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Ergodic properties of RCF

The Gauss map G has the following properties
I it has an ergodic invariant measure µ(x) := 1

(1+x) log(2) in
the Lebesgue class;

I For almost every x ∈ [0,1]:

lim
n→+∞

2
n

log qn(x) = h(G)

where pn/qn is the n-th convergent of x and h(G) is the
entropy of G.

I h(G) = π2

6 log 2

⇒ eh(G) ∼= 10.73 . . .
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Nakada’s α-continued fractions

The maps Tα : [α− 1, α]→ [α− 1, α] are defined as follows:

Tα(x) :=
1
|x |
− cα(x), cα(x) := b 1

|x |
+ 1− αc.
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Nakada’s α-continued fractions

The maps Tα : [α− 1, α]→ [α− 1, α] are defined as follows:

Tα(x) :=
1
|x |
− cα(x), cα(x) := b 1

|x |
+ 1− αc.

and generate the α-continued fraction expansion:

x =
ε1,α

c1,α +
ε2,α

c2,α + . . .

cn,α ∈ N+, εn,α ∈ {±1}
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Ergodic properties of Tα

The maps Tα (α > 0) have the following properties
I Tα has an invariant probability measure µα(x) := ρ(x)dx

with ρ of bounded variation;

I Tα is ergodic w.r.t. Lebesgue measure;
I For almost every x ∈ [0,1], the entropy of Tα is

h(Tα) = lim
n→+∞

2
n

log qn,α(x)

where pn,α(x)/qn,α(x) is the n-th convergent of the
α-expansion of x
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The entropy function α 7→ h(Tα)
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Question 1

Is the entropy really continuous? Yes!

I L.Luzzi-S.Marmi (Nonlinearity 2008-numerical);
I GT (arXiv 2009-analytic-except small values);
I C.Kraaikamp-T.A.Schmid-W.Steiner (arXiv 2011-complete

proof).

Does limα→0+ h(Tα) exist? Is it zero? Yes!
H.Nakada, R.Natsui (Nonlinearity, 2008)
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Question 2

Is the entropy really not monotone on [0,1/2]? Yes!
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A quick account of Nakada-Natsui’s results

Nakada and Natsui defined matching intervals as intervals on
which a condition of type

T k1
α (α) = T k2

α (α− 1) k1, k2 ∈ N

on which the entropy α 7→ h(Tα) is monotone;

but different
intervals might display different kind of monotonicity!

Indeed, they showed that any neighbourhood of the origin
contains

I matching intervals where α 7→ h(Tα) is increasing;
I matching intervals where α 7→ h(Tα) is decreasing;
I matching intervals where α 7→ h(Tα) is constant.
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I The union of all matching intervals is dense;

I its complement has zero Lebesgue measure.
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NN conjecture: the answer and related issues

Theorem (Carminati, T)
There exists a closed set E ⊂ [0,1] such that

I α 7→ h(Tα) is locally monotone on [0,1] \ E ;
I m(E) = 0 but HD(E) = 1.
E will be called the exceptional set.

C.Carminati, GT: A canonical thickening of Q and the dynamics
of continued fractions, 2010, to appear in ETDS.

E is the complement of NN matching intervals.
THE END ?
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NN conjecture: the answer and related issues

Theorem (CT)
There exists a closed fractal set E ⊂ [0,1] such that

I α 7→ h(Tα) is locally monotone on [0,1] \ E ;
I m(E) = 0 but HD(E) = 1.
E will be called the exceptional set.

C.Carminati, GT: A canonical thickening of Q and the dynamics
of continued fractions, 2010, to appear in ETDS.

E is the complement of NN matching intervals.
What is the underlying structure?



The exceptional set E
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Construction of E
FACT:

Every rational value admits exactly two C.F. expansions.

3
10

=
1

3 +
1
3

=
1

3 +
1

2 +
1
1

3
10

= [0; 3,3] = [0; 3,2,1].

So any a ∈ Q ∩ (0,1) will have two C.F. expansions of the type

a = [0; A−] = [0; A+]

Using such strings we can construct the two quadratic
irrationals
α− := [0; A−] (E.g. α− = [0; 3,2,1] =

√
37−4
7 )

α+ := [0; A+] (E.g. α+ = [0; 3,3] =
√

13−3
2 )
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The interval Ia := (α−, α+) will be called the quadratic interval
generated by a ∈ Q ∩ (0,1).
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Thickening Q

M =
⋃

a∈Q∩]0,1]

Ia.

I M is an open neighbourhood of Q∩]0,1];
I the connected components ofM are quadratic intervals;

The exceptional set

E := [0,1] \M = [0,1] \
⋃

a∈Q∩]0,1]

Ia

is such that
I |E| = 0;
I dimH(E) = 1;
I E \ {isolated points} is a Cantor set;



Quadratic intervals
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Direct description of E .

Proposition (Bonanno, Carminati, Isola, T, 2010)

E = {x ∈ [0,1] : Gk (x) ≥ x , ∀k ∈ N}.

(G denotes the Gauss map)
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Symbolic dynamics of unimodal maps
Let f : [0,1]→ [0,1] be a smooth map, F is called unimodal if it
has exactly one critical point 0 < c0 < 1 and f (0) = f (1) = 0.

The itinerary of a point x ∈ [0,1] with f is the sequence

i(x) = s1s2 . . . with si =

{
0 if f i−1(x) < c0
1 if f i−1(x) ≥ c0

The complexity of the orbits of a unimodal map is encoded by
its kneading sequence

K (f ) = i(f (c0)) ∈ {0,1}N

Theorem (Milnor-Thurston ’77)
The kneading sequence determines the topological entropy.
The entropy of the quadratic family f (x) = λx(1− x) is
monotone in λ.



Symbolic dynamics of unimodal maps
Let f : [0,1]→ [0,1] be a smooth map, F is called unimodal if it
has exactly one critical point 0 < c0 < 1 and f (0) = f (1) = 0.

The itinerary of a point x ∈ [0,1] with f is the sequence

i(x) = s1s2 . . . with si =

{
0 if f i−1(x) < c0
1 if f i−1(x) ≥ c0

The complexity of the orbits of a unimodal map is encoded by
its kneading sequence

K (f ) = i(f (c0)) ∈ {0,1}N

Theorem (Milnor-Thurston ’77)
The kneading sequence determines the topological entropy.
The entropy of the quadratic family f (x) = λx(1− x) is
monotone in λ.



Symbolic dynamics of unimodal maps
Let f : [0,1]→ [0,1] be a smooth map, F is called unimodal if it
has exactly one critical point 0 < c0 < 1 and f (0) = f (1) = 0.

The itinerary of a point x ∈ [0,1] with f is the sequence

i(x) = s1s2 . . . with si =

{
0 if f i−1(x) < c0
1 if f i−1(x) ≥ c0

The complexity of the orbits of a unimodal map is encoded by
its kneading sequence

K (f ) = i(f (c0)) ∈ {0,1}N

Theorem (Milnor-Thurston ’77)
The kneading sequence determines the topological entropy.
The entropy of the quadratic family f (x) = λx(1− x) is
monotone in λ.



Symbolic dynamics of unimodal maps
Let f : [0,1]→ [0,1] be a smooth map, F is called unimodal if it
has exactly one critical point 0 < c0 < 1 and f (0) = f (1) = 0.

The itinerary of a point x ∈ [0,1] with f is the sequence

i(x) = s1s2 . . . with si =

{
0 if f i−1(x) < c0
1 if f i−1(x) ≥ c0

The complexity of the orbits of a unimodal map is encoded by
its kneading sequence

K (f ) = i(f (c0)) ∈ {0,1}N

Theorem (Milnor-Thurston ’77)
The kneading sequence determines the topological entropy.
The entropy of the quadratic family f (x) = λx(1− x) is
monotone in λ.



Symbolic dynamics of unimodal maps
Let f : [0,1]→ [0,1] be a smooth map, F is called unimodal if it
has exactly one critical point 0 < c0 < 1 and f (0) = f (1) = 0.

The itinerary of a point x ∈ [0,1] with f is the sequence

i(x) = s1s2 . . . with si =

{
0 if f i−1(x) < c0
1 if f i−1(x) ≥ c0

The complexity of the orbits of a unimodal map is encoded by
its kneading sequence

K (f ) = i(f (c0)) ∈ {0,1}N

Theorem (Milnor-Thurston ’77)
The kneading sequence determines the topological entropy.
The entropy of the quadratic family f (x) = λx(1− x) is
monotone in λ.



The set of all kneading sequences Λ

Using the kneading sequence one can produce a kneading
invariant τf

f 7→ K (f ) ∈ {0,1}N 7→ τf ∈ [0,1]

Proposition
The set of all kneading invariants of all real quadratic
polynomials is

Λ := {x ∈ [0,1] : T k (x) ≤ x ∀k ∈ N}

where T is the classical tent map.
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Λ vs Mandelbrot

Λ := {x ∈ [0,1] : T k (x) ≤ x ∀k ∈ N}

Λ corresponds to the set of external rays which ’land’ on the
bifurcation locus of the real quadratic family, i.e. the real slice of
the Mandelbrot set.



Identity of bifurcation sets

Theorem (Bonanno-Carminati-Isola-T, ’10)
The sets Λ \ {0} and E are homeomorphic.

More precisely, the
map ϕ : [0,1]→ [1

2 ,1] given by

x =
1

a1 +
1

a2 +
1

a3 +
1
. . .

7→ ϕ(x) = 0.11 . . . 1︸ ︷︷ ︸
a1

00 . . . 0︸ ︷︷ ︸
a2

11 . . . 1︸ ︷︷ ︸
a3

. . .

is an orientation-reversing homeomorphism which maps E onto
Λ \ {0}.
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Minkowski’s question mark function

Let α := [0; a1,a2,a3, ...], define

?(α) := 0.00 . . . 0︸ ︷︷ ︸
a1−1

11 . . . 1︸ ︷︷ ︸
a2

00 . . . 0︸ ︷︷ ︸
a3

· · ·
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The dictionary

Continued fractions ⇔ Binary expansions

E ←?→ Λ



From Farey to the tent map, via ?

Minkowski’s question-mark function conjugates the Farey map
with the tent map
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A unified approach

The dictionary yields a unified proof of the following results:

1. The set of matching intervals for α-continued fractions has
zero measure and full Hausdorff dimension
(Nakada-Natsui conjecture, CT 2010)

2. The real part of the boundary of the Mandelbrot set has
Hausdorff dimension 1

H.dim(∂M∩ R) = 1

(Zakeri, 2000)
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Univoque numbers

Let us fix 1 < β < 2 and consider the β-expansion of 1

1 =
ε1
β1 +

ε2
β2 + . . .

with εi ∈ {0,1}.

If the expansion is unique, then β is called
univoque number. Let

U := {{εi}i≥0 is binary expansion of a univoque number}

Theorem (Allouche-Cosnard + ε)
Binary expansions of univoque numbers are in bijection with
nonperiodic elements of Λ:

U = Λ \Q1

where Q1 is the set of rational numbers with odd denominator.
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A unified approach

The dictionary yields a unified proof of the following results:

1. The set of matching intervals for α-continued fractions has
zero measure and full Hausdorff dimension
(Nakada-Natsui conjecture, CT 2010)

2. The real part of the boundary of the Mandelbrot set has
Hausdorff dimension 1

H.dim(∂M∩ R) = 1

(Zakeri, 2000)
3. The set of univoque numbers has zero measure and full

Hausdorff dimension (Erdős-Horváth-Joó, Daróczy-Kátai,
Komornik-Loreti)



The dictionary

Continued fractions ⇔ Binary expansions

E ←?→ Λ

α− continued fractions unimodal maps

numbers of generalized external rays
bounded type (CT, 2011) on Julia sets

cutting sequences for univoque numbers
geodesics on torus
(Cassaigne, 1999)



The end

Thank you!
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