degeneracy
would not have changed the result of taking the
M.L. value of B, in Fisher's approach, -

since the log S(u) term drops out in the max-
imation of log p, relative to B,

Therefore, taking degeneracy for granted, ouwr
only technical progress comes from the
fact that maximum likelihod estimates have been
rather more carefully studied than most likely
states. It is quite true that the M.B, distribution



§6. The arbitrariness in estimation
vanishes asymptotically,

6.1, Passage to the limit of very large systems,
i.e, very large Tog G(E].

Since there is no motivation a priori, in
classical probability theory, for the Boltzmann -
Fisher estimates of "rational B elief", thexe
estimates should be judged by the properties they
turn out to have, Infact, they have extremely
satisfactory asymptotic properties.

In thermostatistics, they converge to the Dar-
win Fowler estimates; when the size of the sys-
tem tends to infinity.

Therefore, since the
physicist is not interested in small bodies, the
Boltzmann procedure is justified by its simplicity,
and by its convergence to theories considered as

correct.

In statistics, they behave well for large
samples. Chiefly, they are consistent (they
converge to the true value, with probability
approaching unity, as the size tends to infinity);
they are normally distributed around the true
value, and their variance is the smallest possible
(efficiency)., Given the fundamental arbitrariness
of estimation criterid, one could not $ay.that any
other procedure is more correct than this one;so,

whenever it is the simplest, (for example
when a sufficient statistic exists)
E one can use this
proc@dure for large samples.

6.2, Small systems

As thej r main drawback, from the viewpoint
of preqent-problcms of statistics, maximum
likelihood estimates lack reasonable spm 1l
sample properties;

The statistician cannot any
more justify the definition of an estimation
procedure by its asymptotic properties,

However, the physicist is not troubled by
this, and continues to take the best from the
facilities, permitted by the "fortunate insensi-
bility of thermodynamic functions', stressed by
Lorentz,

6.3 Possibility of constructing observation
models of thermostatistics,

This fortunate insensibility is the very key
to the possibility of constructing models in
physics, based upon conditions of
optimality of observation, Nakuslly,

the
criterion of an engineering problem can be
changed at will, without its ceasing to be
ao ‘ engineering problem, But
the state of nature,most favourable for one
prablemymay not be so for any other,

Henew, being most favourable. is not in
general a way of describing a real physical
situation. One may say that each time one
describes(and can fully characterme)outside
circumstances,as being the most favourable
for somebody, one builds a new anthro-
pocentered physics,

To invert methodologically an engineering
problem is to identify this physics with an
actual one, But how to defend the model so
obtained, if the criterion of the engineering
problem is irreducibly arbitrary?

The whole point is that arbitrariness exists
anyway in thermostatistics, and tha 1‘; exact[y
the same than in statistics. This is7inno way
surprising,in view of the way in which probab-
flities were as$dgned to ‘hypothetical ensembles
in thermostnhshcg: to" agrce with our partial
knowledgp ( a fact linking irreversibility not to
incompleteness or inexactness of mechanics, but
to incompleteness of speczhcatmn) Criteria
of equipartition are only” reasonable’ criteria,
never considered as anything but mathematical
abstractions of reality, or in other words as
"fascinating' mathematical tricks,but still
tricks; and they may become very dangerous
conceptually when "asymptotically slight"
differences go undetected altogether, and
entir ly different concepts get exchanged



because they lead to the same numerical results,
Entropy is the worst sinner in that respect,

It is a pity,of course that the phenomenological
and statistical approach can only be franker about
doubtful points, can help circumscribe and better
understand them, butmannot help eliminate them.
Statistics may be sorry for it too, because it makes
hopeless any belief in an improvement of the
choice among statistical critefria, on the basis oi
their appropriateness for physics.

Conclusion

Thermostatistics has followed a develop=-
ment parallel to mathematical statistics, Recall
how late (Khinchind3) the parallel development of
probability theory and of termostatistics have
converged; statistics and thermostatistics have
been even slower, ’

In the compnrison, statistics appears as by
far the more advanced discipline, Thus mathe-
matical and methodological help turns out to go
the "wrong' way, up the scale of sciences of
Auguste Comte, since the modern small-sample
statistics was made necessary in biology, agri-
culture, social science and industrial acceptance
(where asymptotics are of no help, and the pro-
cess of observation of so great importance that te
there is no difficulty in accepting theories centered

around the observer). Statidics became necessary for

the physicists only when the problem of noise
reduction had to be faced: this is the historical
reason for the context of this reasarch,

It is in a sense very discouraging to have found
on this occasion, that the wish for conceptual co-~
herence of the theoretical physicist had been
weaker than ’ practical needs

The moral is that the foundations of thermo-
statistics should be reviewed critically, after each
important progress in the mathematics or method-
ology of other statistical disciplines.
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