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Abstract. Equilibrium crystal shapes are defined uniquely by the Wulff construction. The
classical kinematic theory of crystal growth, due mainty to Frank and Chemnov, provides a
mathematically equivalent prescription for the limiting growth shape. To connect these two
well studied states, we derive a local geometric growth model and examine the transiens shape
evolution of an equilibrium form containing both facets and rough regions. Qur model is
appropriate to the weakly driven growth of a two-dimensional single crystal with n-gonal
symmetry and arbitrary closed initial shape. The model links disparate kinetic processes
determined by the local interfacial structure to the isotropic growth drive, and reproduces the
experimentally observed transition from a partly rounded equilibrium shape to a highly faceted
crystal which we term ‘global kinetic faceting’. We solve for the transient shape dynamics
glabally, and locally, and in the latter case present a curvature evolution equation valid for any
local growth faw. Both approaches show that, during kinetic faceting, rough orientations grow
out of existence with decreasing curvature,

1. Introduction

Spatiotemporal pattern formation in condensed matter systems has broad technological and
scientific interest, with theoretical analogues in hydrodynamic, chemical and biclogical
systems [1]. The example of crystal growth shapes is important in many areas of physics,
materials science, physical chemistry, and geophysics. The theoretical approaches to the
study of growth shapes depend on whether the interfacial motion is controlled by long-
range diffusion or by local processes. It is known that local growth kinetics depend
on local interfacial free energy and microscopic structural considerations in the particular
crystallographic orientation, but the manner in which they determine the global (= the entire
close surface) crystal shape is often treated ad fivc. The geometry of phase boundaries, or
interfaces between grains of the same phase, is of interest in many contexts [2]. Studying
the case of a single crystal growing from a pure nutrient phase has the advantage of laying
bare the essential physics and analysis common among them.

Two broad classes of growth models exist: geometric and non-geometric. Geometric
models are appropriate when the interfacial growth velocity may be determined solely
by local interfacial parameters, decoupled from diffusional or other long-ranged influences.
Hence instabilities associated with diffusional growth are precluded. Geometric models have
been reviewed by Taylor et af {3], and in addition to their intrinsic mathematical interest
[4], they have successfully treated crystal growth, phase—antiphase boundary motion, grain
growth, and stress-driven-zone migration, among others. Taylor et al [3] view a model
as geometric if the normal velocity V at an interfacial point depends on the shape and
position of the interface, and not on field variables modified by the interface motion or
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long-range diffusion in the bulk. We consider geometric models in the sense that only the
shape, and shape-dependent quantities of the interface determine the motion. Non-geometric
models generally treat growth on surfaces that are everywhere rough [5]f, with anisotropy
introduced into the interfacial conditions of a particular free boundary problem. Classical
normal growth theories of molecular attachment kinetics treat a single interfacial state—
faceted (= high symmetry) or rough, or the transition between them, but not the coexistence
of different surface structures [6]. The anisotropy of specific surface free energy determines
the equilibrium crystal shape, while the growth shape is also affected by the anisotropy
of the mobility or kinetic coefficient. Using a Ginzburg-Landau model, Siegert {7] has
shown this from the resulting Allen—Cahn (or Langevin-type) equation with noise, wherein
the surface stiffness is anisotropic, but continnously differentiable and so cannot treat the
problem of an initial shape which contains orientations below their roughening temperatures.
Hence, to treat this case, we pursue a kinematic theory for anisotropic growth.

=
J

The equilibrium crystal shape is that which minimizes the orientation-dependent total
surface free energy per unit area for the volume it contains, and is determined uniquely
from Wulff’s construction [10]. It may be helpful to recall the salient points here. The
boundary of the shape, W,, is given by

Wy={r:r-N=y(N)VN} {1}

where y(N') represents the surface free energy per unit area in the specified orientation
of the surface unit normal vector A/, and r defines a radial vector from the origin to
the equilibrium crystal surface (e.g. [3,9,10]). The construction shows that shapes are
geometrically similar, with a size determined by the thermodynamic conditions of the
problem (given by the Lagrange parameter in the standard variational thermodynamics).
Equilibrium forms may be fully faceted, everywhere rough, or may consist of both interfacial
structures. An example of the latter is given in figure 1. Previously, we presented
a phenomenological model [9] for growth shapes which was based on the kinetically
constrained minimization of surface free energy. Motivated by the fact that the relaxation
rate at rough orientations can be negligible compared to that on facets, we took the shape
of figure | very slightly away from equilibrium. In this limit, the facets are pinned, and

Figure 1, The boundary (full lines) of the equilibrium crystal
shape, W,,, formed from the Wulff construction which is the
interior envelope of the set of perpendiculars to radial rays
intersecting the polar plot of surface free energy (lighter lines).
We take this initial shape away from equilibrium according
to our growth model, but stress that, since our theory is
kinematic, the initial shape need not be an equilibrium shape.

t Unless the boundary layer hypothesis is invoked, diffusion-limited growth is not geometric because the interfaciat
motion depends on the interfacial value of the field variable(s) which are modified by diffusion. In diffusion-limited
growth, anisotropy is ascribed to an orientation dependence in the surface tension or the kinetic coeffictent, or to
both.
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the rough orientations accrete mass to take the Wulff shape of an ‘equilibrium” crystal of
increasing size.

Similarly, Chernov [11] (see also [3]) has extended Frank’s picture to observe that the
steady-state growth shape which is spatially bounded at each time has a boundary Wy
which can be written as

Wy ={rr.-N=VWN)YN} @

where V(A) is the growth rate in the normal direction A/, The sequence of limiting growth
shapes is given by a simple expansion with time. The shape W can be related to Frank’s
(8] polar plot of slowness A/ V{N") [3]. The shape of the polar plot of V(N) determines
the nature of growth anisotropy and the structure of Wy.

In this presentation we take an equilibrium shape W, which contains both facets and
rough orientations, and investigate its evolution foward the limiting shape Wy. We begin
with the equilibrium shape, since it experiences the least activation barrier and is therefore
most likely to be mucleated. However, our approach can be applied to any closed convex
initial shape.

In the next section we present a vector evolution equation for an arbitrary V(A'), and
then derive a local growth rule for an arbitrary initial shape of r-gonal symmetry. Following
this we use the model to study a specific example. Finally, we analyse a scalar evolution
equation for local curvature that is derived from the vector evolution equation for the curve.
Both equations possess analytic solutions, from which we deduce systematic behaviour
applicable to experimental observations.

2. The growth rule

We follow the motion of each point of an equilibrium shape uader weak growth drives 8y,
the chemical potential difference between the surface and the nutrient phase, where the cost
of advancing the interface in faceted directions is high relative to the available driving force.
The previous model [9] motivates the present one, based on the familiar tenet that there is
a range of du for which there exists a nucleation barrier to accretion at faceted orientations
which is not present at rough orientations [6, 11]. Thus the crystal is at a temperature below
the roughening transition of its faceted orientations, and under a growth drive too weak to
induce kinetic roughening, allowing us to treat growth in a regime far from standard surface
phase transitions [12].

To derive our model we consider a crystal that is uniformly bathed in a homogeneous
nutrient phase. On imposition of a weak growth drive, interfacial processes control the
rate of advance of the solid phase. Normal motion at facet orientations is limited by the
generation of step sources for new layers. Here we restrict attention to those generated
by two-dimensional nucleation of solid clusters, though we stress that our formalism can
accomodate the other step generation mechanisms, The formation of a nucleated step source
requires the coalescence of many molecules in a cluster for which the edge to surface free
energy ratio favours spreading at a given drive]. The generation of new layers is a thermally
activated process with a nucleation frequency f per unit facet area of the typical Maxwell-
Boltzmann form, / o exp(~ma?/kT8u), where o is the free energy of a critical nucleus
on the facet (e.g. Weeks and Gilmer [6]). Thus, the normal growth rate is V¢ = a/A4,

1 The free energy change of the facet/source system {with i molecules) on introduction of the nucleus of i
molecules is AG = AG, — TAS,, where AG; is the free energy of formation of the nuclens, and AS; is the
configurational entropy associated with the reorganization of i molecnles from the vapour to the solid. Since
ifir << | we can approximate AG = AG;.
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where 4 is the lattice constant and A is the typical facet area. We treat the case in which
the nucleus spreading velocity is so large that a nucleated layer covers the facet before the
subsequent nucleation event occurs. Moreover, owing to the finite facet size relative to
fluctuations which can initiate kinetic roughening [12], experiments clearly exhibit singular
growth in this mode. We stress that this is not the case for an infinite facet, or when the
facet size is less than the correlation length of the surface [12]. We also emphasize that V;
is less than the facet growth rate by a mechanism involving maultiple nuclei (e.g. equation
(36) of [121). Steps are already present at molecularly rough surface orientations, so that
growth occurs by random encorporation of nutrient molecules onto the surface; here there
is a linear response to a small driving force V, o 8u [6). Thus, our initial shape will
evolve due to (i) slow normal growth of facets by nucleation and spreading of monolayers,
(ii) relatively fast normal growth of molecularly rough regions, and (iii) the coupling of
the above, wherein the normal growth of the non-singular regions is modified by surface
diffusion of admolecules away from the facets,

The essential idea is to develop an expression for the local normal velocity at each
point of the interface, and to evolve the global shape under growth resulting from the
coexistence of the local kinetics described above. For simplicity we treat the overall shape
problem in a two-dimensional symmetric cross section through the crystal, while noting
that shape evolution of two-dimensional forms is itself of experimental relevance [14-18].
‘We model the interface with a closed curve Clx(u, 1), y(u, 2)] in the plane having time-
dependent components parametrized by a variable . The arclengths s and u are related
by s(u.8) = fy |9C(’,1)/0u’|du’. We let W = |3C(u,t)/8u| so that ds = W du.
We let # denote the angle between the positive x-axis and the unit tangent vector
T = (cos(8), sin(8)) = W~13C/3u. The unit normal A is inward pointing. Our evolution
equation will have the form

ac
(ﬁ)u =—VN 3)

where V = V (8, 5ut) is a normal velocity function under the drive 3.
Now we define a local normal velocity V' (8, 8u2) which continuously blends V; and V,
as motivated above. The normal growth rate at facet orientations is written as

e ?
Ve(@p) = crg(Bu)exp ( “J: ; u) )

whereas for non-singular orientations we express the linear response to the growth drive as

Vi@, 8u) = c,cS,u,[l -I-cos”(%)} (5}

where p is an even integer. The second term of V; models the contribution to the normal
interfacial motion at vicinal and rough orientations due to surface migration of admolecules
away from facets. This is in analogy to the results of solid-on-solid models {18] wherein
it is found that surface diffusion currents of admolecules away from singular orientations
increase with surface slope, saturate at a maximal value, and at a slope controlled somewhat
by finite-size effects, decrease abruptly to zero. The latter slope is ascribed to a grooved
surface state, and we tie this to the roughest orientations on our shape at a given time.. Qur
representation is the simplest form capturing this growth process in the contimwum limit
{19].

A ‘kinematic observer’ moving on the surface of the crystal will see activated growth
at singular orientations, and a transition to rough growth kinetics while walking away from
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(a) (&)

Figure 2. Polar plots of V(8,5u) for(a)m = p =2, by m =4, p=2. V{8, u) controls the
evolution of the initial crystal shown in figure ! and in figure 3{a), where we take m = p = 2.

singular faces. We join these disparate kinetic processes into a complete local normal
velocity function for n-gonal symunetry via a transition function &(6)

V8, 8p) = Ve(Bu)s(@) + Ve(8, 8u)(1 — £(8)). (6)

The function & governs the transition between facet-like and rough-like growth. Its essential
properties are: & is periodic in 27 /n, 1 £ € €0, and §(&) = 1,£(6: + x/n) = 0, where
& is a facet orientation. For the examples in this paper, we make the simple choice of the
transition function £(8) = cos™(ré/2), where m is even and m > p to preserve the n-gonal
symmetry. We include two parameters m and p in our model which may be determined by
experiment. The function g(8) and the mobilities ¢f, may also depend on other parameters
[20], but the essential point is that for a given §u, Vi € V,. Similarly, other geometric
growth models (e.g. [3,4] (Angenent and Gurtin)) represent anisotropy as a product of an
orientation-dependent mobility and a linear combination of a bulk phase-change contribution
and weighted mean curvature, itself a linear combination of ¥ (A) and ¥"(N'). Polar plots
of V(6, du) are shown in figure 2. )

3. Solution and example

An initial value problem for (3) with V given by (6) can be solved exactly using the
method of characteristics [3]. The method of characteristics is applicable to interface—
motion problems when the normal velocity depends explicitly on surface orientation alone
(at a given driving force} and not on the interface position or derivatives such as curvature
(e.z. [4] Brower et al). The characteristics for this class of problems are straight rays,
one emanating from each point of the initial curve. These characteristics have the form
x(t) = xo+rd{fy), where xg is 2 point on the initial curve and d is a direction vector whose
value is determined by the velocity V{(8) at 2p. The surface normal direction is preserved
along each characteristic. Thus the curve C at time 7 is given by the set of all points ®(z).

Figure 3 presents the resulting growth sequence when the initial equilibrium shape
{given in figure 1) contains both facets and rough regions. The initial shapes are constructed
explicitly from Wulff’s theorem (W, from (1)). Note that the facets spread to dominate the
growth shape, broad vicinal regions form, and the rough orientations grow out of existence
with decreasing curvature. This type of faceting can only occur under an imposed growth
drive and we term this ‘global kinetic faceting’. It is the global (the entire closed surface)
effect of local dynamics, as distinct from equilibrium faceting or local kinetic faceting that
has been observed on crystals grown from solutions [21]. The curvature decrease at rough
orientations during this transition is consistent with notions of critical nucleation size [9],



3962

J § Wertlaufer et al

{a}

6.2

(&

a.d

Figure 3. (@) A sequence of growth shapes at times ¢ = 0, 0.018, 0.038, 0.068, 0.35 of the upper
right quadrant of a crystal with cubic (n = 4) symmetry, m = p = 2, ot = I, Ve(§u) = 0.01.
The units are arbitrary. (a) The initial (+ = 0} equilibrium shape, W, is formed by in the
Wulff construction and shown in figure 1. The inset shows the full erystal shape at the same
times. Note that the rough orientations grow out of existence with a decreasing curvature, and
that there are sharp joints where the vicinal regions join the rough regions. The curvatures at
8 = n/4 for : = 0,0.018, 0.038, 0.068 are 4, 3.7, 3.4, 3.1 (the numerical values agreeing with
the exact solutions to (7) to one significant figure [25]). As growth progresses, the crystal loses
orientations, until it is fully faceted and possesses only four orientations. Note that growih at
the facet orientations is so slow that individual time steps are represented by fractions of a line
width on this scale. The final shape is geometrically equivalent to that given by Wy of (2), and
that constructed from the polar plot of VV, thereby showing the transient evolution between
W, and Wy. (b). Here we draw the characteristics to illustrate the method of solution: and the
point that the characteristics are trajectories along which the surface normal is conserved.
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and contradicts the common intuition that curvature will increase at orientations where the
normal velocity is greatest. Also, consistent with experimental observations [23-25], the
edges of the facets become sharper and more visible during the transition. Finally, the steady
state that our model captures is equivalent to that obtained by Chernov's construction Wy
on V, that which can be generaied from Frank’s [8] polar plot of slowness, and that which
is obtained by truncating the ‘ears’ of the Taylor et @l VV plot [3]. Therefore, we see fow
the equilibrium shape W,, evolves toward the limiting growth shape Wy.

In general, the characteristic rays will begin intersecting after some finite time; that is,
shocks will develop (figure 3(5)). After the time of the first intersection, the curve C will
not be a simple closed curve, but instead will develop ‘ears’. Of course, there is no physical
meaning for these ears so the natural procedure is to terminate any characteristics which
reach such a shock [3]. Thus the curve C loses any initial orientation whose corresponding
characteristic hits the shock.

4, Local curvature evolution

The result displayed in figure 3 is confirmed by a general analysis of the curvature evolution.
We utilize the basic differential geometry of curves in the plane (see the appendix). With
the curve parametrized by & rather than » or 5, we derive the local curvature evolution
equation
& ey (N
at
where V = (V + V"), the primes denote differentiation with respect to theta, and a8/dt
gives the rate of change at fixed & as distinguished from that at fixed u. We call V the
‘velocity stiffness’ in analogy with surface stiffness.

The derivation of (7} depends sclely on identities of differential geometry and does not
require us to specify a rule for V. Thus, at this point the physics of the problem for an
arbitrary shape is unspecified, and we are poised to address a variety of two-dimensional
interfacial evolution problems. In order to study idealized diffusion-limited growth, similar
evolution equations have been presented previously {4,5]. Anr important distinction is that,
for a given driving force, our growth law V, and hence the velocity stiffness, depends only
on @ and not « or its derivatives.

Any seed crystal relevant to our analysis is convex, ¥ 2 0, but need not be strictly
convex, ¥ > 0. For finite V, the solution of (7) is given by

K = L."' .
14Vt
Angenent [26] has found behaviour similar to (8) for a more general class of problems.
We consider the three cases of orientations with V > 0, orientations with V = 0, and
orientations with V < 0 (figure 4).

At non-faceted orientations with initial curvature k;, and V > 0, the curvature will
decrease monotonically in time from the initial value. This result is quantitatively consistent
with the solution to (3), qualitatively consistent with the experimental behaviour mentioned
above, and qualitatively consistent with our model of kinetically constrained minimization
of surface free energy wherein the rough orientations take the shape of an expanding
equilibrium crystal [9]. It is also trivially correct for isotropic surface free energy, e.g.
a liquid drop. We can get some insight into our model velocity given in (6) by looking
at, for example, the orientaion 8 = x/4 with n = 4. In this case V(n/4) = ¢dut -+ 84
Therefore, for small 3u the rate of curvature decrease increases with .

®
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Figure 4, Aplotof Veor 0 <8 <m/2 (@ym=p=2()m=4,p=2

In general, V will be zero for certain orientations which we denote 6. ~For these
orientations, the curvature remains constant. In our model velocity function, V has two
zeros between each facet orientation and the centre of the rough orientations. In the case
n = 4, there are a total of sixteen values of & (figure 4).

For orientations with ¥ < 0 the solution in (8) gives a finite time curvature divergence
at time 7 = —(« V)~ !. The minimum ‘blow-up’ time corresponds to the orientation for
which V is minimum. We conjecture that the shock begins developing before the minimum
blow-up time, and that the characteristics for orientations with ¥ < O hit the shock before
the blow-up time comresponding to their orientations. We have numerical evidence for this
conjecture in the case of our model velocity, and we observe corners on the evolving shape,
but never curvature divergence.

For closed curves, shape preserving growth is nof synonymous with a vanishing time
derivative in (7} (e.g. an expanding circle preserves overall shape with decreasing curvature),
although for open curves shape preserving solutions can be obtained with this constraint
(e.z. needle crystals) [5]. For orientations such that V > 0, the long time limit of (8),
k=1 /\71:, tells us that the local shape loses memory of the &;, only if x; > 0, at such
an orientation. Thus, under these conditions, an initial seed that is everywhere convex will
have an asymptotic curvature that is independent of its initial value at any orientation.

Our analysis of (7) s related to the work of Frank [8] and Chernov [11]. In analogy to
the invariance of the chemical potential on the surface of an equilibrium crystal, Frank and
Chernov showed that there are steady, shape-preserving solutions for interface-controlled
growth, that satisfy the invariance of the ‘kinematic potential’ xV = A(r). This invariance
is the classical constraint for limiting growth shapes. The A(z) is a ‘constant’ (Lagrange
parameter) at each time consisting of an arbitrary constant and a decreasing function of
time, which provides the length scale of the steady shape. (The invariance of the kinematic
potential is equivalent to the Euler—Lagrange equation resulting from the variational solution
of the problem of finding the slowest growth shape of all shapes of a given volume at each
time.) The interpretation is analogous to the Gibbs-Thomson-Herring equation for an
equilibrium crystal shape, where t plays the role of du [9], in the overall expansion of
a geometrically similar object. The simplest choice of the Lagrange parameter results in
Tk V = 1, which is equivalent to the asymptotic solution of (8). Hence, the invariance is
a special case of a more general curvature evolution, and cannot be valid for an arbitrary
initial shape. As pointed out above, the long time solution is not valid for orientations
where «; = (. The invariance of the kinematic potential in the Frank—-Chernov approach is
thus a rigorous constraint only for strictly convex initial shapes.
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5. Conclusion

In any real crystal growth situation one can hope to begin growth from an equilibriom shape,
but it is the transient shape that one observes, until and if steady state is reached. We have
considered other, more complicated treatments of particular transient effects, For example,
one might model the surface diffusion processes via a term Y7 on the right-hand side of
(3) rather than as a periodic modulation of the rough growth rate. However, in the most
general case the local arc length nesd not be preserved, which is equivalent to the choice of
an ‘orthogonal gauge’ wherein only the normal growth rule affects the crystal shape [27).
Hence, V determines sclely how the points parametrized by # move along the curve, but it
cannot play an explicit role in the shape evoiution,

The polygonalization of crystals growing under the conditions we have studied is known.
The key to our results is that they indicate this polygonalization is achieved by decreasing
curvature in rough orientations. In other words, we have found that the transient evolution
of an equilibrium shape W,, containing facets and rough orientations, toward the limiting
growth shape Wy, involves a discrete loss in surface orientations. Such an evolution is
not captured in a model in which curvature increases in those orientations because the loss
of surface orientations can be asymptotically continuous. We have also found the classical
constraint of the invariance of the kinematic potential as a special case of a general solution
to a local evolution equation for curvature. The invariance holds only when the initial shape
is strictly convex, so that one cannot apply it to the study of asymptotic forms of arbitrary,
and in particular partiaily faceted, initial shapes.

A fully faceted crystal contains no surface which can easily accept accreting material.
Consistent with our previous result [9] (depending on the size of the crystal, and whether
growth takes place in a diffusive medium), such a surface state defines a reasonable
lower bound for kinetic roughening of the facets themseives, or the onset of either shape
instabilities or oscillations [16]. When the critical nucleation size of a seed crystallite
is smaller than the diffusion length in the background material, our model indicates that
the initial stage of dendritic growth (or a similar shape instability) is controlled by near-
equilibriom microscopic dynamics rather than multiple scale—capillary and diffusive—
interactions.
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Appendix. Curvature evolution

We outline here the derivation of (7), the curvature evolution equation for an arbitrary
normal growth law V. First, we invoke the Frenet equations,

E =kN and ﬂ = —kT (Al)
o5 as
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where 88/8s = x. We next use the arc length s to parametrize 7, « and A/, which by
definition are

aC(s, t 8°C(s,t °C(s, t
T, = 2580 = |58 s = ags,p TEGD (S NTY
ds as?
In analogy with the approach of Gage and Hamilton [4] we then compute the following
identities:
aw 8 9 d
? WeV I:-a?, g} = —-KVa (A3)
3T av a6 av
_— = —=-——— A4
ot ds N at s a4

A more detailed inquiry along these lines will be presented elsewhere [25], but here we give
a brief description of each expression in turn. Since the metric W measures the length of an
infinitesimal displacement on the boundary, the dilation of the boundary is represented in the
first expression. This is obtained by computing 8,(7" - 7). The commutation relation that
follows utilizes the first result, and the next two results describe how 7, and the angle & that
defines it, rotate at each point of the curve by an amount which depends on the anisotropy
of V. Note that (3/87); # (8/81)y, so [(3/81),, (8/9u),;} = 0, and when combining (A3)
and (A4) a non-local integro-differential curvature evolution equation is obtained (e.g. [4]
(Gage and Hamilton) or {27]) which can be written

Br(s, 1) a2y _av f
it R4 —Vk? Vds'. A5
( at )s TeE T b “ ds (A5)

When parametrizing the curve by @ rather than x or s the curvature evolution equation
becomes strictly local [4] since (8/8t)y = (8/3r), — (30/3¢)3/38 = 8/d:

du 35
M~ 21 Ab
3 = ¥ (A6)

where V = (V + V"), and the primes dencte 9/88. The variable t is defined above,
and one should keep in mind that it is the relevant time variable when thinking about local
curvature evolation with « parametrized by 8. Note the contrast between the curvature decay
behaviour in (8) and the weaker curvature decay behaviour in the case V = cx, ¢ = constaat;
the ‘curve-shortening equation’. We find a different exponent for the solution of this equation
with a circle of initial curvature k; having curvature decay x = (k; /(1 + ck;))V/2.
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