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Summary.
A method of word by word coding can be described by a coding

tree. The study of the coding methods is equivalent to the study of
their trees, considered as graphs. The number of letter strings used
as codes (spellings), considered as a function of the length C of these
strings, is by definition the "structure function" S(C) of the tree and
of the coding method. Two coding methods having identical structure
functions lead to the same cost of coding for any message, and are
called equivalent. - A coding method is said to be recurrent if the de-
cision as to whether a letter is a last letter of a word requires the
knowledge of the preceding letters of this word only. The structure
function of a recurrent method of coding satisfies Szilard's inequality:
ZS8(C) M_Cgl, where M is the number of letters and to any function
satisfying this inequality corresponds at least one recurrent coding
method. Sardinas and Patterson have shown that there are cases in
which the message may be recovered from the coded string of letters,
even though the identification of the ends of words requires the know-
ledge of the future of the message. However, the structure functions
of these coding methods must still satisfy Szilard's inequality, and
they can always be replaced by an equivalent recurrent coding pro-
cedure. No advantage is to be gained from non-recurrent codes using
the future.

In addition to Shannon's problems of coding without noise or in
the presence of finite noise, one introduces the problem of coding in
the presence of a very small noise. One then imposes the requirement
that an error occurring in one letter does not destroy the whole mes-
sage. This requires either that all coded words be of same length, or
that they end up with letters which do not occur inside of the word.

If there is equality in Szilard's relation there exists one lan-
guage which can be coded by an uncorrelated letter sequence. It is said
to be matched to the coding method, which is said to be complete. In
particular, complete error-limiting codes have as structure functiens,
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respectively, MCo for one value of Co, and 0 elsewhere; and

(M-M') M'C-1 where M' < M. The languages matched to these struc-
ture functions are, respectively, composed of equiprobable words; and ~
of words following, except for small ranks, the law p,. = P r~B, where
r is the rank by decreasing frequencies, and B = {(log M) /(log M').

In the generzl case, there is no tree built with an arbitrary
given alphabet, to which an arbitrary given language is matched in an
error limiting fashion. Let us, however, generate new words for the
language by taking either fixed numbers, given a priori, of the old
words; or all the sequences of the old words contained between two
successive returns to any fixed old word, chosen to be the "space "
Shannon's theory of coding, and the definition of the information, are
based upon the fact that the new words following the first definition
are essentially equiprobable (law of large numbers), quite irrespective
of the generating words, and of their independent or Markoff charac-
ter. The only function of the generating words is the information log-
arithm of the number of generated words.

If one takes instead the second method of generating words,
one can prove a sort of new "recurrent" limit theorem, which shows
that the words under the new definition are again independent of the
generating words, except for a single number B, That is, they follow
the above law pp = P r~B. Information does not appear and is not need-
ed; its role is played by the ratio 1/(B-1). This new limit theory may
be used, instead of the conventional one, to construct an alternative
theory of coding, fully equivalent to Shannon's as far as the theorems
are concerned, but more appropriate for some applications. Thebulk
of the paper will be given to this theory.

In particular, it seems to be established that the words in natu-
ral languages, in the usual definition of a word as anything betweentwo
spaces, do follow the limit statistics corresponding to the generation
of new words from any initial word system, by our second method.
Therefore, natural languages as sequences of words do transmit as
much information per word as is compatible with recurrent coding with
space and a limitation in the average cost of coding per word.

1. On Recurrence In Coding.

1.1 Definitions. A discrete finite stationary irreducible (ergodic)one-
dimensional random process may be considered as a statistical langu-
age, and any sequence of realizations is then called a message. The
elements of the message will be called the words W, (1gr <R), the
set of words is the vocabulary %7, and the language will also be called
the W-process. A statistical language need not be a natural language,
but it may very well be considered as a model of one. We have found
in previous investigations (1953)(1954a) that the theory of statistical
languages is very useful in the study of natural languages; these re~
sults will be incorporated in a generalized and summarized form in
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the present paper. Reciprocally, the structure of natural languages

may be of great inspiration in the study of more general languages:in
particular, we shall see the role which can be played by the concept

of "space".

A word by word code for a message is a string of other ele-
ments, called the letters Lg, taken out of an alphabet 7, such that
any word in a given position or context is given a well-defined spell-
ing. The sequence of letters will be called the L-process. It is uni-
quely determined by the W-process and a method of coding. We assume
that there is no noise.

A coding procedure is fully described by its coding tree. This
is a rooted tree, in which the degree (or ramification number: the
number of lines ending up at the vertex) of each vertex is 1 or M+1,
where M is the number of letters, except for the distinguished root,
which has degree M. Some, but not necessarily all, of these vertices
represent word codes. Vertices of degree 1 are terminal vertices.
The discussion of different coding procedures is in fact equivalent to
the discussion of various properties of the coding trees considered as
graphs, and in particular of the distribution of the vertices distinguish-
ed by the fact that they correspond to admissible codes for words. In
all cases, when the number of vertices representing word codes is con-
sidered as a function of the distance from these vertices to the root,
one obtains by definition the structure function S(C) of the coding me-
thod and of its tree. This term is borrowed from Khinchin (1949),
whose exposition of statistical mechanics seems the best frame of re-
ference for pointing out the formal identity between our later consider-
ations and those of statistical mechanics. Two coding procedures hav-
ing equal structure functions lead to the same cost of coding for every
message, and may be called equivalent, even when their coding irees
are not isomorphic. The cumulated sum from 1 to C of the structure
function is the rank function r(C). Sometimes, the admissible coding
letter strings will be ranked by increasing length and designated by C,..

1.2. Recurrence; Szilard's Relation and Exponential Average Relation™
One must be able to recover the W-process from the L-process
alone, without outside help. Within this condition, one wants to choose
the method of coding leading to the least cost of coding in average num-
ber of letiers per words. (Later, cost will be defined in more general
terms.) The original methods for the matching of a coding procedure
to the language statistics were proposed by Shannon (1948) and Fano
(1949), and their definitive improvement is due to Huffman (1953). In
all these methods, one uses the condition that, all the preceding words
being known, the spelling of a word is never the beginning of the spell-

*
The results of Sec. 1.2 are not new, except for details of presen-
tation, and they are repeated only as an introduction to what follows.
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ing of another word. Suppose that, moreover, the spelling does not
depend upon the preceding words, that is, that no account is taken of
the joint probabilities of the words in the matching of the coding pro-
cedure. Then the event in the L-process, expressed by the fact that

a letter is a last letter of a word, is determined by the letters having
occurred since the end of the preceding word. No knowledge of the
forward or of the backward context is necessary to see whether a word
is ending. We propose to call recurrent all methods of coding of the
above type which do not require the knowledge of the context to decide
whether a sequence of letters starting at the end of a word is itself a
word. This definition is slightly different from that of Feller (1950),
in which one should be able to decide whether a sequence of letters
ends at the end of some word even if the sequence does not start at the
beginning of a word. However, our definition of recurrence will coin-
cide with Feller's in the most important case, our second error-limit-
ing case.

If a method of coding is recurrent, all vertices of the coding
tree which represent words are terminal vertices, or vertices of de-
gree 1. It follows that the structure function of such a tree must satis-
fy the inequality

(0]
r s M€ g1
c=1

This inequality was introduced by Szilard (1929) (in a structurally iden-
tical problem relating to Maxwell demons), and rediscovered many
times (in particular by L. K. Kraft in an unpublished M. 1. T. thesis,
1949). To prove the inequality, consider a number L, and complete
the coding tree so that no vertex is at a distance from the root smaller
than L, Each of the S(C) vertices at a distance C from the root gives
ML-C vertices at the distance L. As the total number of vertices at
distance L cannot exceed ML, one has, for every L,
£ s(c) MMC ¢ ML, Dividing by MT, one gets £l S(C) M™C < 1. The
inequality remains true when L tends to infinity, q. e. d.

Reciprocally, it is sufficient for the existence of at least one
coding tree of structure function S(C) that S(C) satisfy Szilard's in-
equality. To prove this, proceed to construct such a coding method
step by step. Let Cg, be the smallest C for which S(C) # 0. Consider
the tree having all its MCo terminal vertices at the distance Cofrom
the root. Select any S(C,) of these vertices; this is possible since
S(Cy) € MCo, Continue all other vertices down to distance Co + 1from
the root. Select S(Co+ 1) of these vertices; it is possible since their
number is M (MC0-S(Co)) 3 S(Co+ 1). One continues by induction.

Szilard's inequality may be re—expressed in two ways:

One may define F by £S(C) M~C = M™F. Then one must have
F > 0. This F is a sort of counterpart of the "free energy" of thermo-
dynamics.
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One may also define the number E such that ;Z_:R#Cr/E = 1 where
R is the number of numbers C, supposed ranked in an arbitrary order.
This number E is unique by Descartes' rule on the number of positive
roots of an equation. We propose to call it the Exponential average of
the numbers Cp,. If all the Cy are equal, their average is equal to
their common value, as it should be. The definition is of course in-
spired by those of the arithmetic average ECr/E 1, of geometric
average ';T(CI‘/E) 1, of harmonic average EE/Cr 1. With this defini-
tion, the Szilard's inequality becomes the"exponential average" in-
equality '

Exp, Av. (lengths of codes) > logp R.

which is particularly perspicuous.

If, reciprocally, all terminal vertices of a coding tree repre-
sent admissable codes,the corresponding coding method and coding
tree will be called complete. The Szilard and the exponential average
relations are then equalities. Binary Fano and Huffman codes are
complete, Huffman codes of basis M are complete if R-1 is a multiple
of M-1, and Shannon codes are not necessarily complete. Complete
codes are characterized by the fact that there exists one language,
called reciprocally matched to or conjugate to the coding method, which,
when coded by this method, gives an uncorrelated sequence of letters,
In this language, all probabilities are of the form M_C, and the num-
ber of words of probability M~C is S(C).

If a language is not matched to any code of basis M, that is, if
the logyp are not all integers, one still sees that the set of numbers
[—logMp} , equal to the smallest integers greater than -logyp ,still
follows Szilard's inequality. Shannon's method of coding gives explicit-
ly a method of coding equivalent to the [—logMp] . It follows that the
cost of coding of any message should never exceed the value it takes for
the system [—logMp]. This value is Zpp [—1og ] -LZpplog. pn. ¥+ 1.
Let now a word system code C, be incomplete, that is, let F > 0.
For any given language, when coded with this method of coding,
CprCr3» -Lprlogpy+F. Therefore, if F is also > 1, the method of
coding C, _can be immediately improved upon by replacing Cy by
[—1ogMPr]. In other terms, to Szilard's inequality, which is a logical
necessity, one may add the inequality F <1, or

Exp. Av. (word lengths - 1) < logy, R

which is a pragmatic restriction.

We have thus introduced the expression H= - I p. logpPr.,
which is such that the cost of coding is always between H and H+1. H
is of course the information, but it was important to introduce it, not
through the consideration of all possible permutations of the words as
Shannon does, but by the requirement of recurrence, which makes it
impossible to take account of anything but the absolute probabilities of
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the words while minimizing the cost of coding. This way of introduc-—
ing information is important later on in the utilization of this concept
in language theory. This is why we insisted on proving Szilard's in-

equality (as well as the equivalent inequality on the exponential aver-

age) without using the concept of information.

1.3. Non-recurrent Coding. Two questions are to be asked about them:
are they conceivable, and if so, are they useful, that is, can they de-
crease the cost of coding word by word? Non-recurrence backward
and forward must be considered separately.

Shannon has pointed out that non-recurrence backward, thatis,
utilization of the previous words in the delimitation of the current word,
can be used to decrease the cost of coding Markoff messages. The
spelling is chosen, not on the basis of the absolute probabilities but of
the probabilities given the known preceding words. Therefore, back-
ward context codes are essential for economy, even though they des-
troy the purely word by word character of the coding.

It is much less widely known that one can conceive, for uncor-
related languages,of spellings in which some words are identical to
the beginning of others, but any message can still be cut into words by
using up to the whole future of the message. In the corresponding cod-
ing trees, the vertices representing words are no longer necessarily
terminal vertices. The existence of such coding methods was pointed
out by Sardinas and Patterson (1953). If the method is such that the
whole future is always necessary for the identification of any single
word, then the individuality of the words is no more preserved thanif
the message were frankly coded en-bloc, and such coding methods do
not seem worth considering. But if the future necessary to identify a
word is finite, with positive probability, one must investigate closer
whether the efficiency of coding could be improved by non-recurrence.

Szilard's inequality is no longer true by inspection, but if it is
satisfied, the non-recurrent method of coding may be immediately re-
placed by an equivalent recurrent method, (leading to the same costof
coding). Now, the necessity of Szilard's inequality may be proven by
reduction to the absurd. If £3(C)M~C = M~ F, with F <0, let us con-
sider the language with word probabilities p,. = M-Cr+F. For this
language, the cost of coding would be smaller than the information,
which contradicts Shannon's theorem on the noiseless channel. (We do
not need to try to avoid here the argument based upon the permutations
of words.) Therefore, all non-recurrent codes can, in fact, be essen-
tially reduced to recurrent ones, without loss of efficiency.

2. On Limitation of Errors in Transmission in the Presence of
Infinitesimal Noise.

The essential conclusion of the preceding discussion is thatfor
every admissible code system for which Szilard's relation is an equal-
ity, there exists an uncorrelated language, called reciprocally matched
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to, or conjugate to the code system, such that the coded sequence is
uncorrelated as well. (It is not, however, an absolutely arbitrary se-
quence of the letters, because of the condition that any message ends
at the end of a word.) These languages are themselves fully charac—
terized by the structure function S(C) to which they are matched, and
by the number M.

To compare different possible structure functions, we wish to
introduce a new class of problems (apparently not studied in the litera-
ture so far, though these, and not the noiseless channel problems, are
the realistic simplification of the noisy channel case). Let us study
communication in the presence of a very small noise.

The results of noisy channel theory are still true, of course,
but also unnecessary, since they are already implied by the condition
of small noise. However, there is in practice a great difficulty inthe
fact that when an error occurs, (and Shannon has shown that conceptual-
ly the probability of this happening may be made as small as one wishes,
but never zero, for finite messages) the error destroys everything. We
wish to add the condition of error limitation, that is, that when an er-
ror occurs, it destroys only a limited part of the message. This can
be done in two ways only, corresponding to the naively obvious ways
of recurrent coding. These coding methods are in a sense the only
ones to fully realize the word-by-word character of the coding.

In the first, all word codes have same length. The event: end
of a word, is a sure periodic event. (Remark that this method ceases
to be error limiting if one admits the possibility that a letter may
simply drop out instead of being mistransmitted.) The structure func-
tion is zero, except for one value C=C,, for which it is M~©. The
conjugate language has equiprobable words, of probability M€

In the second method, the M letters divide between M' mside
letters, and M-M' "spaces ", which may be indifferently considered
as initial or terminal letters. If the coding tree is complete, the num-
ber of words is infinite, and a fixed percentage of the vertices at each
distance from the root are terminal vertices, and represent words.
Then S(C) = (M-M")M'C-1_ If M' > 1 the rank function, or number of
words of length less than C, is

r(C) = (M-M'XM' C-1)/(M' -1)

The probability of the word of length C being M-C, it may be written,
for large r, as

Py = Pr-B | where B = {logM)/(logM') > 1.

If M'=1,r(C) =C(M-M'), p.=C~Br, where B= log, M/(M-M'),
one can combine the two methods above by deciding that if no letter be-
fore the Lth jg a space, the word ends on the Lth letter,whichever it is.

In the last two methods, if a letter is mistransmitted, one word
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is destroyed; if a space is mistiransmitted as letter, two words are
destroyed.

3. Noise Limiting Coding Problem in the Absence of Matching
Between the Language and the Alphabet.

3.1. The Problem. In the realistic case, the choice of the words of
the language is not fully imposed a priori. The language presents it-
self as a sequence of elements E., either uncorrelated but not equi-
probable (let their probabilities be pr), or forming a Markoff chain
(let the transition probabilities be py;). The alphabet can be given as
a collection of elements L, to each of which is attached a sort of cost
Cg; which may be made to depend upon the preceding letter in the coded
sequence, in which case, we call them Cj;. One wishes to represent
the elements of the message, or combinations of these elements de—
cided upon in advance, through letters or combinations of letters, with
the least resultant cost of coding per element. The combinations of
elements used as words can be chosen with this aim in view. Or else,
the alphabet is a collection of elements L., which one wishes, for
matching, to use with well determined probabilities p,, or with well-
determined transition probabilities Pij- In the case of independence,
to give the Cg is equivalent to giving the Pgs since one can choose one,
and only one, C, such that Cy= -C loggp,, where Zp,=1. (It is suf-
ficient to solve I e'cg/c = 1. But this does not work in the case of
Markoff dependehce, since one should have Ejpij =1, and there is no
reason, in general, for all Cj, obtained in the above way, to be equal.
Therefore, to give the Cjj is more general than to give the pjj.

3.2. Shannon's Coding Theory. Shannon considers words each com-
posed of the same large number N of elements of the language. By the
law of large numbers, these words divide into a class containing 2
words of probability close to 2~ NH (by definition of H = 'Epipij log Pijs
where pj are the absolute probabilities, deducile from the Pij): and

a second class containing words of total probability tending to zero
with N. (Precise results are given by Shannon, p.397.)

Similarly, when one takes strings of a fixed number N' of let-
ters, these strings, except for an arbitrary small percentage, will
have costs equal to and independent from the preceding string. This
defines the capacity of the alphabet.

To code the arbitrary language by the arbitrary alphabet, itis
then sufficient to match the lengths of the strings of elements of the
language and of the letters of the alphabet, so that their ratio is equal
to the ratio of information to capacity. The words of the low frequency
class are never transmitted and the sequences of letters not having the
average properties are never used.

The only reason for the success of Shannon's coding method is
that, through the law of large numbers, one has "generated" from the
initial elements new elements, the structure function of which is sim-
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plified and independent from that of the generating elements. This
gtructure function is that of the first case which can be coded by ran-
dom sequences of letters with error limitation. This procedure of
smoothing out structure functions by addition is, of course, identical
to that used in statistical mechanics to explain the regularity of ob-
gervable macroscopic quantities, while making on their components
very slight hypotheses only.

3.3. Proposal for an Alternative Coding Theory. We want now todraw
attention to the fact that these reasons for the success of Shannon's
coding theory fully subsist if the compound words are generated by the
second of the error-limiting methods. One chooses one element to
play the role of space, and defines words as being all sequences of the
initial elements between two space symbols. The theory based upon
this generation of the words is conceptually parallel to Shannon's theory,
but it is more useful for the description of the most important single
class of statistical languages: the natural languages.

The essential result is the following combinatorial theorem,
which is proved in the appendix. Consider a discrete finite irreducible
Markoff chain. Instead of cutting it into stretches from the outside, let
it cut itself, by specializing one of the states to be spaces. The num-
ber of letters other than space must be >1. Define words to be all
possible sequences of letters between two successive spaces. Words
are uncorrelated. The number of words R is infinite. The structure
function S(C) of these words is strongly simplified and independent of
that of the generating elements: one shows that it is an exponential
S(C) = MOC , like in the equiprobable, independent case. If words are
ranked by decreasing probability, their distribution law is therefore
again p. = Pr_B, where B is a fairly complex function (> 1} of the initi-
al Markoff process. This formula is not valid for r small.

The number of generated words being infinite, no concept of
information can appear as logarithm of the number of generated words.
But the role of H as measure of number of words, of "wealth of vocabu-
lary", is now played by B, or rather by 1/(B-1).

Similarly, consider an arbitrary coding alphabet which one
wishes to see used in the coded message with the probabilities q;; {the
number of letters does not have to be equal to the number of elements
of the language), and also in the second error-limiting fashion (all
codes for words end by space). But the same theorem as above still
applies; our requirement is equivalent to wishing to use the coding se-
quences of letters with the probabilities p, = Pr~

I.et us now suppose that the choices of the language and alpha-
bet spaces have been made so that the two corresponding B's are equ-
al. The coding procedure codes each generated word by the letter se-
quence of same rank. Clearly, the coded sequence has the desired
statistical properties. The only difficulties could come from the most
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frequent words and letter sequences. But these difficulties are arbi-
trarily reduced if the probability of returning from space to space in,
say, three steps is supposed small enough, which requires B to be
very close to 1.

(If the channel is not given by the desired probabilities of the
letters, but by their costs, one must rank all sequences of letters end-
ing by space, by order of increasing cost. This is the same as the
problem of ranking of words by decreasing probabilities, except that
-log Pij is replaced by C;;. The result is Cr = C' + C" logr. The
coding ‘method again puts together words and spellings of same rank.)

In Shannon's theory of coding and in ours, the generated words
are coded in an error-limiting fashion. There are presumably many
other systematic ways of generating words which smooth out the prop-
erties of the generating elements, but the coding methods cannot be
error-limiting.

By definition, we shall refer to the law py = Bn~
ical distribution law.

B as the canon-

3.4, Maximum Information Properties of Generated Languages. Both
Shannon's generated languages and ours possess interesting external
properties. Let cost of coding be measured in terms of Cy; = -log py:.
Then, Shannon's language with equiprobable words, transmits the
maximum of information compatible with a given maximum cost of
coding per word. The canonical languages transmit the maximum of
information compatible with a given average cost of coding per word,
together with the requirement that a space be used.

3.5. Generalization of Languages Having the Maximum Information
Property. But if, inversely, we take this maximum information prop-
erty as a criterion, instead of obtaining it as a theorem, we findother
laws beside the one above. (R= ¢, B > 1) The formal appearance is
still the same: pp = Pr'"B, but B does not need to be > 1, and R need
not be infinite (it must even be finite if B<1). Therefore, the canonic-
al family can be prolonged, to include even the equiprobable distribu-
tion (case B = 0).

To obtain the maximum information we must first of all attri-
bute the cheapest code to the most frequent word, etc., the cost in-
creasing when the probability decreases. Therefore, the relationship
between cost and rank obtained for the purposes of the generation of
words is still valid: for r >>1,C,.= C'+C"log r. We assume C= ZprCo
to be fixed, and want to maximize H = -Ep, log p.. For that pur-
pose, we minimize C - BH. We obtain:

pr=Ple “B'Cr . p,-B

as above. But B is not determined by the alphabet anymore: it is de-
termined by the imposed condition that C take some imposed value,
less than log R, which corresponds to B=0. See for details in Mandel-
brot (1953)(1954a).
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The above criterion is fully identical formally to Boltzmann's
criterion for equilibrium of a gas. The only difference is due to the
special form of the structure function. We know that it is here an ex-
ponential. (This is due to the possibility of discriminating betweentwo
words differing only by the order of the letters.) In physics, on the
contrary, the structure function never increases faster than a power.
The result of this difference is far reaching. In physics, high energy
(high C) states are rarely occupied, and the number of states may al-
ways be considered as infinite. When 1/B tends to 0, the C tends to
infinity, and whichever the imposed C, there is a value of B which
leads to it. Here however, the high energy states play an excessively
important role. If R, the number of states, is finite, B can go down
to zero, but C stays finite when 1/B goes to infinity: therefore, the
values of C which one may impose on oneself at the outset are limited
when one fixes the alphabet and the number of states R. If R is infinite,
B must stay > 1, and any value of C may be obtained by putting Beclose
enough to 1. Therefore, there is always a restriction, either on Ror
on B whereas in physics, there is none. (See more details; Mandelbrot,
1954a)

1/B =1 is a sort of critical temperature, dividing two zones of
quite different behavior of everything*.

4. Statistical Structure of the Natural Languages.

4.1. Empirical Observation. It has been experimentally found by
linguists and psychologists that, if natural languages are considered
as sequences of words, a word being anything between two symbols of
space (in the natural sense of space), then the absolute probabilities
of the natural words follow the law py = Pr~B, which is what we have
found above to result from the generation, from arbitrary languages,

* 1t may be interesting to exhibit a zero redundancy code for the case
where B=1; and where R, finite, is such that there exists a k such
that MM¥-1=R (M-1), where M is the number of letters. The exact
form of the language considered (and which for r large, but still
necessarily finite, behaves like Pr~1) is described by the fact that
there are MC words of probability M"k_c, where C goes from 0 to
MK-1. Thus, ~logyp=k+C. This form suggests a coding method
in which each spelling contains two parts. The first has a fixed
number of letters k, and the number formed by these letters gives
the number of letters in the second part of the spelling.

(Such a two-part code could even be used to generate other
canonical languages with B > 1, if one admits all combinations of
the k first letters, but supposes that the following letiers are cor-
related, so that only a number M'k, instead of MK, are actually
used. )
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of languages codable without redundancy in the second noise-limiting
fashion. In the great majority of cases, B>1. For data, see Estoup,
Zipf, Baker, Josselson (references). Some other authors do notstudy
the distribution of words within one sample, but the variation of the
number of different words V as the total length N of the sample innum-
ber of words increases. They do find the variation V = KNI/B, as
follows theoretically from py = Pr B if B> 1, and R is infinite; ex-
cept that for large N, there is some flattening of the curve (V,N), sug-
gesting that R is in fact finite, but does not influence average samples
in an appreciable fashion. For data, see Chotlos (1944), Baker (1950).

The number B is the principal "variahle of state" of the weight-
ed vocabularies studied in this fashion. 1/B or 1/(B-1) are measures of
wealth of vocabulary, more intrinsic than the total available number
of words, the influence of which is little felt on average samples.

One unquestionable consequence of this empirical finding is that
if an alphabet is arbitrary, except in that it leads to the right value of
B, that is, depends upon the persons to whose speech it is matched,
then the coding by this alphabet is an uncorrelated sequence of letters.
For each speaker, there exists a private unbreakable secret code. ™

The matching by equalization of the B's only, is justified when
B is > 1 and very close to 1, that is, if the first few words are really
very unimportant. If B is not so small, one should be careful to match
the first few words also. To avoid going into full details of the alpha-
bet and of the elements of the language, which would destroy the pur-
pose of our smoothing theory, we suggest a way to improve the law
pr = Pr~B, by writing it as

pr= P(r+p)B

This formula, exact for some simple kinds of alphabet, seems alsoto
be a good approximation for others. In these new conditions the cod-
ing alphabet should be matched to two parameters of the language: B
and p. (P could be replaced by H, which is a function of B and P ; if
one does so, one obtains a description of a language fully parallel to
that of a gas by temperature and entropy.)

The values of B found on the samples examined so far range

* Unbreakable within the condition that one does not use the transi-
tion probabilities between words. One may however take care of the
most conspicuous of these relations without going into a general
study. If for example "a" is the space, "aa" is the code for "the ".
As "the" never follows itself, "aaa" would never occur, whereas
"bbb ", "ccc" ete., would occur, and the space could be spotted,
the first step in the deciphering. To avoid this, one may never
use "bbb ","cce" within a word, or sometimes repeat "the ", with
a small fixed probability. Only the first word's probability being
changed, B does not change.
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from B = 1. 6 for some schizophrenics and some children, to B very
close to 1 for very "sophisticated" authors. (If B is close to 1, P is
usually very small. Besides, B is very difficult to estimate from the
data. However, in addition, P is no more an independent state func-
tion, but behaves like 1/(B-1). One can therefore estimate B by mea-
suring P from the p,'s under the assumption B = 1, then deducing B
from this value of P.)

4.2. Discussion. One can wish to draw inductions from the particular
statistics of the natural words. Whenever one finds that the normal
Laplace-Gauss law is satisfied by some phenomenon, one commonly
assumes, at least as a working hypothesis, that this results from the
addition of a fixed great number of component influences, each of them
comparatively unimportant. We conjecture as well that the reason for
the statistics of natural words being as it is, is that the words are
"composed" of many elements; kind of letters, of which each carries
comparatively little information. (Similarly, whenever a non-purely
linguistic system of signs is found to follow the canonical law, one
may try the conjecture that it is composed of more elementary ele-
ments, forming a chain with a Markoff property, or with some weaker
property, which still leads to the same law.) One could think of trying
to check whether the natural letters or phonemes are these ideal gen-
erating elements of words. But this would be improbable, since the
natural letters and phonemes give the same code for each word, not
only as it occurs repeatedly in any person's speech - which is neces-
sary for recurrence - but as it occurs in different persons' speech.
Therefore, the optimum coding property which the ideal elements must
possess could hardly be satisfied by natural letters of phonemes. One
must therefore make the weaker assumption that the structure of speech
as a sequence of words is influenced by some other coding, higher up
in the receiving brain, considered as an optimal terminal information
processing machine. These elements could not be reached by direct
experience, but one may try to identify their cost, which should vary
like logr and logpy, to the time it takes to read any given word. The
experiments of Howes and Solomon on reading time seem to fully con-
firm this hypothesis.

To sum up, the "explanation" of the statistics of words by their
generation from "letters" and by a maximum information property,
does not imply that any permutation of words be an admissable sen-
tence. But it implies three things: first, the correspondence between
words and ideas, which each person builds for himself, is to a great
extent arbitrary, and there are always alternative ways of expressing
ideas; second, that the choice of the words actually chosen is not only
governed by the need for this particular word, but also by an uncon-
scious matching of the frequencies of words to their codes somewhere
in the circuit of communication; third, that these last codes form a
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recurrent optimal error-limiting system of the second kind.

Let us finally remark that the crucial role which appears to
be played by the symbol space, and therefore by protection against
error, may be considered as completing the role which protection ag-
ainst noise plays in restricting languages to be digital, discrete. This
discretion could not, (no more than the statistics of words) be consi-
dered as being influenced by some structure of the universe of ideas
to be represented by the language. The only "explanation" for itseems
to be that languages need to be relayed a very great number of times,
and that in non-discrete languages the accumulation of noise at the re-
lays could not be resisted, and that these languages could not fulfill
any aim.

A more detailed discussion of these matters is given in
Mandelbrot (1954b)(1954c).

Appendix.
Combinatorial Derivation of the Law py = Pr B,

We want to show that this result, already proved in the textfor
the case of equicostly and equiprobable uncorrelated letters, stillholds
for non-equiprobable and correlated letters. The generalization is the
same as the one that goes from the central limit theorem for Bernouilli
trials to the central limit theorem on Markoff processes. We shall not
consider the mathematical refinements necessary in a few places; these
will be presented elsewhere.

Assume a finite irreducible Markoff process, of states L
where (0 ¢ g < G), and where L, is the symbol space. Let the transi-
tion probabilities be py;. Let us choose M close enough to 1 so that
the numbers Cjj = -log p;j can all be considered as integers. Let a
word be any sequence of states between two successive spaces. We
want to find the relation between the probability of a word and its rank,
that is, the number of words of higher probability. We start by the
relation between probability and the number of words of this same prob-
ability. For this, take C = -log p as variable, and count all sequences
of letters starting and ending by Lg, and containing no Lg in the mid-
dle, such that the Cjj add to C. (In the sequence of the Cjj, the second
index of each letter is the same as the first one of the next, and the
first index of the first and the last index of last are 0.} Let this num-
ber of sequences be Sg(C). Let also the auxiliary numbers Si(C) be
the numbers of sequences starting with Ly, ending with Ly, and con-
taining no L in their middle.

One‘sees by exhaustion that between these functions Si(C), one
has the recurrence relations:

Sk (C) 2h§08h (C-Cpy) + 5 (C-Cpy)

where 8 is Kronecker's function, equal to 1 or 0, depending upon
whether its argument is 0 or # 0.
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Define further the generating functions of the structure func-
tions Sk{C)

Gy (z) = é: zC Sy (C)

They will be given by the system of linear equations:

£ zChk Gy (2) - Gy (2) = -z 0k
h#o

which is solved by quotients of determinants. The function G,(z} is
the only one that really interests us. Write it as:
N, (2)

D (z)

G, (z) =

The denominator has no index as it is the same for all Gk(z). Let us
write it fully:

Lli.g S8 Gl | fia
,C21 ,C22_; ,Ca3
D(z) =
€
ZC(}1 . ) ) 2~ GG_;

write -log,,z = 6. The above equation can be rewritten as:

6 _, 6 ) 6
Py Pig Pyg - Pig
0 _ ) 6
Pa1 Pyy™l Pa3 © Pog
D() =
6 -1
Pa1 ' ' - Pag

where the unwritten terms are filled in easily. We shall call D(6) =0
the "eigentemperature" equation of the Markoff process, relative toL.
It dlffers from the characteristic equation of the square array Pij
(lg < G), by the fact that 6 is here an exponent instead of muitlply—
ing the le (This equation is besides not invariant by any kind of usual
transformaticns of the pj;, but this is quite all right, because the state
Ly does play a quite privileged role.)

The real parts of the roots 6 are all less than 1, and the roots
z have moduli greater than 1/M. Proof: If # is a root, there exists a

set of xi, not all 0, such that x;= T X3 P_?i' Take absolute values:
J
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Ref

ixi|4JE| | ey

Sum with respect to i:
Rel
olx | <zlx] ?pij :

9
This requires that for at least one i, T DRe > 1. But I pj; €1.There-
fore Ref ¢ 1. Besides it cannot be =1, since LDIJ <1, Jand] for atleast
one i, Pij <1, and therefore

x| >zlx | ©p.. .
i i ij

Therefore Ref < 1, and it follows that z > 1/M.

Further, NO/D represents a Taylor series with non-negative
coefficients, and, therefore, at least one of its poles (roots of D) which
are closest to the origin is real. Call it 1/M,. Let us now limit our-
selves to the case where there is no other pole of same modulus, and
call this case regular.

Let us now write the rational function Gg(z) as a sum of par-
tial fractions ZAg/(1- Mgz). Then S5(C) will be automatically obtained
as a sum of tefms FAg M(S: 3

The largest in modulus of the inverses of roots z is My. There-
fore, for large C, the structure function behaves like Mg . It follows
that the rank function, the number of words of —logMp smaller than C,
is asymptotically for C >>1, proportional to

M(c:) =MC/B (M 1/B p—l/B

B=1/6 = (log M)/(logMo) > 1

Inverting, we find that asymptotically for large ranks by order
of decreasing frequency, the law giving the probability of a word as a
function of the rank is:

Except for B, this is independent from the initial Markoff process,
supposed regular.

Because of the fairly complicated form of the eigentemperature
equation, we shall give the much simpler form it takes for uncorrelat-
ed letters, when pjj depends only upon j. One easily finds that:

D (z) = («—1)G (1- EGl zcj)

D (9) = (-1)C (1- £G1 pg)

In the case of independence, one can generalize the problemby
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assuming that there are several symbols "space" . (In the case of de-
pendence, this generalization would have made the words non-indepen-
dent, but would not have changed the calculations leading to their ab-
solute probabilities. )

Particular Case when G=1. Then the eigentemperature equation has
the root Mg=1, 6 = 0, and B would be infinite. The above study breaks
down. One sees, however, by a direct study that the rank of a word,
by decreasing frequency, is now simply equal to the number of letters
it contains minus 1. The most frequent word has probability pgg, the
next pyqP1g. the word n°r,

= = rz -Br
P, =Py Py} "Pyo = Pgy PPy lPyy) =Pe

which is quite different from the usual canonical law.
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