Tuning and plateaux for the entropy of α-continued fraction transformations

Giulio Tiozzo
Harvard University

Marseille, May 24, 2012

Credits

Joint work with C. Carminati (Pisa)

Summary

1. α-continued fractions

Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$

Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$
3. Quadratic intervals and matching

Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$
3. Quadratic intervals and matching
4. Tuning operators

Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$
3. Quadratic intervals and matching
4. Tuning operators
5. Characterization of plateaux

Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$
3. Quadratic intervals and matching
4. Tuning operators
5. Characterization of plateaux
6. Local monotonicity of the entropy

Euclid's algorithm and continued-fractions

$$
x=\frac{p}{q} \quad p=a_{0} q+r_{0}
$$

Euclid's algorithm and continued-fractions

$$
x=\frac{p}{q} \quad p=a_{0} q+r_{0} \quad \Rightarrow \quad \frac{p}{q}=a_{0}+\frac{r_{0}}{q}
$$

Euclid's algorithm and continued-fractions

$$
\begin{array}{ll}
x=\frac{p}{q} & \\
& p=a_{0} q+r_{0} \quad \Rightarrow \quad \frac{p}{q}=a_{0}+\frac{r_{0}}{q} \\
q=a_{1} r_{0}+r_{1}
\end{array}
$$

Euclid's algorithm and continued-fractions

$$
\begin{array}{lll}
x=\frac{p}{q} & \\
& & \\
& p=a_{0} q+r_{0} & \Rightarrow \frac{p}{q}=a_{0}+\frac{r_{0}}{q} \\
q=a_{1} r_{0}+r_{1} & \Rightarrow \frac{q}{r_{0}}=a_{1}+\frac{r_{1}}{r_{0}}
\end{array}
$$

Euclid's algorithm and continued-fractions

$$
\begin{aligned}
& x=\frac{p}{q} \\
& \\
& p=a_{0} q+r_{0} \quad \Rightarrow \\
& q=a_{1} r_{0}+r_{1} \Rightarrow \frac{p}{q}=a_{0}+\frac{r_{0}}{q} \\
& \frac{p}{r_{0}}=a_{1}+\frac{r_{1}}{r_{0}} \\
& \\
&
\end{aligned}
$$

Euclid's algorithm and continued-fractions

$$
x=\frac{p}{q}
$$

$$
\begin{aligned}
& p=a_{0} q+r_{0} \Rightarrow \frac{p}{q}=a_{0}+\frac{r_{0}}{q} \\
& q=a_{1} r_{0}+r_{1} \Rightarrow \frac{q}{r_{0}}=a_{1}+\frac{r_{1}}{r_{0}} \\
& \frac{p}{q}=a_{0}+\frac{1}{a_{1}+\frac{r_{1}}{r_{0}}}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots \frac{1}{a_{k-1}+\frac{1}{a_{k}}}}}
\end{aligned}
$$

Continued-fraction expansion

$x \in \mathbb{R} \backslash \mathbb{Q}$

$$
x=\lfloor x\rfloor+x_{0}=
$$

Continued-fraction expansion

$x \in \mathbb{R} \backslash \mathbb{Q}$

$$
x=\lfloor x\rfloor+x_{0}=a_{0}+x_{0} \quad 0 \leq x_{0} \leq 1
$$

$$
x=a_{0}+x_{0}
$$

Continued-fraction expansion

$x \in \mathbb{R} \backslash \mathbb{Q}$

$$
\begin{aligned}
x & =\lfloor x\rfloor+x_{0}=a_{0}+x_{0} \quad 0 \leq x_{0} \leq 1 \\
\frac{1}{x_{0}} & =\left\lfloor\frac{1}{x_{0}}\right\rfloor+x_{1}=
\end{aligned}
$$

$$
x=a_{0}+x_{0}
$$

Continued-fraction expansion

$x \in \mathbb{R} \backslash \mathbb{Q}$

$$
\begin{gathered}
x=\lfloor x\rfloor+x_{0}=a_{0}+x_{0} \quad 0 \leq x_{0} \leq 1 \\
\frac{1}{x_{0}}=\left\lfloor\frac{1}{x_{0}}\right\rfloor+x_{1}=a_{1}+x_{1} \quad 0 \leq x_{1} \leq 1
\end{gathered}
$$

$$
x=a_{0}+\frac{1}{a_{1}+x_{1}}
$$

Continued-fraction expansion

$x \in \mathbb{R} \backslash \mathbb{Q}$

$$
\begin{gathered}
x=\lfloor x\rfloor+x_{0}=a_{0}+x_{0} \quad 0 \leq x_{0} \leq 1 \\
\frac{1}{x_{0}}=\left\lfloor\frac{1}{x_{0}}\right\rfloor+x_{1}=a_{1}+x_{1} \quad 0 \leq x_{1} \leq 1 \\
\frac{1}{x_{1}}=\left\lfloor\frac{1}{x_{1}}\right\rfloor+x_{2}= \\
x=a_{0}+\frac{1}{a_{1}+x_{1}}
\end{gathered}
$$

Continued-fraction expansion

$x \in \mathbb{R} \backslash \mathbb{Q}$

$$
\begin{gathered}
x=\lfloor x\rfloor+x_{0}=a_{0}+x_{0} \quad 0 \leq x_{0} \leq 1 \\
\frac{1}{x_{0}}=\left\lfloor\left.\frac{1}{x_{0}} \right\rvert\,+x_{1}=a_{1}+x_{1} \quad 0 \leq x_{1} \leq 1\right. \\
\frac{1}{x_{1}}=\left\lfloor\frac{1}{x_{1}}\right\rfloor+x_{2}=a_{2}+x_{2} \quad 0 \leq x_{2} \leq 1 \\
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+x_{2}}}
\end{gathered}
$$

Continued-fraction expansion

$$
\begin{gathered}
x \in \mathbb{R} \backslash \mathbb{Q} \\
x=\lfloor x\rfloor+x_{0}=a_{0}+x_{0} \quad 0 \leq x_{0} \leq 1 \\
\frac{1}{x_{0}}=\left[\left.\frac{1}{x_{0}} \right\rvert\,+x_{1}=a_{1}+x_{1} \quad 0 \leq x_{1} \leq 1\right. \\
\frac{1}{x_{1}}=\left\lfloor\frac{1}{x_{1}}\right\rfloor+x_{2}=a_{2}+x_{2} \quad 0 \leq x_{2} \leq 1 \\
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ddots}}
\end{gathered}
$$

INFINITE EXPANSION

Dynamical interpretation: the Gauss map

$$
\frac{1}{x_{n}}=\left\lfloor\frac{1}{x_{n}}\right\rfloor+x_{n+1}
$$

Dynamical interpretation: the Gauss map

$$
\begin{gathered}
\frac{1}{x_{n}}=\left\lfloor\frac{1}{x_{n}}\right\rfloor+x_{n+1} \\
x_{n+1}=\left\{\frac{1}{x_{n}}\right\}
\end{gathered}
$$

Dynamical interpretation: the Gauss map

$$
\begin{gathered}
\frac{1}{x_{n}}=\left\lfloor\frac{1}{x_{n}}\right\rfloor+x_{n+1} \\
G(x)=\left\{\frac{1}{x}\right\}
\end{gathered}
$$

Dynamical interpretation: the Gauss map

$$
\frac{1}{x_{n}}=\left\lfloor\frac{1}{x_{n}}\right\rfloor+x_{n+1}
$$

$$
G(x)=\left\{\frac{1}{x}\right\}
$$

Nakada's α-continued fraction transformations

For each $\alpha \in[0,1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha-1, \alpha]$. It is generated by $T_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha]$ as follows:

Nakada's α-continued fraction transformations

For each $\alpha \in[0,1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha-1, \alpha]$. It is generated by $T_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha]$ as follows:

$$
T_{\alpha}(x):=\frac{1}{|x|}-c_{\alpha}(x)
$$

Nakada's α-continued fraction transformations

For each $\alpha \in[0,1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha-1, \alpha]$. It is generated by $T_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha]$ as follows:

$$
T_{\alpha}(x):=\frac{1}{|x|}-c_{\alpha}(x), \quad c_{\alpha}(x):=\left\lfloor\frac{1}{|x|}+1-\alpha\right\rfloor .
$$

Nakada's α-continued fraction transformations

For each $\alpha \in[0,1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha-1, \alpha]$. It is generated by $T_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha]$ as follows:

$$
T_{\alpha}(x):=\frac{1}{|x|}-c_{\alpha}(x), \quad c_{\alpha}(x):=\left\lfloor\frac{1}{|x|}+1-\alpha\right\rfloor .
$$

and associated to the α-continued fraction expansion:

$$
x=\frac{\epsilon_{1, \alpha}}{c_{1, \alpha}+\frac{\epsilon_{2, \alpha}}{c_{2, \alpha}+\quad \ddots}} c_{n, \alpha} \in \mathbb{N}^{+}, \epsilon_{n, \alpha} \in\{ \pm 1\}
$$

Nakada's α-continued fraction transformations

For each $\alpha \in[0,1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha-1, \alpha]$. It is generated by $T_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha]$ as follows:

$$
T_{\alpha}(x):=\frac{1}{|x|}-c_{\alpha}(x), \quad c_{\alpha}(x):=\left\lfloor\frac{1}{|x|}+1-\alpha\right\rfloor .
$$

and associated to the α-continued fraction expansion:

$$
x=\frac{\epsilon_{1, \alpha}}{c_{1, \alpha}+\frac{\epsilon_{2, \alpha}}{c_{2, \alpha}+\quad \ddots}} c_{n, \alpha} \in \mathbb{N}^{+}, \epsilon_{n, \alpha} \in\{ \pm 1\}
$$

Nakada's α-continued fraction transformations

For each $\alpha \in[0,1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha-1, \alpha]$. It is generated by $T_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha]$ as follows:

$$
T_{\alpha}(x):=\frac{1}{|x|}-c_{\alpha}(x), \quad c_{\alpha}(x):=\left\lfloor\frac{1}{|x|}+1-\alpha\right\rfloor .
$$

and associated to the α-continued fraction expansion:

$$
x=\frac{\epsilon_{1, \alpha}}{c_{1, \alpha}+\frac{\epsilon_{2, \alpha}}{c_{2, \alpha}+\quad \ddots}} c_{n, \alpha} \in \mathbb{N}^{+}, \epsilon_{n, \alpha} \in\{ \pm 1\}
$$

Nakada's α-continued fraction transformations

Nakada's α-continued fraction transformations

Nakada's α-continued fraction transformations

Nakada's α-continued fraction transformations

Nakada's α-continued fraction transformations

Nakada's α-continued fraction transformations

Nakada's α-continued fraction transformations

Nakada's α-continued fraction transformations

Entropy

What is the average speed of convergence of the α-euclidean algorithm?

Entropy

What is the average speed of convergence of the α-euclidean algorithm? How does it vary with α ?

Entropy

For each α, the topological entropy of T_{α} is infinite. However, every T_{α} has a unique invariant measure μ_{α} in the Lebesgue measure class.

Entropy

For each α, the topological entropy of T_{α} is infinite. However, every T_{α} has a unique invariant measure μ_{α} in the Lebesgue measure class. Hence we can consider the metric entropy with respect to that measure.

$$
h(\alpha):=\int \log \left|T_{\alpha}^{\prime}\right| d \mu_{\alpha}
$$

Entropy

$$
h(\alpha):=\int \log \left|T_{\alpha}^{\prime}\right| d \mu_{\alpha}
$$

It measures:

- the speed of convergence of the α-euclidean algorithm

Entropy

$$
h(\alpha):=\int \log \left|T_{\alpha}^{\prime}\right| d \mu_{\alpha}
$$

It measures:

- the speed of convergence of the α-euclidean algorithm: The average number of steps over all rationals of denominator less than N is

$$
P_{N}(\alpha) \cong \frac{2}{h(\alpha)} \log N
$$

[Bourdon-Daireaux-Vallée]

Entropy

$$
h(\alpha):=\int \log \left|T_{\alpha}^{\prime}\right| d \mu_{\alpha}
$$

It measures:

- the speed of convergence of the α-euclidean algorithm
- the growth rate of the denominators

Entropy

$$
h(\alpha):=\int \log \left|T_{\alpha}^{\prime}\right| d \mu_{\alpha}
$$

It measures:

- the speed of convergence of the α-euclidean algorithm
- the growth rate of the denominators : For almost every $x \in[0,1]$

$$
h(\alpha)=\lim _{n \rightarrow+\infty} \frac{2}{n} \log q_{n, \alpha}(x)
$$

where $p_{n, \alpha}(x) / q_{n, \alpha}(x)$ is the n-th convergent of the α-expansion of X

Entropy

$$
h(\alpha):=\int \log \left|T_{\alpha}^{\prime}\right| d \mu_{\alpha}
$$

It measures:

- the speed of convergence of the α-euclidean algorithm
- the growth rate of the denominators
- how chaotic the map T_{α} is

The entropy function $\alpha \mapsto h\left(T_{\alpha}\right)$

Zooming in

Is entropy monotone increasing for $\alpha<\frac{1}{2}$?

Zooming in

Zooming in

No, it is not monotone!

Zooming in

Zooming in

It seems like entropy displays a fractal structure

Global behaviour of $h(\alpha)$

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]

Global behaviour of $h(\alpha)$

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]
- continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]

Global behaviour of $h(\alpha)$

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]
- continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]
- Hölder-continuous with exponent $(1 / 2-\epsilon)$ [T.]

Global behaviour of $h(\alpha)$

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]
- continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]
- Hölder-continuous with exponent $(1 / 2-\epsilon)$ [T.]

How to describe and explain the fractal structure?

Matching, a dynamical source of monotonicity

Nakada and Natsui defined matching intervals as intervals on which the orbits of the two endpoints collide:

$$
T_{\alpha}^{N+1}(\alpha)=T_{\alpha}^{M+1}(\alpha-1) \quad M, N \in \mathbb{N}
$$

Matching, a dynamical source of monotonicity

Nakada and Natsui defined matching intervals as intervals on which the orbits of the two endpoints collide:

$$
T_{\alpha}^{N+1}(\alpha)=T_{\alpha}^{M+1}(\alpha-1) \quad M, N \in \mathbb{N}
$$

They proved that, whenever this happens, the entropy $h(\alpha)$ is monotone near the parameter α;

Matching, a dynamical source of monotonicity

Nakada and Natsui defined matching intervals as intervals on which the orbits of the two endpoints collide:

$$
T_{\alpha}^{N+1}(\alpha)=T_{\alpha}^{M+1}(\alpha-1) \quad M, N \in \mathbb{N}
$$

They proved that, whenever this happens, the entropy $h(\alpha)$ is monotone near the parameter α; but different intervals might display different kind of monotonicity

Matching, a dynamical source of monotonicity

Nakada and Natsui defined matching intervals as intervals on which the orbits of the two endpoints collide:

$$
T_{\alpha}^{N+1}(\alpha)=T_{\alpha}^{M+1}(\alpha-1) \quad M, N \in \mathbb{N}
$$

They proved that, whenever this happens, the entropy $h(\alpha)$ is monotone near the parameter α; but different intervals might display different kind of monotonicity

Indeed, they found examples of

Indeed, they found examples of

- matching intervals where $h(\alpha)$ is increasing;

Indeed, they found examples of

- matching intervals where $h(\alpha)$ is increasing;
- matching intervals where $h(\alpha)$ is decreasing;

Indeed, they found examples of

- matching intervals where $h(\alpha)$ is increasing;
- matching intervals where $h(\alpha)$ is decreasing;
- matching intervals where $h(\alpha)$ is constant.

Indeed, they found examples of

- matching intervals where $h(\alpha)$ is increasing;
- matching intervals where $h(\alpha)$ is decreasing;
- matching intervals where $h(\alpha)$ is constant.

Conjecture

The union of all matching intervals is dense and has full measure in parameter space.

Quadratic intervals

FACT:

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\frac{3}{10}=\frac{1}{3+\frac{1}{3}}
$$

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}}
$$

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]
\end{aligned}
$$

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Using such strings we can construct the two quadratic irrationals
$\alpha^{-}:=\left[0 ; \overline{A^{-}}\right]$

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Using such strings we can construct the two quadratic irrationals
$\alpha^{-}:=\left[0 ; \overline{A^{-}}\right]\left(\right.$E.g. $\left.\alpha^{-}=[0 ; \overline{3,2,1}]=\frac{\sqrt{37}-4}{7}\right)$

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Using such strings we can construct the two quadratic irrationals
$\alpha^{-}:=\left[0 ; \overline{A^{-}}\right]\left(\right.$E.g. $\left.\alpha^{-}=[0 ; \overline{3,2,1}]=\frac{\sqrt{37}-4}{7}\right)$
$\alpha^{+}:=\left[0 ; \overline{A^{+}}\right]$

Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Using such strings we can construct the two quadratic irrationals

$$
\begin{aligned}
& \alpha^{-}:=\left[0 ; \overline{A^{-}}\right]\left(\text {E.g. } \alpha^{-}=[0 ; \overline{3,2,1}]=\frac{\sqrt{37}-4}{7}\right) \\
& \alpha^{+}:=\left[0 ; \overline{A^{+}}\right]\left(\text {E.g. } \alpha^{+}=[0 ; \overline{3,3}]=\frac{\sqrt{13}-3}{2}\right)
\end{aligned}
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
a=\left[0 ; A^{ \pm}\right]
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
a=\left[0 ; A^{ \pm}\right] \mapsto
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
a=\left[0 ; A^{ \pm}\right] \mapsto I_{a}:=\left(\alpha^{-}, \alpha^{+}\right),
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
\boldsymbol{a}=\left[0 ; A^{ \pm}\right] \mapsto I_{a}:=\left(\alpha^{-}, \alpha^{+}\right), \quad \alpha^{ \pm}:=\left[0 ; \overline{A^{ \pm}}\right] .
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
\boldsymbol{a}=\left[0 ; A^{ \pm}\right] \mapsto I_{a}:=\left(\alpha^{-}, \alpha^{+}\right), \quad \alpha^{ \pm}:=\left[0 ; \overline{A^{ \pm}}\right] .
$$

The interval $I_{a}:=\left(\alpha^{-}, \alpha^{+}\right)$will be called

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
\boldsymbol{a}=\left[0 ; \boldsymbol{A}^{ \pm}\right] \mapsto I_{a}:=\left(\alpha^{-}, \alpha^{+}\right), \quad \alpha^{ \pm}:=\left[0 ; \overline{A^{ \pm}}\right] .
$$

The interval $I_{a}:=\left(\alpha^{-}, \alpha^{+}\right)$will be called the quadratic interval generated by $a \in \mathbb{Q} \cap(0,1)$.

Quadratic intervals are matching intervals

Theorem (Carminati-T., 2010)
Let I_{r} be a maximal quadratic interval, and $r=\left[0 ; a_{1}, \ldots, a_{n}\right]$ with n even. Let

$$
\begin{equation*}
N=\sum_{i \text { even }} a_{i} \quad M=\sum_{i \text { odd }} a_{i} \tag{1}
\end{equation*}
$$

Then for all $\alpha \in I_{r}$,

$$
\begin{equation*}
T_{\alpha}^{N+1}(\alpha)=T_{\alpha}^{M+1}(\alpha-1) \tag{2}
\end{equation*}
$$

Quadratic intervals are matching intervals

Theorem (Carminati-T., 2010)

Let I_{r} be a maximal quadratic interval, and $r=\left[0 ; a_{1}, \ldots, a_{n}\right]$ with n even. Let

$$
\begin{equation*}
N=\sum_{i \text { even }} a_{i} \quad M=\sum_{i \text { odd }} a_{i} \tag{1}
\end{equation*}
$$

Then for all $\alpha \in I_{r}$,

$$
\begin{equation*}
T_{\alpha}^{N+1}(\alpha)=T_{\alpha}^{M+1}(\alpha-1) \tag{2}
\end{equation*}
$$

Corollary
The union of all matching intervals is dense of full measure.

The story so far

- Parameter space splits into countably many open intervals, each one of them labelled by a rational number r.

The story so far

- Parameter space splits into countably many open intervals, each one of them labelled by a rational number r.
- h is monotone on I_{r}, and its monotonicity type is determined by the continued fraction expansion of r.

The story so far

- Parameter space splits into countably many open intervals, each one of them labelled by a rational number r.
- h is monotone on I_{r}, and its monotonicity type is determined by the continued fraction expansion of r.
- The complement is a set of parameters \mathcal{E} which will be called the bifurcation set.

The story so far

- Parameter space splits into countably many open intervals, each one of them labelled by a rational number r.
- h is monotone on I_{r}, and its monotonicity type is determined by the continued fraction expansion of r.
- The complement is a set of parameters \mathcal{E} which will be called the bifurcation set.

How about the fractal structure?

Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators.

Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$
\tau_{r}:[0,1] \mapsto[0,1]
$$

of parameter space into itself.

Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$
\tau_{r}:[0,1] \mapsto[0,1]
$$

of parameter space into itself.
If $r=\left[0 ; S_{0}\right]=\left[0 ; S_{1}\right]$, it is given in c.f. expansion by:

Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$
\tau_{r}:[0,1] \mapsto[0,1]
$$

of parameter space into itself.
If $r=\left[0 ; S_{0}\right]=\left[0 ; S_{1}\right]$, it is given in c.f. expansion by:

$$
\left[0 ; a_{1}, a_{2}, \ldots\right] \mapsto\left[0 ; S_{1} S_{0}^{a_{1}-1} S_{1} S_{0}^{a_{2}-1} \ldots\right]
$$

Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$
\tau_{r}:[0,1] \mapsto[0,1]
$$

of parameter space into itself.
If $r=\left[0 ; S_{0}\right]=\left[0 ; S_{1}\right]$, it is given in c.f. expansion by:

$$
\left[0 ; a_{1}, a_{2}, \ldots\right] \mapsto\left[0 ; S_{1} S_{0}^{a_{1}-1} S_{1} S_{0}^{a_{2}-1} \ldots\right]
$$

The image of τ_{r} is called the tuning window W_{r}.

Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$
\tau_{r}:[0,1] \mapsto[0,1]
$$

of parameter space into itself.
If $r=\left[0 ; S_{0}\right]=\left[0 ; S_{1}\right]$, it is given in c.f. expansion by:

$$
\left[0 ; a_{1}, a_{2}, \ldots\right] \mapsto\left[0 ; S_{1} S_{0}^{a_{1}-1} S_{1} S_{0}^{a_{2}-1} \ldots\right]
$$

The image of τ_{r} is called the tuning window W_{r}.
Example: if $r=\frac{1}{2}=[0 ; 2]=[0 ; 1,1]$, then

Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$
\tau_{r}:[0,1] \mapsto[0,1]
$$

of parameter space into itself.
If $r=\left[0 ; S_{0}\right]=\left[0 ; S_{1}\right]$, it is given in c.f. expansion by:

$$
\left[0 ; a_{1}, a_{2}, \ldots\right] \mapsto\left[0 ; S_{1} S_{0}^{a_{1}-1} S_{1} S_{0}^{a_{2}-1} \ldots\right]
$$

The image of τ_{r} is called the tuning window W_{r}.
Example: if $r=\frac{1}{2}=[0 ; 2]=[0 ; 1,1]$, then

$$
W_{\frac{1}{2}}=[[0 ; 2, \overline{1}],[0 ; \overline{1,1}])
$$

Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$
\tau_{r}:[0,1] \mapsto[0,1]
$$

of parameter space into itself.
If $r=\left[0 ; S_{0}\right]=\left[0 ; S_{1}\right]$, it is given in c.f. expansion by:

$$
\left[0 ; a_{1}, a_{2}, \ldots\right] \mapsto\left[0 ; S_{1} S_{0}^{a_{1}-1} S_{1} S_{0}^{a_{2}-1} \ldots\right]
$$

The image of τ_{r} is called the tuning window W_{r}.
Example: if $r=\frac{1}{2}=[0 ; 2]=[0 ; 1,1]$, then

$$
W_{\frac{1}{2}}=[[0 ; 2, \overline{1}],[0 ; \overline{1,1}])=\left[g^{2}, g\right)
$$

Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$
\tau_{r}:[0,1] \mapsto[0,1]
$$

of parameter space into itself.
If $r=\left[0 ; S_{0}\right]=\left[0 ; S_{1}\right]$, it is given in c.f. expansion by:

$$
\left[0 ; a_{1}, a_{2}, \ldots\right] \mapsto\left[0 ; S_{1} S_{0}^{a_{1}-1} S_{1} S_{0}^{a_{2}-1} \ldots\right]
$$

The image of τ_{r} is called the tuning window W_{r}. Example: if $r=\frac{1}{2}=[0 ; 2]=[0 ; 1,1]$, then

$$
W_{\frac{1}{2}}=[[0 ; 2, \overline{1}],[0 ; \overline{1,1}])=\left[g^{2}, g\right)
$$

Idea: τ_{r} maps the large scale structure to a smaller scale structure, thus creating the fractal self-similarity.

Results: self-similarity of parameter space

Theorem
If h is increasing on a maximal interval I_{r}, then the monotonicity of h on the tuning window W_{r} reproduces the behaviour on the interval $[0,1]$, but with reversed sign.

Results: self-similarity of parameter space

Theorem
If h is increasing on a maximal interval I_{r}, then the monotonicity of h on the tuning window W_{r} reproduces the behaviour on the interval $[0,1]$, but with reversed sign. More precisely, if I_{p} is another maximal interval, then

1. h is increasing on $I_{\tau_{r}(p)}$ iff it is decreasing on I_{p};
2. h is decreasing on $I_{\tau}(p)$ iff it is increasing on I_{p};
3. h is constant on $I_{\tau_{r}(p)}$ iff it is constant on I_{p}.

Results: self-similarity of parameter space

Theorem

If h is increasing on a maximal interval I_{r}, then the monotonicity of h on the tuning window W_{r} reproduces the behaviour on the interval $[0,1]$, but with reversed sign. More precisely, if I_{p} is another maximal interval, then

1. h is increasing on $I_{\tau_{r}(p)}$ iff it is decreasing on I_{p};
2. h is decreasing on $I_{\tau}(p)$ iff it is increasing on I_{p};
3. h is constant on $I_{\tau_{r}(p)}$ iff it is constant on I_{p}.

Results: self-similarity of parameter space

Theorem

If h is increasing on a maximal interval I_{r}, then the monotonicity of h on the tuning window W_{r} reproduces the behaviour on the interval $[0,1]$, but with reversed sign. More precisely, if I_{p} is another maximal interval, then

1. h is increasing on $I_{\tau_{r}(p)}$ iff it is decreasing on I_{p};
2. h is decreasing on $I_{\tau_{r}(p)}$ iff it is increasing on I_{p};
3. h is constant on $I_{\tau_{r}(p)}$ iff it is constant on I_{p}.

If, instead, h is decreasing on I_{r}, then the monotonicity of I_{p} and $I_{\tau_{r}(p)}$ is the same.

Results: plateaux

A plateau of a real-valued function is a maximal open interval on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)
The interval $\left(g^{2}, g\right)$ is a plateau for $h(\alpha)$.

Results: plateaux

A plateau of a real-valued function is a maximal open interval on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)
The interval $\left(g^{2}, g\right)$ is a plateau for $h(\alpha)$.
Definition
A tuning window W_{r} is neutral if, given $r=\left[0 ; a_{1}, \ldots, a_{n}\right]$ the expansion of r of even length,

$$
a_{1}-a_{2}+\cdots+a_{n-1}-a_{n}=0
$$

Results: plateaux

A plateau of a real-valued function is a maximal open interval on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)
The interval $\left(g^{2}, g\right)$ is a plateau for $h(\alpha)$.
Definition
A tuning window W_{r} is neutral if, given $r=\left[0 ; a_{1}, \ldots, a_{n}\right]$ the expansion of r of even length,

$$
a_{1}-a_{2}+\cdots+a_{n-1}-a_{n}=0
$$

Theorem
Every plateau of h is the interior of a neutral tuning window W_{r}.

Results: classification of local monotonic behaviour

Theorem
Let α be a parameter in the parameter space of α-continued fractions. Then:

Results: classification of local monotonic behaviour

Theorem
Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;

Results: classification of local monotonic behaviour

Theorem
Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in \mathcal{E}$, then either

Results: classification of local monotonic behaviour

Theorem

Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in \mathcal{E}$, then either
(i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;

Results: classification of local monotonic behaviour

Theorem

Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in \mathcal{E}$, then either
(i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;
(ii) α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α;

Results: classification of local monotonic behaviour

Theorem

Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in \mathcal{E}$, then either
(i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;
(ii) α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α;

Results: classification of local monotonic behaviour

Theorem

Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in \mathcal{E}$, then either
(i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;
(ii) α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α;
(iii) otherwise, h has mixed monotonic behaviour at α, i.e. in every neighbourhood of α there are infinitely many intervals on which h is increasing, infinitely many on which it is decreasing and infinitely many on which it is constant.

Classification of local monotonic behaviour: remarks

Note:

- all cases occur for infinitely many parameters;

Classification of local monotonic behaviour: remarks

Note:

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;

Classification of local monotonic behaviour: remarks

Note:

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- 2. there are countably many phase transitions, and they all are tuned images of the phase transition at $\alpha=g$;

Classification of local monotonic behaviour: remarks

Note:

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- 2. there are countably many phase transitions, and they all are tuned images of the phase transition at $\alpha=g$;
- 2.(iii) for a set of parameters of Hausdorff dimension 1!

Classification of local monotonic behaviour: remarks

Note:

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- 2. there are countably many phase transitions, and they all are tuned images of the phase transition at $\alpha=g$;
- 2.(iii) for a set of parameters of Hausdorff dimension 1!
- there is an explicit algorithm to decide which case occurs, given the usual continued fraction expansion of α.

The end

Thank you!

Bonus level: tuning from complex dynamics
Let $f_{c}(z):=z^{2}+c$.

Bonus level: tuning from complex dynamics

Let $f_{c}(z):=z^{2}+c$. The Mandelbrot set \mathcal{M} is the set of $c \in \mathbb{C}$ for which the orbit of 0 is bounded:

$$
f_{c}^{n}(0) \nrightarrow \infty
$$

Bonus level: tuning from complex dynamics

Let $f_{c}(z):=z^{2}+c$. The Mandelbrot set \mathcal{M} is the set of $c \in \mathbb{C}$ for which the orbit of 0 is bounded:

$$
f_{c}^{n}(0) \leftrightarrow \infty
$$

Substitutions and tuning

The Mandelbrot set has a self-similar structure. More precisely, there are baby copies of \mathcal{M} everywhere near its boundary.

Substitutions and tuning

The Mandelbrot set has a self-similar structure. More precisely, there are baby copies of \mathcal{M} everywhere near its boundary.

Baby copies are images of \mathcal{M} via the Douady-Hubbard tuning maps τ_{W}.

Substitutions and tuning

The boundary of \mathcal{M} can be described combinatorially in terms of the doubling map.

Substitutions and tuning

The boundary of \mathcal{M} can be described combinatorially in terms of the doubling map. Baby copies of \mathcal{M} can be described in terms of substitutions:

$$
\theta=0 . \theta_{1} \theta_{2} \ldots \mapsto \tau_{W}(\theta)=0 . \Sigma_{\theta_{1}} \Sigma_{\theta_{2}} \ldots
$$

Substitutions and tuning

The boundary of \mathcal{M} can be described combinatorially in terms of the doubling map. Baby copies of \mathcal{M} can be described in terms of substitutions:

$$
\theta=0 . \theta_{1} \theta_{2} \ldots \mapsto \tau_{W}(\theta)=0 . \Sigma_{\theta_{1}} \Sigma_{\theta_{2}} \ldots
$$

E.g.: Feigenbaum parameter \Leftrightarrow Thue-Morse sequence!

Dictionary

The set of rays landing on the real slice of the Mandelbrot set is isomorphic to the bifurcation set \mathcal{E} for α-c.f. [Bonanno, Carminati, Isola, T., 2011]

Dictionary

The set of rays landing on the real slice of the Mandelbrot set is isomorphic to the bifurcation set \mathcal{E} for α-c.f. [Bonanno, Carminati, Isola, T., 2011] Hence the Douady-Hubbard substitution rule translates into our definition of tuning maps for α-c.f.!

The end

Thank you!

