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Nakada’s α-continued fraction transformations

For each α ∈ [0,1], we can define a α-euclidean algorithm,
where we take the remainder to be in [α− 1, α].

It is generated by Tα : [α− 1, α]→ [α− 1, α] as follows:
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Entropy

What is the average speed of convergence of the α-euclidean
algorithm?

How does it vary with α?

h(α) :=

∫
log |T ′α|dµα

It measures:
I the speed of convergence of the α-euclidean algorithm
I the growth rate of the denominators
I how chaotic the map Tα is
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h(α) :=

∫
log |T ′α|dµα

It measures:
I the speed of convergence of the α-euclidean algorithm:

The average number of steps over all rationals of
denominator less than N is

PN(α) ∼=
2

h(α)
log N

[Bourdon-Daireaux-Vallée]
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Entropy

h(α) :=

∫
log |T ′α|dµα

It measures:
I the speed of convergence of the α-euclidean algorithm
I the growth rate of the denominators : For almost every

x ∈ [0,1]

h(α) = lim
n→+∞

2
n

log qn,α(x)

where pn,α(x)/qn,α(x) is the n-th convergent of the
α-expansion of x

I how chaotic the map Tα is
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h(α) is:
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I Hölder-continuous with exponent (1/2− ε) [T.]

How to describe and explain the fractal structure?
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I Hölder-continuous with exponent (1/2− ε) [T.]

How to describe and explain the fractal structure?



3.1816E0

3.1808E0

x

0.2990.29850.2980.29750.2970.29650.296

y

3.1812E0

3.1804E0

3.18E0



Matching, a dynamical source of monotonicity
Nakada and Natsui defined matching intervals as intervals on
which the orbits of the two endpoints collide:

T N+1
α (α) = T M+1

α (α− 1) M,N ∈ N

They proved that, whenever this happens, the entropy h(α) is
monotone near the parameter α; but different intervals might
display different kind of monotonicity
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Indeed, they found examples of

I matching intervals where h(α) is increasing;
I matching intervals where h(α) is decreasing;
I matching intervals where h(α) is constant.
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Quadratic intervals
FACT:

Every rational value admits exactly two C.F. expansions.
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= [0; 3,3] = [0; 3,2,1].

So any a ∈ Q ∩ (0,1) will have two C.F. expansions of the type

a = [0; A−] = [0; A+]

Using such strings we can construct the two quadratic
irrationals
α− := [0; A−] (E.g. α− = [0; 3,2,1] =

√
37−4
7 )

α+ := [0; A+] (E.g. α+ = [0; 3,3] =
√

13−3
2 )
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Quadratic intervals

For each a ∈ Q ∩ (0,1)

we define open interval Ia as follows

a = [0; A±] 7→ Ia := (α−, α+), α± := [0; A±].

The interval Ia := (α−, α+) will be called the quadratic interval
generated by a ∈ Q ∩ (0,1).
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Quadratic intervals are matching intervals

Theorem (Carminati-T., 2010)
Let Ir be a maximal quadratic interval, and r = [0; a1, . . . ,an]
with n even. Let

N =
∑

i even

ai M =
∑
i odd

ai (1)

Then for all α ∈ Ir ,

T N+1
α (α) = T M+1

α (α− 1) (2)

Corollary
The union of all matching intervals is dense of full measure.
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The story so far

I Parameter space splits into countably many open intervals,
each one of them labelled by a rational number r .

I h is monotone on Ir , and its monotonicity type is
determined by the continued fraction expansion of r .

I The complement is a set of parameters E which will be
called the bifurcation set.
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Tuning operators

The self-similarity of h(α) can be explained in terms of tuning
operators.

Each r ∈ Q determines a map

τr : [0,1] 7→ [0,1]

of parameter space into itself.
If r = [0; S0] = [0; S1], it is given in c.f. expansion by:

[0; a1,a2, . . . ] 7→ [0; S1Sa1−1
0 S1Sa2−1

0 . . . ]

The image of τr is called the tuning window Wr .
Example: if r = 1

2 = [0; 2] = [0; 1,1], then

W 1
2

= [[0; 2,1], [0; 1,1]) = [g2,g)

Idea: τr maps the large scale structure to a smaller scale
structure, thus creating the fractal self-similarity.
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Results: self-similarity of parameter space
Theorem
If h is increasing on a maximal interval Ir , then the monotonicity
of h on the tuning window Wr reproduces the behaviour on the
interval [0,1], but with reversed sign.

More precisely, if Ip is
another maximal interval, then

1. h is increasing on Iτr (p) iff it is decreasing on Ip;
2. h is decreasing on Iτr (p) iff it is increasing on Ip;
3. h is constant on Iτr (p) iff it is constant on Ip.
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Results: plateaux

A plateau of a real-valued function is a maximal open interval
on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)
The interval (g2,g) is a plateau for h(α).

Definition
A tuning window Wr is neutral if, given r = [0; a1, . . . ,an] the
expansion of r of even length,

a1 − a2 + · · ·+ an−1 − an = 0

Theorem
Every plateau of h is the interior of a neutral tuning window Wr .
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Results: classification of local monotonic behaviour

Theorem
Let α be a parameter in the parameter space of α-continued
fractions. Then:

1. if α /∈ E , then h is monotone on a neighbourhood of α;
2. if α ∈ E , then either

(i) α is a phase transition: h is constant on the left of α and
strictly monotone (increasing or decreasing) on the right of
α;

(ii) α lies in the interior of a neutral tuning window: then h is
constant on a neighbourhood of α;

(iii) otherwise, h has mixed monotonic behaviour at α, i.e. in
every neighbourhood of α there are infinitely many intervals
on which h is increasing, infinitely many on which it is
decreasing and infinitely many on which it is constant.
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(ii) α lies in the interior of a neutral tuning window: then h is
constant on a neighbourhood of α;

(iii) otherwise, h has mixed monotonic behaviour at α, i.e. in
every neighbourhood of α there are infinitely many intervals
on which h is increasing, infinitely many on which it is
decreasing and infinitely many on which it is constant.
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