Brill–Noether special cubic fourfolds

Asher Auel

Department of Mathematics
Yale University

AMS Summer Institute in Algebraic Geometry
University of Utah, Salt Lake City
Monday 27 July 2015
Cubic fourfolds

$X \subset \mathbb{P}^5$ smooth cubic hypersurface over \mathbb{C}

Torelli Theorem (Voisin). The integral polarized Hodge structure on $H^4(X, \mathbb{Z})$ recovers X up to isomorphism.

Integral Hodge Conjecture (Voisin). The cycle class map is an isomorphism $\text{CH}^2(X) \rightarrow H^4(X, \mathbb{Z}) \cap H^{2,2}(X) = A(X)$.

$A(X)$ odd positive definite free \mathbb{Z}-lattice
$h^2 \in A(X)$ distinguished element of norm 3

Fact. $A(X) = \mathbb{Z}h^2$ for very general X
Noether–Lefschetz loci

\mathcal{C} moduli space of cubic fourfolds

Noether–Lefschetz locus

\[\{ X \in \mathcal{C} : \text{rk} \ A(X) > 1 \} = \bigcup_d \mathcal{C}_d \]

\[X \in \mathcal{C}_d \iff \exists T \in A(X) \text{ such that } \langle h^2, T \rangle \subset A(X) \text{ is a primitive sublattice of rank 2 and discriminant } d \]

\[\iff X \text{ special cubic fourfold of discriminant } d \]

(Hassett) $\mathcal{C}_d \neq \emptyset$ irreducible divisor $\iff d > 6$ and $d \equiv 0, 2 \ (6)$

\mathcal{C}_d called Hassett divisors
The general $X \in C_d$ contains:

$\begin{align*}
 d = 8 & \quad \text{a plane} \\
 d = 12 & \quad \text{a cubic scroll} \\
 d = 14 & \quad \text{a quartic scroll or a quintic del Pezzo surface} \\
 d = 20 & \quad \text{a Veronese surface} \\
 12 \leq d \leq 38 & \quad \text{certain smooth rational surfaces (Nuer)} \\
 d = 44 & \quad \text{the Fano model of an Enriques surface (Nuer)}
\end{align*}$
Geometry of C_d

(Li/Zhang) Compute the generating function of the degrees of C_d as a modular form of weight 11 and level 3. These degrees get large: 3402, 196272, 915678, …

(Nuer) C_d is unirational for $d \leq 38$ and has C_{44} has negative Kodaira dimension.

(Tanimoto/Várilly-Alvarado) C_d is of general type for $d \gg 0$. Current state of the art is $d \geq 264$.

Tony’s talk on Tuesday, 4:40–5:30 pm in SFEBB 170!
Rationality of cubic fourfolds

Conjecture. The very general cubic fourfold is not rational.

Example. X contains disjoint planes $\implies X$ is rational

(Hassett) $X \in C_8$ is rational on a countable union of divisors.

\[
\begin{align*}
X \in C_8 & \iff \mathbb{P}^2 \cong P \subset X \\
\quad & \implies \quad \text{Bl}_P X \leftarrow \text{Bl}_P \mathbb{P}^5 \\
\pi \downarrow & \quad \downarrow \\
S & \rightarrow \mathbb{P}^2
\end{align*}
\]

π quadric surface bundle degenerating along sextic $D \subset \mathbb{P}^2$

S moduli space of rulings, $\beta_X \in \text{Br}(S)$ class of universal ruling

(Hassett) $\beta_X = 0 \implies X$ is rational

(A./Bernardara/Bolognesi/Várilly-Alvarado) There exist $X \in C_8$ with X rational but $\beta_X \neq 0$.
Rationality of cubic fourfolds

(Beauville/Donagi, Bolognesi/Russo/Staglianò, A.)
Every $X \in C_{14}$ is rational.

Challenge. Give new rationality constructions for cubic fourfolds.

(Katzarkov) HMS \implies every $X \in C_{26}$ is rational
Associated K3 surface

\[H^2(S, \mathbb{Z}) \text{ weight 2 signature (2, 20)} \quad 1 \quad 20 \quad 1 \]
\[H^4(X, \mathbb{Z}) \text{ weight 4 signature (21, 2)} \quad 0 \quad 1 \quad 21 \quad 1 \quad 0 \]

Polarized K3 surface \((S, H)\) choice of ample \(H \in \text{Pic}(S)\)

Marked cubic fourfold \((X, K_d)\) choice of rank 2 \(K_d \subset A(X)\)

Primitive cohomology \(H^2(S, \mathbb{Z})_0 = H^\perp \subset H^2(S, \mathbb{Z})\)

Nonspecial cohomology \(H^4(X, \mathbb{Z})_0 = K_d^\perp \subset H^4(X, \mathbb{Z})\)

(Hassett) Exists a polarized K3 surface \((S, H)\) of degree \(d\) with \(H^4(X, \mathbb{Z})_0 \cong H^2(S, \mathbb{Z})_0(-1) \iff 4 \nmid d, 9 \nmid d, p \nmid d\) for \(p \equiv 2 \mod 3\)

\(d = 14, 26, 38, 42, 62, 74, \ldots\)

\(S\) is an associated K3 surface to \(X\)

(Hassett) \(\mathcal{C}^\text{mar}_d \hookrightarrow \mathcal{K}_d\) embedding of moduli spaces
Associated K3 category

Semiorthogonal decomposition of the derived category
\[D^b(X) = \langle \mathcal{A}_X, \mathcal{O}_X, \mathcal{O}_X(1), \mathcal{O}_X(2) \rangle \]

\[\mathcal{A}_X = \{ E \in D^b(X) : \mathrm{Ext}^i(\mathcal{O}_X(i), E) = 0, \ i = 0, 1, 2 \} \]

\(\mathcal{A}_X \) looks like the derived category of a K3 surface

Example. \(X \in \mathcal{C}_8 \implies \mathcal{A}_X \cong D^b(S, \beta_X) \)

(Huybrechts) There are finitely many \(X' \) such that \(\mathcal{A}_X \cong \mathcal{A}_{X'} \).

If \(X \) is very general, then \(\mathcal{A}_X \) determines \(X \) uniquely.
Suspicions and conjectures

Suspicion (Harris, Hassett). X is rational $\iff X$ has an associated K3 surface

Conjecture (Kuznetsov). X is rational $\iff \mathcal{A}_X \cong \mathbb{D}^b(S)$ for a K3 surface S

(Addington/Thomas) $\mathcal{A}_X \cong \mathbb{D}^b(S) \implies X$ has an associated K3 surface S. The converse holds generically on C_d if $4 \nmid d$, $9 \nmid d$, $p \nmid d$ for $p \equiv 2 \pmod{3}$.

(Voisin) $4 \nmid d \implies$ every $X \in C_d$ has universally trivial CH_0

Voisin’s plenary talk from week 1!
Alena Pirutka’s talk on Tuesday, 2:00–2:50 pm, SFEBB 180!
Brill–Noether general cubic fourfolds

(Mukai) Polarized K3 surface \((S, H)\) is *Brill–Noether general* if

\[
h^0(S, N) h^0(S, M) < h^0(S, H) = 2 + d/2 = g + 1
\]

for any nontrivial decomposition \(H = N \otimes M\).

Example. \(\text{Pic}(S) = \mathbb{Z}H \iff (S, H)\) is BN general

(Lazarsfeld) \(\text{Pic}(S) = \mathbb{Z}H \iff C \in |H|\) is BN general curve

Fact. \(C \in |H|\) is BN general curve \(\implies (S, H)\) is BN general K3

Open question. What about the converse?
Checked for \(g \leq 10\) and \(g = 12\) by Mukai.

Definition. \((X, K_d)\) marked cubic fourfold is *BN general* if associated K3 surface \((S, H)\) is BN general
Brill–Noether special cubic fourfolds

Definition. The complement of BN general is *BN special.*

\[C_d^\text{mar} \leftrightarrow K_d \rightarrow K_d^\text{BN} \]

\[C_d^\text{BN} \leftrightarrow K_d^\text{BN} \]

The BN special loci are contained in the union of finitely many Noether–Lefschetz divisors, indexed by *Clifford index.*

(Saint-Donat, Reid, Donagi/Morrison, Green/Lazarsfeld, Mukai, Ciliberto/Pareschi, Knutsen, Johnsen, Lelli-Chiesa)

Classification of BN special K3 surfaces via vector bundles and lattice theory. Completely done for \(g \leq 12.\)

(Program.) Carry this out for cubic fourfolds.
Brill–Noether special cubic fourfolds

Theorem (A).

- $X \in C_{14}$ has a BN general marking of discriminant 14 if and only if X is pfaffian.
- $X \in C_{14}$ has a BN special marking of discriminant 14 if and only if X contains disjoint planes.

The image of $C_{14}^{BN} \hookrightarrow K_{14}^{BN}$ is contained in only one of five K3 Noether–Lefschetz divisors, with maximal Clifford index.

Corollary. Every $X \in C_{14}$ is pfaffian or contains disjoint planes (or both), hence is rational.

Next frontier is $d = 26$. Need good constructions of BN general K3 surfaces of degree $d = 26$. Input from moduli theory of curves of $g = 14$?