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Abstract. The Masur–Minsky distance formula estimates word length in the map-
ping class group of a surface S up to additive and multiplicative errors bounded by
some constant C(S) which depends on the surface S. We obtain effective versions
of this formula by estimating the constants C(S) as a function of the absolute value
of the Euler characteristic of S. In particular we prove lower and upper bounds for
C which depend exponentially and factorially on |χ(S)|, respectively.

Our main estimates have several applications to the geometry of surfaces and
hyperbolic 3-manifolds. Among other results, we give effective versions of the fol-
lowing theorems: (1) Brock’s theorem relating the volume of a closed hyperbolic
3–manifold fibering over the circle to the translation length of its monodromy acting
on the pants graph; (2) the upper bound on the word length of a smallest conjuga-
tor for pseudo-Anosovs g, h in terms of the input word lengths |g| and |h|; (3) that
covering maps induce quasi-isometric embeddings of pants graphs of surfaces.
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1. Introduction

Let S = Sg,p denote the orientable surface of genus g with p punctures, and define
the complexity of S to be ω(S) = 3g+p−3; henceforth we assume that ω(S) > 1. Let
Mod(Sg,p) denote the corresponding mapping class group, the group of orientation
preserving homeomorphisms of S up to isotopy. The curve complex of S, denoted C(S)
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is the simplicial complex whose vertices are isotopy classes of essential simple closed
curves on S, and whose k-simplices correspond to (k + 1)-component multicurves on
S.

The curve complex C(S) is a locally infinite, infinite diameter δ-hyperbolic metric
space whose coarse geometry is intimately related to the algebra of Mod(S) and to
the geometry and topology of hyperbolic 3-manifolds ([31], [32], [34], [35]). Indeed,
the automorphism group of C(S) is identified with Mod±(S)– the so-called extended
mapping class group (except for the one exception of S = S1,2) consisting of orienta-
tion reversing and preserving isotopy classes of self-homeomorphisms ([26], [27], [28]),
but due to the local infiniteness of C(S), this action of Mod±(S) is not proper.

One of the most useful and important tools for circumventing this difficulty is the
Masur–Minsky distance formula, which relates the distance between two mapping
classes g, h in the word metric with respect to some fixed finite generating set, to the
geometry of C(S) via hierarchies of tight geodesics ([32]):

Theorem 1.1 ([32]). There exists constants C = C(ω), K = K(ω) such that the
following holds: Let µ1, µ2 be two complete clean markings on Sg,p. Then

dM(µ1, µ2) �C |H(µ1, µ2)| �C
∑
Y⊆S

[[dY (µ1, µ2)]]K ,

where dM(·, ·) denotes distance in the marking complexM(S), H(µ1, µ2) is any com-
plete hierarchy with initial marking µ1 and terminal marking µ2, and the sum is taken
over all essential, properly embedded subsurfaces Y ⊆ S.

Furthermore, if dY (µ1, µ2) = M(Y ) > K, then Y is a domain of H, and the
geodesic g of H supported on Y has length |g| satisfying

|M(Y )− |g|| < K.

In Theorem 1.1, the symbol �C denotes equality up to additive and multiplicative
error bounded above and below by C:

Z �C W ⇔
1

C
W − C ≤ Z ≤ C ·W + C.

Furthermore, [[x]]K := x if x ≥ K and 0 otherwise.

The main focus of this paper is to estimate C and K as functions of ω, and in so
doing, to obtain effective versions of these coarse equalities. With these estimates
at hand, we provide effective and explicit connections to the topology and geometry
of surfaces and 3–manifolds. Such applications are our primary motivation and are
discussed extensively below.

Our first result proves that C grows at least exponentially in ω and at most like
ωω, and K grows linearly in ω. In what follows, an affine function of a variable x is
simply a function of the form x 7→ C · x+ b for some constants C, b.

Theorem 1.2. There exists affine functions f, h : N→ N such that
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f(ω) ≤ K(ω) ≤ h(ω),

and

2f(ω) ≤ C(ω) ≤ h(ω)h(ω).

Note that Theorem 1.1 is a statement about 6 inequalities; C is simply taken to
be the maximum over all multiplicative constants, their reciprocals, and any additive
constants appearing in any of these inequalities.

The exponential growth of C is not necessitated by all 6 of these inequalities; indeed,
more effective control can be obtained by treating these inequalities as independent
statements, summarized below:

Theorem 1.3. There is an R ≥ 0 so that if µ1, µ2, H(µ1, µ2) are as in the statement
of Theorem 1.1 and h(ω) is as in the statement of Theorem 1.2, then the following
inequalities hold:

(1) dM(µ1, µ2) ≤ 2 · |H(µ1, µ2)|.
(2) |H(µ1, µ2)| ≤ (h(ω))! · dM(µ1, µ2) + (h(ω))!.
(3)

∑
Y⊆S[[dY (µ1, µ2)]]f(ω) ≤ (h(ω))! · |H(µ1, µ2)|+ (h(ω))!.

(4) |H(µ1, µ2)| ≤ ((h(ω)))! ·
∑

Y⊆S[[dY (µ1, µ2)]]R + ((h(ω)))!.
(5) dM(µ1, µ2) ≤ (h(ω))! ·

∑
Y⊆S[[dY (µ1, µ2)]]h(ω) + (h(ω))!.

(6)
∑

Y⊆S[[dY (µ1, µ2)]]R ≤ h(ω) · dM(µ1, µ2).

There is also a distance formula which relates the distance in the pants graph
dP(p1, p2) between two pants decompositions, the length of a hierarchy without an-
nuli interpolating between p1 and p2, and the sum of all sufficiently large subsurface
projections taken over all non-annular subsurfaces ([32]). A version of Theorem 1.3
holds in this context, which we summarize below:

Theorem 1.4. Let p1, p2 be pants decompositions on Sg,p, H(p1, p2) a hierarchy with-
out annuli with initial marking equal to p1, and terminal marking p2. Then inequali-
ties (2)− (5) of Theorem 1.3 hold with H(µ1, µ2) replaced with H(p1, p2) and dM(·, ·)
replaced with dP(·, ·). Furthermore, the following hold:

(1′) dP(p1, p2) ≤ |H(p1, p2)|;
and

(6′)
∑
Y⊆S

[[dY (µ1, µ2)]]3184 ≤ 600 · dP(p1, p2).

1.1. The conjugacy problem for pseudo-Anosovs. Masur–Minsky use the dis-
tance formula to prove the following important result ([32]):

Theorem 1.5 ([32]). Fix S = Sg,p and a finite generating set S of Mod(S), there
exists a constant q = q(S, g, p) satisfying the following: Let φ, θ ∈ Mod(S) be conjugate
pseudo-Anosovs. Then there exists a mapping class r conjugating φ to θ whose word
length |r| satisfies
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|r| < q · (|φ|+ |θ|).
As q necessarily depends on the choice of generating set, one can not hope to

directly estimate q as a function of ω(S) without first having specified a choice of
generating set for each mapping class group. After making such choices, we obtain
the following effective and explicit estimate for q:

Theorem 1.6. There is a finite generating set S(g, p) of Mod(Sg,p) such that

q(S(g, p)) ≤ (h(ω))!,

for h as in the statement of Theorem 1.2.

1.2. Brock’s convex core and mapping torus theorems. Let X, Y ∈ T (Sg,p),
the Teichmüller space of Sg,p. Bers’ simultaneous uniformization theorem [5] demon-
strates that there exists a unique quasi-fuchsian 3-manifold Q(X, Y ) such that the
two marked Riemann surfaces at infinity are X and Y . Recall that the Bers’ constant
B(g, p) is a number such that any hyperbolic surface topologically equivalent to Sg,p
admits at least one pants decomposition with total length at most B.

Brock’s convex core theorem [11] relates the volume of the convex core core(Q) of
Q(X, Y ), to the distance in the pants graph P between a pair of pants decompositions
PX , PY , one of which is short on X, and the other short on Y :

Theorem 1.7 ([11]). There exists a constant η = η(ω(g, p)) such that the following
holds: Let X, Y ∈ T (Sg,p) and let PX , PY be pants decompositions such that PX (resp.
PY ) has length at most B(g, p) on X (resp. on Y ). Then

dP(PX , PY ) �η vol(core(Q(X, Y ))).

Using Theorem 1.4, we obtain an effective version of Theorem 1.7:

Theorem 1.8. Let X, Y, PX , PY be as in the statement of Theorem 1.8. Then

1

h(ω)h(ω)
dP(PX , PY )− h(ω)h(ω) ≤ vol(core(Q(X, Y ))).

Furthermore, when S is closed,

vol(core(Q(X, Y ))) ≤ h(ω)3 · (dP(PX , PY ) + 1).

Remark 1.9. Futer–Purcell–Schleimer have also worked out an effective version of
Theorem 1.7 using different methods.

Brock’s mapping torus theorem [12] relates the volume of a hyperbolic mapping
torus to the translation length of its monodromy on P(S). Define the stable transla-
tion length of ψ ∈ Mod(S) in P(S) to be

τP(ψ) := lim
n→∞

dP(P, ψn(P ))

n
,

for any pants decomposition P ∈ P . Using Theorem 1.8, we obtain the following
effective version of Brock’s result:
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Theorem 1.10. Let ψ ∈ Mod(S) be pseudo-Anosov, and let Mψ denote the mapping
torus, Mψ := S × [0, 1]/((x, 1) ∼ (ψ(x), 0)), equipped with its unique finite volume
complete hyperbolic metric. Then

1

h(ω)h(ω)
τP(ψ)− h(ω)h(ω) ≤ vol(Mψ).

Remark 1.11. The inequality which bounds volume from above by translation length
has already been made effective by Agol ([1]), who showed that the multiplicative
and additive error can be taken to be uniform in ω.

1.3. Covering maps and Pants graphs. Let p : S → S ′ be a covering map between
closed orientable surfaces. The covering induces a coarse map p∗ : C(S ′) → C(S)
between curve complexes, by sending a curve γ on S ′ to a component of its pre-image
under p. We recall the following theorem of Rafi and Schleimer ([37]):

Theorem 1.12 ([37]). There exists a constant C = C(S, S ′) such that p∗ is a C-
quasi-isometry.

Tang later gave a short proof of Theorem 1.12 using hyperbolic geometry ([40]),
and a result relating the geometry of a quasi-fuchsian manifold to the curve complex
([9], [13]). Building on Tang’s ideas and using Theorem 1.8, we give an effective proof
of an analogous theorem for the pants graph.

Given a cover p : S → S ′, fix a hyperbolic metric σ on S ′; then σ lifts to a metric
σ̃ on S. A pants decomposition on S ′ will lift to a multi-curve on S and we complete
this multicurve to a shortest possible pants decomposition with respect to σ̃ to obtain
a map p∗ : P(S ′)→ P(S). We prove:

Theorem 1.13. Let p : S → S ′ be a covering map between closed orientable surfaces.
Then there exists an affine function t(ω) such that p∗ is an ωt(ω)-quasi-isometry.

1.4. Connections to other work. We conclude the introduction by highlighting
applications related to the Weil-Petersson metric on Teichmüller space, and to algo-
rithms for determining the Nielsen-Thurston type of braids.

Recall the following result of Schlenker ([39]):

Theorem 1.14 ([39]). Let S be a closed orientable surface of genus at least 2, and
let x, y ∈ T (S). Then there is a constant KS > 0 such that

vol(core(Q(X, Y ))) ≤ 3
√
π(g − 1)dWP (X, Y ) +KS,

where dWP denote distance in the Weil-Petersson metric.

Combining Theorem 1.14 with Theorem 1.8, we obtain an effective version of
Brock’s quasi-isometry [11] between the pants graph and T (S) equipped with the
Weil-Petersson metric:

Theorem 1.15. Let S be a closed surface of genus at least 2, X, Y ∈ T (S), and
let PX , PY ∈ P(S) be shortest pants decompositions on X and Y , respectively. Then
there exists an affine function r(ω) such that
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dP(PX , PY ) �(r(ω))! dWP (X, Y ).

That is, the map Q : T (S) → P(S) sending a marked Riemann surface to its
shortest pants decomposition is a quasi-isometry, with constants bounded above by
(r(ω))!.

Proof. The inequality dP(PX , PY ) ≺(r(ω))! dWP (X, Y ) is obtained by simply combining
Theorems 1.8 with 1.14. That is, we use the volume of core(Q(X, Y )) as an interme-
diary. We also use a bound on the constant KS which follows from Schlenker’s proof
[39] and from work of Bridgeman [10]; KS is bounded above by some affine function
of ω(S). As for the opposite inequality, Brock’s original argument [11] yields a bound
on the Lipschitz constants for Q which grows at most quadratically in ω. �

Finally, consider the following existence theorem of Calvez ([16]):

Theorem 1.16 ([16]). Let B(n) denote the Braid group on n strands. Given b ∈
B(n), there exists an algorithm which determines the Nielsen-Thurston type of b,
which terminates in quadratic time (with respect to word length |b|).

Calvez’s algorithm uses the Garside structure of the Braid group, and we note that
the above theorem is strictly an existence result: the algorithm is technically not
well-defined, since it relies on Theorem 1.5 of Masur-Minsky [32] and as a result, its
run time is a function of the multiplicative constant q. Thus, Theorem 1.6 yields the
well-definedness of Calvez’s algorithm.

1.5. Techniques and tools. The upper bound on marking distance in terms of
subsurface projections is proved by analyzing Masur and Minsky’s original argument
([32]), keeping care of the various constants and analyzing their dependencies on the
complexity ω(g, p). We are able to obtain more control on these constants using the
following effective results:

(1) Uniform hyperbolicity of curve graphs, as shown independently by the first
author ([2]), the third author with Hensel and Przytycki ([25]), Bowditch ([7]),
and Clay-Rafi-Schleimer ([19]);

(2) The combinatorial proof of the bounded geodesic image theorem obtained by
the third author ([43]), which when coupled with (1), yields uniform control
on the bounded geodesic image theorem.

In addition to this, several completely new arguments are needed, especially for the
lower bound on marking distance. For instance, the techniques used to prove inequal-
ity (6′) in Theorem 1.4 – that pants distance can be bounded below by subsurface
projections with a uniform cut-off and uniform multiplicative error – do not appear
anywhere in the literature.

The lower bound of Theorem 1.2 is obtained by constructing a long hierarchy, all
of whose geodesics are relatively short. This produces examples where the constants
involved are particularly bad and demonstrates the complexity dependence inherent
in the Masur–Minsky hierarchy machinery.
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2. Preliminaries

2.1. Coarse geometry. Let X and Y be metric spaces. A map φ : X → 2Y is
called coarsely well-defined if there exists a constant K ≥ 0 so that for each x ∈ X
the diameter of φ(x) in Y is bounded above by K. In this case, we think of φ as a
map from X to Y ; this can be formalized by replacing φ with a map φ′ that for each
x ∈ X, chooses one point arbitrarily in φ(x). Henceforth, when we refer to φ as a map
between metric spaces, we allow for the possibility that φ is a coarsely well-defined
map from one metric space to the power set of the other.

Given λ ≥ 1, k ≥ 0, a map φ : X → Y is a (λ, k)-quasi-isometric embedding if for
all a, b ∈ X,

1

λ
dY (φ(a), φ(b))− k ≤ dX(a, b) ≤ λdY (φ(a), φ(b)) + k.

The above inequalities can be more succinctly expressed by the notation

dX(a, b) �λ,k dY (φ(a), φ(b)).

That is, to express the inequality A ≤ λ ·B + k, we write A ≤λ,k B, and similarly for
A ≥λ,k B.

A quasi-isometry between metric spaces X and Y is a quasi-isometric embedding
φ : X → Y satisfying the additional property that there exists a constant R ≥ 0 so
that for each y ∈ Y , there exists x ∈ X with dY (φ(x), y) ≤ R. Given a, b ∈ R∪{±∞},
a (λ, k)–parameterized quasi geodesic in X is a (λ, k) quasi-isometric embedding of
an interval [a, b] ⊆ R (equipped with the standard metric) into X. A geodesic in X
is by definition a (1, 0)-quasi-geodesic, i.e. an isometric embedding of [a, b] ⊂ R into
X.

Finally, recall that the metric space X is geodesic if any points x, y ∈ X can be
joined by a geodesic in X. The metric space X is called δ-hyperbolic (or Gromov
hyperbolic, or just hyperbolic) if whenever Tx,y,z is a geodesic triangle with vertices
x, y, z in X, then any edge of Tx,y,z is contained in a δ-neighborhood of the union of
the other two edges [24, 23].

2.2. Simple closed curves. A simple closed curve on a surface S is the image of an
embedding of S1 into S. A simple closed curve is essential if it is not homotopically
trivial and not homotopic into a neighborhood of a puncture. A multi-curve is a
disjoint union of pairwise non-homotopic simple closed curves. A pants decomposition
is a multi-curve on S with the maximum possible number of components. Note that
ω(g, p) = 3g + p − 3 > 1 exactly means that Sg,p admits a multi-curve with at least
two components. As two simple closed curves are homotopic if and only if they are
isotopic, we will sometimes blur the distinction between isotopy and homotopy.

Given a pair of simple closed curves α, β the geometric intersection number i(α, β) is
the minimal number of intersection points between any simple closed curve homotopic
to α and any simple closed curve homotopic to β:

i(α, β) := min
x∼α,y∼β

|x ∩ y|,
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where ∼ denotes homotopy. Curves α and β are said to be in minimal position if
the number of their points of intersection is equal to their geometric intersection
number. A pair of simple closed curves α, β are in minimal position if and only if
no complementary region of their union is a bigon ([20]), a simply connected region
bounded by one arc of α and one arc of β.

2.3. The mapping class group Mod(S) and the curve and pants complexes.
The mapping class group Mod(S) of a surface S is the group of isotopy classes of
orientation preserving homeomorphisms of S:

Mod(S) ∼= Homeo+(S)/ ∼,
where ∼ denotes isotopy between homeomorphisms. Any mapping class sends punc-
tures to punctures, but is allowed to permute the set of punctures.

Curve complexes. Suppose ω(g, p) = 3g + p − 3 > 1. Then the curve complex of
Sg,p, denoted C(Sg,p), is the simplicial complex whose vertices correspond to isotopy
classes of essential simple closed curves on S, and k+1 such vertices span a k-simplex
precisely when there is a multi-curve in S whose components represent these vertices.
The curve graph, denoted C1(S), is the 1-skeleton of C(S): vertices are isotopy classes
of essential simple closed curves, and two such vertices span an edge if and only if
the corresponding curves have geometric intersection number 0. The curve complex
(and curve graph) is made into a metric space by identifying each k-simplex with the
standard Euclidean k-simplex with unit length edges.

The dimension of C(S) is equal to the number of components in any pants de-
composition of S. Moreover, C(S) is a flag complex, meaning that k + 1 vertices
span a k-simplex if and only if there exists the 1-skeleton of a k-simplex spanned by
those vertices in the curve graph. To see this, note that S admits a complete hyper-
bolic metric and that with this metric any essential simple closed curve has a unique
geodesic representative. Moreover, two closed geodesics on S are automatically in
minimal position. Hence, any collection of curves which pairwise have zero geometric
intersection number can be simultaneously realized as disjoint curves on S by taking
geodesic representatives.

The mapping class group Mod(S) acts isometrically on C(S), by extending the
natural action on the vertex set simplicially to the higher dimensional simplices.
Indeed, with the exception of S1,2, the full automorphism group of C(S) is isomorphic
to the extended mapping class group Mod±(S), the super-group of Mod(S) consisting
of isotopy classes of homeomorphisms of S (orientation reversing or preserving) ([26],
[27], [28]).

The arc and curve graph of S , denoted AC(S), is the graph whose vertices corre-
spond to isotopy classes of essential simple closed curves, or isotopy classes of homo-
topically non-trivial properly embedded arcs on S. Again, edges correspond to pairs
of vertices that can be realized disjointly on S.

We will also have need of a version of the curve complex for several surfaces S with
ω(S) < 1. If S is the once-punctured torus, define C(S) to be the graph whose vertices
correspond to isotopy classes of essential simple closed curves, and two such vertices
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span an edge precisely when the corresponding curves have geometric intersection
number 1. When S is the 4-punctured sphere S0,4, define C(S) to be the graph where
adjacency corresponds to pairs of isotopy classes with geometric intersection number
2. Finally, when S is an annulus, consider a hyperbolic isometry φ ∈ PSL(2,R) and
the hyperbolic cylinder C obtained by quotienting H2 by the action of the infinite
cyclic subgroup 〈φ〉. The cylinder C is not compact, but it admits a Gromov com-
pactification C̄. Then we define the annular curve graph of S to be the graph whose
vertices are geodesic simple arcs in C̄ with one endpoint on each boundary compo-
nent, and edges correspond to pairs of disjoint arcs. Letting η denote the core curve
of S, we will sometimes refer to C(S) as C(η).

We record for later use Equation 2.3 of [32], which gives implies that distance in
the annular complex is coarsely the same as intersection number:

(2.1) dA(α, β) = 1 + i(α, β)

Masur and Minsky showed [31] that for each S, there exists δ = δ(S) so that the
curve complex is δ(S)-hyperbolic. Bowditch later reproved this result ([8]), and his
proof gave logarithmic upper bounds on the growth of δ(Sg,p) as a function of g and
p. Recently, the first author ([2]), Bowditch ([7]), Clay–Rafi–Schleimer ([19]), and
the third author together with Hensel and Przytycki ([25]), all independently proved
that the curve graph C1(S) is uniformly hyperbolic, meaning that there exists a single
δ so that all curve graphs are δ-hyperbolic. We record this in the following theorem:

Theorem 2.1 ([2], [7], [19], [25]). Curve graphs are uniformly hyperbolic. Further-
more, Hensel–Przytycki–Webb prove that all curve graphs are 17-hyperbolic.

The pants graph. Let ω(g, p) > 1 and S = Sq,p. The pants graph, denoted P(S) of a
surface S is the graph whose vertices correspond to pants decompositions of S, and
whose edges correspond to pairs of pants decompositions (P, P ′) so that P is obtained
from P ′ via a pants move: delete one curve c in P ′, and replace it with a curve that
intersects c minimally over all possible choices of replacement. The mapping class
group Mod(S) also acts isometrically on P(S), and Margalit has shown that the full
automorphism group of P(S) is Mod±(S) ([30]).

2.4. Subsurface projections and the marking complex. A non-annular sub-
surface of S is the closure of a component of the complement of a multi-curve on S.
An annular subsurface is a closed annular neighborhood of an essential simple closed
curve. An essential subsurface Y is one whose boundary components are essential.

Subsurface projection. Let Y ⊆ S be an essential subsurface whose interior is not
homeomorphic to a 3-times punctured sphere. Note that since Y is essential the
homomorphism induced by inclusion π1(Y ) → π1(S) is injective. Let SY denote
the covering space of S associated to the induced subgroup π1(Y ) ≤ π1(S). The
cover SY will not be compact, but it admits a Gromov compactification SY that is
homeomorphic to Y . Then define AC(Y ), the arc and curve graph of the subsurface
Y , to be equal to AC(SY ).
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There is a map πY : AC(S) → 2AC(Y ), defined as follows: πY (α) is the set of
essential curves and arcs in the preimage of α under the covering map SY → S. This
is a coarsely well-defined map, indeed since all such arcs and curves of πY (α) are
disjoint, its diameter in AC(Y ) is 1. When Y is nonannular, πY (α) is alternatively
obtained as as follows: If α ∩ Y = ∅, then we define πY (α) = ∅. If α is contained
within Y , we define πY (α) = α. Finally, if α intersects Y in a pairwise disjoint union
of essential arcs, we define πY (α) to be the union of pairwise distinct isotopy classes
of arcs represented in the intersection of α and Y . When πY (α) 6= ∅, we say that α
cuts Y .

In the case that Y is not an annulus and that α∩Y is a disjoint union of arcs, there
is a closely related simple closed curve ψY (α) to πY (α). Choose one such arc λ in
α∩Y , and let N (λ) denote a thickening of λ together with the at most two boundary
components of Y that λ intersects. Then define ψY (α) to be a boundary component
of N (λ) which is essential in Y . This is again a coarsely well-defined assignment,
which we will denote by σY , and the composition ψY := σY ◦ πY yields a map from
C1(S) to C1(Y ) called the subsurface projection.

The marking graph. Let P = {p1, p2, ..., pn} be a multi-curve on S. A marking with
base P is an n-tuple µ = {β1, ..., βn} such that for each i, βi is either equal to pi, or
equal to an ordered pair (pi, ti) for ti a diameter 1-subset of the annular curve graph
C(pi); such a ti is called a transversal for pi. The marking is called complete if P is a
pants decomposition, and if each component of P has an associated transversal. The
marking µ is called clean if each transversal ti is equal to ψpi(wi), where the only
base curve that wi intersects is pi, and a neighborhood of wi∪pi is either a torus with
one boundary component, in which case i(wi, pi) = 1, or a sphere with 4 boundary
components, in which case i(wi, pi) = 2.

Themarking graph M(S) of S, introduced by Masur and Minsky in [32] is the graph
whose vertices are complete clean markings µ of S, and whose edges correspond to
pairs (µ, µ′) where µ′ is obtained from µ by one of the following two elementary moves :

(1) twist move: µ and µ′ have the exact same base, and for exactly one i, the
transverse curve t′i is obtained from ti by Dehn-twisting once about the base
curve pi (in the case that a neighborhood of pi ∪ ti is a torus with one bound-
ary component), or by half Dehn-twisting once about pi (in the case that a
neighborhood of pi ∪ ti is a sphere with 4 boundary components);

(2) flip move: µ′ is obtained from µ by exchanging one transverse curve with the
corresponding base curve. That is, for one i, pi becomes the transversal and
wi becomes the base curve. Since µ is clean, wi will not intersect any of the
other components of P and thus after this exchange the base is still a pants
decomposition. However, it is possible that wi intersects other transversals,
and that therefore the resulting complete marking is not clean. If this occurs,
we clean the marking by replacing each of the other transversals with new ones
so that the resulting marking is clean, and so that the replacement transversals
minimize distance (amongst all choices of replacements that yield a clean
marking) in the respective annular curve graphs to the original transversals.
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We say that the resulting clean marking µ′ is compatible with the complete
marking obtained by exchanging wi and pi.

There is a bounded number of choices for a clean marking that is compatible with a
complete marking, and there is always at least one such clean marking (see section 2
of [32]). Since there are only finitely many complete clean markings up to the action
of Mod(S), there is a uniform bound on the distance within all annular curve graphs
of the replacement transversals in any cleaning. Therefore, M(S) is a connected and
locally finite graph, admitting a properly discontinuous, co-finite simplicial action of
Mod(S). It follows that M(S) is quasi-isometric to Mod(S) equipped with the word
metric associated to a finite generating set. See [32] for details.

We remark that subsurface projection to an essential subsurface Y can be extended
over a complete marking µ as follows. If Y is an annulus whose core curve is in the
base of µ, then we define ψY (µ) ∈ C(Y ) to be the transversal associated to that base
curve. In all other instances, we define ψY (µ) to be the standard subsurface projection
of the base of µ to Y . Then we have the following formula, due to Masur-Minsky,
which expresses distance in M(S), coarsely in terms of subsurface projections ([32]):

Theorem 2.2 ([32]). There exists a constant D = D(S) so that for all T > D, there
is N = N(T ) satisfying the following. If µ1, µ2 ∈M(S) are complete clean markings,
then

dM(µ1, µ2) �N
∑
Y⊆S

[[dY (µ1, µ2)]]T ,

where dM(·, ·) denotes distance in M(S), the sum is taken over all essential subsur-
faces Y of S, and [[x]]T = x for all x ≥ T and 0 otherwise.

As stated in the introduction, the main goal is this paper is to determine how the
constants of Theorem 2.2 depend on the surface S.

2.5. Hierarchy paths. A hierarchy between two complete clean markings µ, µ′ is a
path in M(S) starting at µ and ending at µ′, which can be built up as a collection
of certain specially chosen geodesics in curve graphs of subsurfaces. We begin by
defining these geodesic paths – so-called tight geodesics– which are the fundamental
building blocks of a hierarchy. For Y ⊆ S a subsurface of a surface S potentially with
boundary, the relative boundary of Y consists of all boundary curves of Y which are
not peripheral in S.

Definition 2.3. For any S with ω(S) > 1, a tight sequence in C(S) is a sequence
{σ0, ..., σn} of simplices in C(S) (perhaps of different dimension) so that:

(1) For all i 6= j and any vertices vi ∈ σi and vj ∈ σj,

dC(vi, vj) = |i− j|.

(2) For each i 6= 0, n, the simplex σi corresponds to the relative boundary of the
subsurface F (vi, vj), obtained by taking a regular neighborhood of σi∪σj after
filling in each simply connected component of S \ (σi ∪ σj) with a disk.
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If S is a once-punctured torus or 4-holed sphere (ω(S) = 1), then a tight geodesic
is simply the vertex sequence of a curve graph geodesic. Finally, if S is an annulus,
then a tight geodesic is again the vertex sequence of an annular curve graph geodesic,
however we also require that if x ∈ ∂S is an endpoint of some arc in a tight geodesic
{v0, ..., vn}, then x is an endpoint of either v0 or vn.

Definition 2.4. Given Y ⊆ S any subsurface, a tight (multi-) geodesic in C(Y ) is a
tight sequence g = {σ0, ..., σn} in C(Y ), together with a pair of complete markings
I(g),T(g), called the initial and terminal markings of g, such that σ0 (resp. σn) is
contained in the base of I(g) (resp. T(g)). The surface Y is called the domain of g,
which we denote by D(g) = Y .

We must now introduce the relation of subordinacy between tight geodesics, which
dictates how tight geodesics in different subsurfaces can be amalgamated into the
hierarchy For Y ⊆ S, ω(Y ) ≥ 1, and µ a marking on S, the restriction of µ to Y ,
denoted µ|Y , is the set of all base curves of µ (together with their transversals if they
exist) which intersect Y essentially. If Y is an annulus, we define µ|Y to be equal to
ψY (µ). Note that the restriction of a marking to a domain can be equal to the empty
set.

Definition 2.5. Given g a tight geodesic in C(Y ), Y ⊆ S, a domain Z is called a
component domain of g if there exists some simplex σj in g such that either:

(1) Z is a connected component of Y \ σj;
(2) Z is an annulus whose core is a vertex in σj.

If Z satisfies this definition with respect to the vertex σj, we say that Z is a component
domain of (Y, σj) or of (D(g), σj).

If Z is a component domain of (D(g), σj) we define the initial and terminal markings
of g relative to Z, denoted I(Z, g) and T(Z, g) respectively, as follows. If σj is not
the first vertex of g (i.e. if j 6= 0), then define I(Z, g) := σj−1|Z ; otherwise, define
I(Z, g) := I(g)|Z . Similarly, if σj is not the last vertex of g, define T(Z, g) := σj+1|Z ,
and otherwise define T(Z, g) := T(g)|Z .

Definition 2.6. If Z is a component domain of g and T(Z, g) 6= ∅, we say that Z
is directly forward subordinate to g, or d.f.s. to g for short, and we write Z ↘d g.
Analogously, if Z is a component domain of g and I(Z, g) 6= ∅, we say that Z is directly
backwards subordinate to g, or d.f.b. to g, and we write Z ↙d g. If g and h are two tight
geodesics, then we say that h is directly forward subordinate (resp. directly backwards
subordinate) to g if D(h) is d.f.s. (resp. d.f.b.) to g and T(h) = T(D(h), g) (resp.
if I(h) = I(D(h), g)). We define forward subordinacy (resp. backwards subordinacy)
for domains and for tight geodesics to be the transitive closure of direct forward
subordinacy (resp. direct backwards subordinacy).

We are now ready to define hierarchies.

Definition 2.7. A hierarchy between complete markings µ, µ′ on S is a collection of
tight geodesics H satisfying:
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(1) There exists a unique geodesic gH , called the main geodesic, whose domain is
the full surface S. The initial and terminal markings of gH are equal to µ, µ′
respectively, and are denoted I(H),T(H).

(2) If g, h are tight geodesics in H and Z is a domain with Z ↙d g and Z ↘d h,
then there is a unique tight geodesic k in H with D(k) = Z, and k ↙d g and
k ↘d h

(3) Except for the main geodesic gH , every geodesic h ∈ H has the property that
there exists tight geodesics g, k ∈ H so that h is d.b.s to g and d.f.s to k.

The length of a hierarchy H, denoted |H|, is equal to the sum of all of the lengths of
the tight geodesics contained in H.

Masur-Minsky prove that between any two complete clean markings µ, µ′, there
exists at least one and at most finitely many hierarchy paths. Furthermore, they
provide a way of “resolving” a hierarchy H into a sequence of adjacent markings
in M(S), so that H can be interpreted as a path in M(S), coarsely of length |H|,
between µ and µ′. For these facts, the reader is referred to [32]. Finally, in conjunction
with Theorem 2.2, they prove that hierarchy paths constitute parameterized quasi-
geodesics in the marking graph:

Theorem 2.8 ([32]). There exist constants K = K(S), R = R(S) so that if H is
a hierarchy path between complete clean markings µ, µ′ ∈ M(S), then (1) H consti-
tutes an (R(S), R(S))-quasigeodesic in the marking graph, and (2) for any Y ⊆ S, if
dY (µ, µ′) > K, then Y is a domain of some tight geodesic in H.

3. Upper bounds on marking distance: Making effective the
Masur–Minsky argument

In this section, we prove the upper bounds of Theorem 1.2. To keep the exposition
succinct, we rely on the original arguments of Masur and Minsky [32] when possible
and indicate where new arguments are necessary.

3.1. Hierarchy bounds. We begin by showing that one can turn a hierarchy into
a sequence of (clean) markings compatible with a resolution of the hierarchy, where
the distance between consecutive markings is independent of complexity. As opposed
to the other statements in this subsection, Lemma 3.1 requires a bit of care. This is
because the processing of transforming a hierarchy resolution into a path of markings
requires careful control over the transversal curves for each annulus. Our proof does
so by keeping track of what we call twist and insurance opportunities for each annulus;
these record the number of elementary moves between markings that potentially alter
the transversal for a given annulus.

Lemma 3.1 (Effectivizing Lemma 5.5). If H is a complete finite hierarchy such
that I(H) and T(H) are clean, then there is a sequence of clean markings (µj)

M
j=0,

successive ones differing by elementary moves, so that µ0 = I(H), µM = T(H), and
M ≤ 5|H|.
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Proof. In a pants decomposition P we say that a pair of curves of P are adjacent if
there is an arc connecting them whose interior is disjoint from P . Take any resolution
(τj)

N
j=0. We have N ≤ |H| by [32, Proposition 5.4]. Also recall that to each τj there

is associated a non-clean marking µτj .
Whenever a forward elementary move τj, τj+1 occurs in an annular domain Y then

we call this a twist opportunity for Y .
Suppose τj, τj+1 is a forward elementary move determined by (h, v) and (h, v′) where

D(h) is homeomorphic to S0,4 or S1,1. Furthermore suppose that c is an adjacent curve
of v in base(µτj). Then we call this an insurance opportunity for Y where Y is the
annulus whose core is c.

There are at most 4N ≤ 4|H| twist and insurance opportunities in total, summed
over all annuli.

Now we inductively construct a path of clean, complete markings (µi)i from I(H)
to T(H): Set i = 0, j = 0 and µi = I(H).

Inductive Step: Note that base(µτj) = base(µi). We consider the forward elemen-
tary move τj, τj+1. If the move happens in a domain which is not annular, S1,1 or
S0,4 then do nothing, set j = j + 1 then repeat the Inductive Step. If the move is in
an annular domain Y then we note the twist opportunity for Y , set j = j + 1 then
repeat the Inductive Step. Finally, if the move is determined by (h, v) and (h, v′) with
D(h) = S1,1 or S0,4 then we note the insurance opportunities for the adjacent annuli
of v (at most 4 of them) and then we extend our path of clean, complete markings
(µk)k as follows:

We have already defined µi. Write tv for the clean transverse curve of v in µi.
Suppose tv = v′ then we set µi+1 to be the result after flipping v in µi to v′ (and
replacing other transversals so that they are clean), then set i = i+ 1, j = j + 1 and
repeat the Inductive Step.

On the other hand, suppose that tv 6= v′. Set t to be the noted number of twist
opportunities of v and s to be the noted number of insurance opportunities of v.

We claim that in at most s + t full- and half-twists about v, we can twist tv in µi
to v′. Assuming this claim, we then define µi+1, µi+2,...,µi+r, where r ≤ s + t when
we perform these twists, define µi+r+1 to be the result after performing the Flip move
that interchanges v and v′. Then we update the value of i to i + r + 1 and update
the value of j to j + 1 then repeat the Inductive Step.

To prove the claim, suppose that we require at least s+ t+1 such twists. First note
that tv and v′ only differ by twists and half-twists as they are each Farey neighbors
of v in curve graph of D(h). Let q be the geodesic in H with domain v. Then the
minimum distance between I(q) and T(q) is at most t. (Note that (q, u) ∈ τi where
u is the last vertex of q.) Factoring into account the insurance opportunities of v,
we have that the minium distance between πv(tv) and πv(v′) is at most s + t. This
is because of the triangle inequality (the Replacement procedure during a Flip move
provides a path in the annular complex).

On the other hand, plugging in |n| ≥ s+ t+ 1 into [32, Equation (2.6)] shows that
the distance between πv(tv) and πv(v′) is exactly s+ t+ 3, a contradiction in the case
of S1,1.
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In the case of S0,4 the argument is slightly more complicated by the fact that there
are several lifts of tv and v′. Nonetheless, if they differ by more than n half-twists
then one can show that the minimum distance is at least 2 + b(|n| − 1)/2c. This is
similar to [32, Equation (2.7)]. Plugging in |n| ≥ 2s+ 2t+ 1 shows that the minimum
distance between πv(tv) and πv(v′) is at least 2 + s+ t, a contradiction. The claim is
proved.

Now we repeat the Inductive Step as previously mentioned.
Finally, the last defined µi only differs from T(H) by full- and half-twists along its

base curves. By the same claim as above, the number of such twists is bounded by
the number of twist and insurance opportunities. This completes the proof. �

We now move on to making effective Section 6 of [32]. Our main tool here is the
uniform bounds on the bounded geodesic image theorem, due to the third author.
We state this here for easy reference:

Theorem 3.2 (Uniform bounded geodesic image theorem [43].). There is a constant
M ≥ 0 such that for any surface S with ω(S) ≥ 1 and any subsurface Y ⊂ S, if g is
a geodesic in C(S) all of whose vertices cut Y , then diamY (g) ≤M .

Using arguments similar to those found there and also in [25], it can be shown that
the bounded geodesic image theorem constant M in Theorem 3.2 is at most 100.

We begin by showing that the constant in the Sigma projection lemma can be
chosen to grow linearly in ω(S) − ω(Y ). In Section 8, we show that this cannot be
improved.

Lemma 3.3 (Effectivizing Lemma 6.1: Sigma Projection). For any hierarchy H and
any domain Y in S,

diamY (πY (σ+(Y,H))) ≤ (ξ(S)− ξ(Y ))M,

where M is the bounded geodesic image theorem constant of Theorem 3.2. Further, if
Y is properly contained in the top domain of Σ(Y ), then

diamY (πY (σ(Y,H))) ≤ 2(ξ(S)− ξ(Y ))M +M.

Lemma 3.4 (Effectivizing Lemma 6.2: Large link). If Y is any domain in S and

diamY (πY (σ(Y,H))) > 2(ξ(S)− ξ(Y ))M +M,

then Y is the support of a geodesic h in H. Further, for any geodesic h ∈ H with
Y = D(h),

||h| − dY (I(H),T(H))| ≤ 2(ξ(S)− ξ(Y ))M.

As these lemmas follow immediately from Masur-Minsky’s original set-up, we refer
the reader to [32] for proofs.

3.2. Counting in hierarchies. The large link lemma (Lemma 3.4) is one of the main
ingredients for proving the coarse equality between the sum of subsurface projections
and the total length of a hierarchy. Indeed, the coarse equality between |H| and sums
of projections follows from it combined with a lemma (Lemma 9.6 of [33]) stating the
following: summing together quantities that are each individually coarsely equal to
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the lengths of the geodesics in the hierarchy yields a result that is coarsely equal to
|H|.

In this subsection, we give an effective version of this lemma. Concretely, let
f : N→ N be arbitrary. Let g be a tight geodesic whose domain D(g) ⊂ S appears in
a complete hierarchy path, and let ξ(g) be equal to the complexity ω(D(g)) of D(g).

Proposition 3.5. Let φ be an N-valued function on the set of geodesics of H satisfying

|g| − f(ξ(g)) ≤ φ(g) ≤ |g|+ f(ξ(g)),

for every geodesic g of a complete hierarchy H. Then∑
h∈H

|h| ≤A,B
∑
h∈H

φ(h),

for

A,B ≤
ω(S)∑
i=1

ω(S)−i+1∏
j=i

f(j + 4).

Proof. We follow the outline of Minsky’s original argument, the main strategy being
induction on ω(S); when possible we will use the same notation as in the original
argument. The base case ω(S) = 0 is immediate.

When ω(S) = m > 0, given g ∈ H we define

β(g) =
∑

h f.s. to g
|h|;

β′(g) =
∑

h f.s. to g
φ(h).

By the “structure of sigma” theorem of Masur-Minsky [32], if f is f.s. to g, there is
a unique geodesic h such that f is f.s. to h and such that h is d.f.s. to g. Therefore,

β(g) = |g|+
∑

h d.f.s. to g
β(h),

and similarly
β′(g) = φ(g) +

∑
h d.f.s. to g

β′(h).

Remark 3.6. Note that by equation (9.19) of [35], the above summations each have
at most |g|+ 4 summands.

Then by the induction hypothesis, there exists ψA(m−1), ψB(m−1) satisfying the
inequality of Proposition 3.5 such that

β(g) ≤ |g|+
∑

h d.f.s. to g
ψA(m− 1)β′(h) + ψB(m− 1).

Using Remark 3.6, this is in turn at most
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(1 + ψB(m− 1))|g|+ 4ψB(m− 1) + ψA(m− 1)

 ∑
h d.f.s. to g

β′(h)


Note also that φ(g) satisfies

(3.1) |g| − f(ξ(g)) ≤ φ(g) ≤ |g|+ f(ξ(g)),

and therefore the above is at most

≤ [f(ξ(g)) + φ(g)] · [1 + ψB(m− 1)] + 4ψB(m− 1) + ψA(m− 1)

 ∑
h d.f.s. to g

β′(h)



≤ (1+ψB(m−1))φ(g)+ψA(m−1)

 ∑
h d.f.s. to g

β′(h)

+f(ξ(g))(1+ψB(m−1))+4ψB(m−1)

≤ max[1 + ψB(m− 1), ψA(m− 1)] · β′(g) + (f(ξ(g)) + 4)(1 + ψB(m− 1)).

Therefore, we set

ψA(m) := max[1 + ψB(m− 1), ψA(m− 1)], ψB(m) := (f(m) + 4)(1 + ψB(m− 1)).

Since ψA(1) = 1,
ψA(m) = 1 + ψB(m− 1) < ψB(m).

By the induction hypothesis,

ψB(m) ≤ (f(m) + 4)

(
1 +

m−1∑
i=1

m−i∏
j=i

f(j + 4)

)
= [f(m)+4]+[f(5)·f(6)...·f(m+3)·f(m+4)]+[f(6)·f(7)...·f(m+4)]+...+[f(m+3)·f(m+4)]

=
m∑
i=1

m−i+1∏
j=i

f(j + 4).

This completes the proof of the inequality∑
h∈H

|h| <A,B

∑
h∈H

φ(h). �

In particular, define f(n) := 2M(ω(S) − n + 1), where 1 ≤ M ≤ 100 is as in
Theorem 3.2. Then we have shown (Lemma 3.4) that if H(µ1, µ2) is a complete
hierarchy between markings µ1, µ2, and g is a tight geodesic of H,

|dD(g)(µ1, µ2)− |g|| ≤ f(ξ(g)).

That is, the length of a tight geodesic is within f(ξ(g)) of the distance between the
projections of the initial and terminal markings to the domain of that tight geodesic.
Furthemore, if Y ⊂ S is such that the distance between the projections to Y of the
initial and terminal markings is at least f(ω(Y )), then Y must appear in H. Thus
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Proposition 3.5 can be used to bound the multiplicative and additive errors A,B in
the coarse equality

(3.2) |H(µ1, µ2)| ≤A,B
∑
Y⊆S

[[dY (µ1, µ2)]]f(ω(Y )).

Indeed,

(3.3) A,B ≤
ω(S)∑
i=1

ω(S)−i+1∏
j=i

(2M(ω(S)− j + 1)) + 4

 < (4Mω(S))!

Note that the cut-off f(ω(Y )) is large when the complexity of Y is small. Indeed, f
grows linearly in the co-complexity of Y , which we define to be 2M(ω(S)−ω(Y )+1).

We also note that the inequality

|H(µ1, µ2)| ≥A′,B′
∑
Y⊆S

[[dY (µ1, µ2)]]f(ω(Y ))

holds for A′, B′ bounded above by a linear function of ω(S). This follows from the
fact that the length of a hierarchy bounds the distance in the marking graph between
µ1 and µ2 from above, up to a uniform multiplicative error by Lemma 3.1, and from
the fact that marking graph distance is bounded from below by sums of projections,
up to a multiplicative error that grows at most linearly in the complexity of S (see
Proposition 4.1 below).

3.3. Upper bounds on marking distance. Lemma 3.1 proves that marking graph
distance dM(µ1, µ2) is bounded above by twice the length of any hierarchy H with
I(H) = µ1 and T(H) = µ2. Furthermore, (3.2) and (3.3) imply that the length of
such a hierarchy is bounded above by sums of projections (with cut-offs that grow
linearly in the co-complexity of the subsurface), up to errors bounded by (4Mω(S))!.
Thus, marking graph distance is bounded above by sums of projections, up to errors
bounded by 2 · (4Mω(S))!.

4. Lower bounds on marking distance

4.1. Linear lower bounds. We give an effective proof of the lower bound in the
Masur-Minsky distance formula. Although the proof is new, it is largely inspired by
[32].

To simplify the exposition, set L = 4 and B = 10. Recall that for overlapping
subsurfaces X and Y of S we have the following two facts:

(1) πY : M(S)→ C(Y ) is coarsely 4- Lipschitz ([32]).
(2) For any µ ∈M(S),

min{dX(µ, ∂Y ), dY (µ, ∂X)} ≤ B.(4.1)

Equation 4.1 is known as the Behrstock inequality [4]. That one can take B = 10
is a consequence of Leininger’s effective argument, found in work of Mangahas [29].

For µ, ν ∈M(S), let Ω(µ, ν,K) be the set of subsurfaces Y with dY (µ, ν) ≥ K.
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Proposition 4.1. For K = 5B + 3L and s = 2ω(S),∑
Y

[dY (µ, ν)]K ≤ 5sL · dM(µ, ν).

Proof. TakeK = 5B+3L and fix µ, ν ∈M(S) along with a geodesic µ = µ0, µ1, . . . , µN =
ν. For each Y ∈ Ω(µ, ν,K) choose iY , tY ∈ {0, . . . , N} as follows: iY is the largest
index k with dY (µ0, µk) ≤ 2B + L and tY is the smallest index k greater than iY
with dY (µk, µN) ≤ 2B + L. Write IY = [iY , tY ] ⊂ {0, 1, . . . , N} and note that this
subinterval is well-defined and that since the projection of adjacent vertices in the
geodesic have dY less than or equal to L, dY (µ0, µk), dY (µk, µN) ≥ 2B + 1 for all
k ∈ IY and dY (µiY , µtY ) ≥ B + L.

Claim 1. If Y, Z ∈ Ω(µ, ν,K) with Y t Z then IY ∩ IZ = ∅.
Proof. Toward a contradiction, take k ∈ IY ∩ IZ . Since Y and Z overlap we have
either dY (Z, µ0) ≤ B or dZ(Y, µ0) ≤ B. Assume the former; the latter case is proven
by exchanging the occurrences of Y and Z in the proof. By the triangle inequality,

dY (Z, µk) ≥ dY (µ0, µk)− dY (Z, µ0)

≥ 2B + 1−B ≥ B + 1.

So by condition B, we have dZ(Y, µk) ≤ B and
dZ(Y, µN) ≥ dZ(µk, µN)− dZ(Y, µk)

≥ 2B + 1−B ≥ B + 1.

and we conclude, again by condition B, that dY (Z, µN) ≤ B. This, together with our
initial assumption, implies

dY (µ0, µN) ≤ dY (µ0, Z) + dY (Z, µN) ≤ 2B < K

contradicting that Y ∈ Ω(µ, ν,K). �

Returning to the proof of the proposition, we have a covering {IY : Y ∈ Ω(µ, ν,K)}
of {0, 1, . . . , N}. By the claim above and our assumption on the number of pair-wise
non-overlapping codomains, each k ∈ {0, 1, . . . , N} is contained in at most s intervals
of the covering. Hence, ∑

Y ∈Ω(µ,ν,K)

|tY − iY | ≤ s · dM(µ, ν).

Finally, using the Lipschitz condition on the projections,
dY (µ, ν) ≤ dY (µiY , µtY ) + 4B + 2L

≤ L|tY − iY |+ 4B + 2L

Since, for each Y ∈ Ω(µ, ν,K), dY (µ, ν) ≥ 5B + 3L we have 1
5L
· dY (µ, ν) ≤ |tY − iY |

and so putting this with the inequality above∑
Y ∈Ω(µ,ν,K)

dY (µ, ν) ≤ 5sL · dM(µ, ν)

as required. �
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In summary, we have shown that for µ, ν ∈M(S)∑
Y

[dY (µ, ν)]62 ≤ 40ω(S) · dM(µ, ν).

4.2. Uniform lower bounds for the pants graph. In this section, given Y ⊆ S,
let σY denote the “surgery map” which takes in a simplex in AC(Y ) and outputs a
vertex of C(Y ) by surgering arcs along ∂Y , as described in the preliminaries. Thus,
ψY = σY ◦πY . Let δ be the slim triangles uniform constant for curve graphs (Theorem
2.1). In this subsection, we denote distance in C(Y ) by dC(Y ) and distance in AC(Y )
by dAC(Y ).

The main result of this section is that distance in the pants graph can be bounded
below in terms of subsurface projections with a uniform multiplicative constant, com-
pletely independent of ω(S). We note that in the argument given to prove Proposition
4.1 significant progress is made simultaneously in a number of subsurfaces that nest
in one another. This number can be some linear function in ω(S), and this yields
multiplicative constants that a priori grow linearly in ω. To overcome this problem, a
more careful tactic is employed here, which seems to be new. It involves an analysis
of where and when progress is being made by the pants path in chains of nested
subsurfaces of S.

We assume throughout this section that all subsurfaces are non-annular.
The strategy for proving Theorem 4.8 is as follows. We are given a path P (0), . . . ,

P (n) in the pants graph of a surface Sg,p with 3g + p − 3 > 1. We wish to bound n
from below. To each non-annular subsurface Y we associate a geodesic GY in C(Y )
between the images of P (0) and P (n) under ψY . We consider the P (i) under the
map ψY followed by nearest point projection to the geodesic GY—the composition of
these two maps is called ΠY .

The projection ΠY has three key properties. The first key property is that these
projections are coarsely Lipschitz with some uniform constant. The second key prop-
erty is that if ΠY P (i) is far from both ΠY P (0) and ΠY P (n) and Z contains the
subsurface Y , then ΠZP (i) is close to ∂Y in C(Z). In other words, while progress
is being made by the coarse path ΠY P (i) in C(Y ), ΠZP (i) cannot move in C(Z) as
they are “stuck” next to ∂Y ; this is the main aspect of the argument that addresses
the issue of progress being made simultaneously in nested subsurfaces. The third key
property is similar to the Behrstock inequality (4.1), and states that if ΠZP (i) is far
from both ΠZP (0) and ΠZP (n) whenever Z ∈ {Y, Y ′}, then Y and Y ′ cannot overlap.
This allows us to form chains of nested subsurfaces and understand when and where
progress is being made.

To each edge P (i), P (i+1) in the pants path we associate at most two non-annular
subsurfaces—our way of doing this is described in Section 4.2.3. Lemma 4.7 states
that each non-annular subsurface Y has sufficiently many edges associated to it in
terms of dC(Y )(ψY P (0), ψY P (n)), and from this we immediately deduce a lower bound
on n and we get Theorem 4.8. We now give the details.
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For each Y , pick a geodesic GY in C(Y ) from a vertex of ψY P (0) to a vertex of
ψY P (n) such that GY is shortest possible over all choices of vertices of ψY P (0) and
ψY P (n).

Fix nearGY to be a function that accepts a finite subset F ⊂ C0(Y ) and returns
a vertex of GY of minimum distance from F in C(Y ), i.e. nearGY is a nearest point
projection onto GY .

Set ΠY P (i) = nearGY ψY P (i). Since GY is shortest possible we can set ΠY P (0) and
ΠY P (n) equal to the endpoints of GY .

4.2.1. Statements of the three key lemmas. In this subsection we state three key lem-
mas for the structure of the projections ΠY for non-annular subsurfaces Y .

Lemma 4.2 (bounded jumps). There exists a uniform constant J such that for any
non-annular subsurface Y

dC(Y )(ΠY P (i),ΠY P (i+ 1)) ≤ J.

We think of J as the “jump” constant.
We write

dY (i) = dC(Y )(ΠY P (i), {ΠY P (0),ΠY P (n)}).

Lemma 4.3 (awake downstairs implies stationary upstairs). There exists a uniform
constant A such that whenever Y and Z are non-annular subsurfaces with Y nested
in Z and

dY (i) ≥ A

then
diamC(Z)(ΠZP (i) ∪ ∂Y ) ≤ 3.

We say that P (i) is awake in Y if dY (i) ≥ A. We call A the “awake” constant. To
avoid too many names for constants, we choose A large enough so that the following
lemma also holds.

Lemma 4.4. There exists a uniform constant A such that if

dZ(i) ≥ A

whenever Z ∈ {Y, Y ′} where Y and Y ′ are non-annular, then Y and Y ′ do not overlap
i.e. either they miss or one is nested in the other.

4.2.2. Proofs of the three key lemmas. In this subsection we prove Lemmas 4.2, 4.3
and 4.4. The proofs are standard.

The proof of Lemma 4.2 (bounded jumps) follows readily from the fact that ψY and
nearGY are coarsely Lipschitz with uniform constants. This uses uniform hyperbolicity
of the curve graphs.

Proof of Lemma 4.2. Suppose that the pants move between P (i) and P (i+ 1) occurs
in a subsurface X where ω(X) = 1. Consider the image of P (i) and P (i + 1) under
πY . Now P (i) and P (i+ 1) coincide outside X, so we may assume that X and Y cut
and that X 6= Y . Furthermore, Y is non-annular so Y is not nested in X, and so
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X and Y overlap. By considering the essential and non-peripheral curves of ∂X we
have that

diamAC(Y )(πY P (i) ∪ πY P (i+ 1)) ≤ 2.

Therefore
diamC(Y )(ψY P (i) ∪ ψY P (i+ 1)) ≤ 6.

In a δ-hyperbolic, geodesic metric space (X, d), if two vertices p, q satisfy d(p, q) ≤ k,
then their nearest point projections p′, q′ to some geodesic Q satisfy d(p′, q′) ≤ k +
8δ + 2 (if p′ and q′ are at least 6δ + 2 far apart then consider two points on Q of
distance 2δ + 1 from either p′ or q′, then these are 2δ away from a geodesic between
p and q).

Thus, it follows that we may take J = 8δ + 8, where δ ≤ 17 . �

The proof of Lemma 4.3 makes use of the Bounded Geodesic Image Theorem (The-
orem 3.2). We argue towards a contradiction: if ΠZP (i) is far from ∂Y then we can
construct a concatenation of two geodesics that connect ψZP (i) with either ψZP (0) or
ψZP (n), such that each vertex of the concatenation cuts Y . By the Bounded Geodesic
Image Theorem, this proves that ψY P (i) is close to either ψY P (0) or ψY P (n). By
the definition of nearGY , we have that ΠY P (i) is close to either ΠY P (0) or ΠY P (n),
a contradiction. The details are as follows.

Proof of Lemma 4.3. First, we claim that for any pants decomposition P we have
that

(4.2) diamC(Y )(ψY ψZP ∪ ψY P ) ≤ 2.

Indeed, πY σZπZP misses πY πZP = πY P and hence any curve of σY πY σZπZP inter-
sects any curve of σY πY P at most twice and we get the desired upper bound.

If A ≥M + 5 then length(GY ) ≥M + 5 or equivalently dC(Y )(ψY P (0), ψY P (n)) ≥
M + 5. By inequality (4.2), dC(Y )(ψY ψZP (0), ψY ψZP (n)) ≥M + 1. By the Bounded
Geodesic Image Theorem (Theorem 3.2), if each vertex of GZ cuts Y then
diamC(Y )(ψY ΠZP (0) ∪ ψY ΠZP (n)) ≤M and it immediately follows that

dC(Y )(ψY ψZP (0), ψY ψZP (n)) ≤M.

This is a contradiction and we conclude that some vertex v of GZ misses Y .
By considering ∂Y we see that the set of vertices of GZ that miss Y has diameter at

most 2 and contains the vertex v. Hence, if we assume that diamC(Z)(ΠZP (i)∪∂Y ) ≥ 3
then there exists a geodesic g that connects ΠZP (i) to ΠZP (0) (or to ΠZP (n)—from
now on without loss of generality it connects to ΠZP (0)) with the property that each
vertex of g cuts Y .

Write g′ for a shortest geodesic that connects ΠZP (i) to some vertex of ψZP (i).
We consider the concatenation of g and g′. We may use the Bounded Geodesic Image
Theorem, unless g′ contains some vertex that misses Y . So suppose that some vertex
v′ of g′ misses Y . We have that dC(Z)(v, v

′) ≤ 2, so by definition of nearGZ we have
that dC(Z)(v

′,ΠZP (i)) ≤ 2, and this immediately gives diamC(Z)(ΠZP (i) ∪ ∂Y ) ≤ 3.
Therefore if we assume that diamC(Z)(ΠZP (i) ∪ ∂Y ) ≥ 4 and that dY (i) ≥ M + 5

then we may use the Bounded Geodesic Image Theorem with g and g′ as defined above
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to deduce that dC(Y )(ψY ψZP (i), ψY ψZP (0)) ≤ 2M . By inequality (4.2), we have that
dC(Y )(ψY P (i), ψY P (0)) ≤ 2M + 4. It then follows that dC(Y )(ΠY P (0),ΠY P (i)) ≤
4M + 14. Therefore we may take A = 4M + 15. �

For nonannular subsurfaces, the constants for the Behrstock inequality (Equation
4.1) are a bit smaller. Indeed, for an overlapping pair of non-annular subsurfaces Y
and Y ′, a version of Behrstock’s lemma states that if C is a multicurve that cuts
both Y and Y ′, and diamC(Y )(ψYC ∪ψY ∂Y ′) ≥ 9 then diamC(Y ′)(ψY ′C ∪ψY ′∂Y ) ≤ 4
The proof, due to Chris Leininger, is as follows: we must have that diamAC(Y )(πYC ∪
πY ∂Y

′) ≥ 5, in particular there is a vertex x of πYC and a vertex y of πY ∂Y ′ such
that i(x, y) ≥ 3. This implies that there is an arc a of πY ′C which misses πY ′∂Y
and the conclusion follows [29]. We are interested in the case where C is a pants
decomposition.

Proof of Lemma 4.4. Take A = 33. Suppose that Y and Y ′ overlap. We argue
towards a contradiction. Set Y ′′ = Y so that if Z = Y ′ we have Z ′ = Y ′′ = Y . We
claim that whenever Z ∈ {Y, Y ′} at most one j ∈ {0, i, n} satisfies diamC(Z)(ψZP (j)∪
ψZ∂Z

′) ≤ 8. Indeed, for if there is some Z ∈ {Y, Y ′} and two such elements j1 and
j2, then we have diamC(Z)(ψZP (j1) ∪ ψZP (j2)) ≤ 16, implying that dZ(i) ≤ 32, a
contradiction.

This implies that there exists j′ ∈ {0, i, n} such that whenever Z ∈ {Y, Y ′} we have
that diamC(Z)(ψZP (j′)∪ψZ∂Z ′) ≥ 9. This contradicts the statement of the Behrstock
inequality given above where C = P (j′). �

4.2.3. Assigning edges to subsurfaces. We say that P (i) is active, non-tame, domi-
nating, overpowering in Y if dY (i) ≥ A + 6, A + 6 + 2J , A + 12 + 2J , A + 18 + 2J
respectively. We say that P (i) is tame in Y if it is not non-tame in Y .

We say that P (i) and P (i+ 1) are moving in Y if πY P (i) 6= πY P (i+ 1).

Lemma 4.5. Fix i. There are at most two minimal (with respect to nesting), non-
annular subsurfaces Y such that P (i) and P (i+ 1) are moving and awake in Y .

Proof. Write S for the set of such minimal and non-annular subsurfaces. The as-
sumption that P (i) and P (i+ 1) are awake in Y allows us to use Lemma 4.4 to show
that any pair of elements of S either miss or nest in one another. However the as-
sumption that the subsurfaces are minimal implies that one cannot nest in another,
so instead they must miss. Therefore we can realize each element of S on the surface
S simultaneously such that each pair of subsurfaces is disjoint. Now the rest of the
argument will use the assumption that P (i) and P (i+ 1) are moving in each element
of S. The statement that there are at most two elements of S will now come from an
Euler charactistic argument.

Suppose that the pants move occurs in a subsurface X, where ω(X) = 1. Write
Y1, Y2, Y3 etc. for the elements of S. We realize X and the Yi on S such that ∂X and
∂Yi are all in minimal position, and that no curve of ∂Yi is a subset of X unless it is
essential and non-peripheral in X.

We call a connected component R of X∩Yi a region. For a region R of X∩Yi we set
V (R) to be the number of intersection points of ∂X and ∂Yi inside R; one can think
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of these points as corners of R. We set index(R) = χ(R)−V (R)/4. Likewise, we call
the connected components of X −∪(Yi) regions, and define their indices similarly. It
is straightforward that the sum of the indices over all regions in X is equal to χ(X).
Furthermore, there are no regions with positive index, indeed, because all boundary
curves of the subsurfaces are in minimal position.

A boundary circle of a region R is a boundary component of R which is disjoint
from every X ∩ Yi. A bigon, square, hexagon is a region R that is homeomorphic
to a 2-disc and V (R) = 2, 4, 6 respectively. A once-holed bigon is a region R that
is homeomorphic to an annulus and V (R) = 2. A region R is exceptional if R is a
subset of some Yi, and R is not a bigon, square, hexagon, or once-holed bigon with
boundary circle in ∂X. Each Yi must contain an exceptional region since P (i) and
P (i+ 1) are moving in Yi.

Now we argue that there are only at most two exceptional regions to complete the
lemma. This is straightforward if X = S1,1. Indeed, χ(X) = −1, and any exceptional
region contributes at most −1/2 to the Euler characteristic.

If X = S0,4 then we are done if there are no once-holed bigons with boundary
circle in some ∂Yi—every other exceptional region contributes at most −1 to Euler
characteristic. So suppose instead that there is such a region. Then there is some
subsurface Y1 with a curve in its boundary that is essential and non-peripheral in X.
This separates X into two pairs of pants. The Euler characteristic of a pair of pants
is equal to −1, so the only worry is that there are two exceptional, once-holed bigons
in one pair of pants. However, each boundary circle of an exceptional, once-holed
bigon must be essential and non-peripheral in X, so there can only be at most one
such region in such a pair of pants. �

For each edge P (i), P (i+ 1) there are at most two associated chains C1 and C2 (by
Lemma 4.5) of nested, non-annular subsurfaces Y such that P (i) and P (i + 1) are
moving and awake in Y . The chains C1 and C2 need not be disjoint.

We assign the edge P (i), P (i+1) to a non-annular subsurface Y if it is the minimal
such subsurface in C1 (or C2) such that P (i) and P (i+ 1) are dominating in Y .

The reader is now given an explicit warning that this notion is not equivalent to
assigning edges to minimal, non-annular subsurfaces Y such that P (i) and P (i+1) are
moving and dominating in Y . For example, an edge can be moving and dominating
in X and Y , but active and tame in Z, where Z and X both nest in Y but X and
Z miss. In this scenario there are two chains: the minimum of one is X and the
minimum of the other is Z. The subsurface Y is contained in both chains. In the
chain containing Z we have that Y is the minimal subsurface such that P (i) and
P (i+ 1) are dominating in Y . So we wish to assign an edge to Y . However, Y is not
minimal over all subsurfaces in which P (i) and P (i + 1) are dominating, because of
the existence of X.

4.2.4. Sufficiently many edges per subsurface. We say that P (i) is k-close to P (j) in
Z if dC(Z)(ΠZP (i),ΠZP (j)) ≤ k.
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Proposition 4.6 (enough edges in the middle). Suppose that P (j) and P (j + 1) are
moving and overpowering in a non-annular subsurface Z. Then there is some edge
P (i), P (i+ 1) that is assigned to Z such that P (i) is 6-close to P (j) in Z.

The proof of Proposition 4.6 is technical. We have broken the proof into steps—
including five statements. Upon first reading, it is beneficial to skip the proofs of
statements (3) to (5) in order to grasp the strategy faster. Each of the terms awake,
active, non-tame, dominating and overpowering are used in the proof below, and it
seems that these are necessary in order for the inductive step to work.

Proof. Write Y0 = Z and j0 = j. We are done if the edge P (j0), P (j0 + 1) is assigned
to Y0. So suppose not. Associated to the edge P (j0), P (j0 +1) are at most two chains
of nested, non-annular subsurfaces Y such that P (j0) and P (j0 + 1) are moving and
awake in Y . Since the edge is not assigned to Y0, it must be the case that there
is some non-annular subsurface X such that P (j0) and P (j0 + 1) are moving and
dominating in X, and X nests in Y0. Now we pick Y1 maximal and non-annular such
that Y1 nests in Y0, Y1 6= Y0, and P (j0) and P (j0 + 1) are moving and non-tame in
Y1. The existence of Y1 is guaranteed since X exists.

Now by Lemma 4.2 (bounded jumps) there exists j1 such that P (j1) and P (j1 + 1)
are moving, active and tame in Y1. We set k = 1.
Inductive step: Now we investigate whether the edge P (jk), P (jk + 1) is assigned

to Y0. If not, we shall construct Yk+1 and jk+1 in order to induct on k, as follows.
Suppose that we have constructed j1, ..., jk and non-annular subsurfaces Y1, ..., Yk

(the base case is k = 1, and the statements (1) and (2) below shall follow from the
construction of Y1 and j1 above) such that:-

(1) For 1 ≤ a ≤ k we have that Ya is a maximal, non-annular subsurface such
that P (ja−1) and P (ja−1 +1) are moving and non-tame in Ya, Ya nests in Ya−1

and Ya 6= Ya−1.
(2) For 1 ≤ a ≤ k we have that P (ja) and P (ja + 1) are moving, active and tame

in Ya. On the other hand, we have that P (j0) and P (j0 + 1) are moving and
overpowering in Y0.

Then we can prove the following two statements.
(3) For 0 ≤ a ≤ b ≤ k we have that P (jb) and P (jb + 1) are moving and awake in

Ya.
(4) Suppose that Yk nests in X, X nests in Y0, and X 6= Y0, then the statement

that P (jk) and P (jk + 1) are dominating in X is false.

Proof of statement (3). The moving statement is clear so now we prove the awakeness
statement. This is done using induction: the base case is that P (jb) is awake in Yb
by statement (2) and the inductive step is as follows.

Suppose that P (jb) is awake in Ya. By statement (1) we have that P (ja−1) is awake
in Ya. By Lemma 4.3 (awake downstairs implies stationary upstairs) P (jb) is 6-close
to P (ja−1) in Ya−1, because their images under ΠYa−1 are close to ∂Ya. By statement
(2) we have that P (ja−1) is active in Ya−1 so P (jb) is awake in Ya−1. This completes
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the inductive step and the proof is finished. The exact same argument works for
P (jb + 1). �

Proof of statement (4). By statement (2) we may assume that X 6= Yk. The remain-
ing cases X = Ya−1 for some 2 ≤ a ≤ k, and otherwise, are treated separately below.

Suppose that X = Ya−1 for some 2 ≤ a ≤ k. Statement (1) implies that P (ja−1)
is awake in Ya. By statement (3) we have that P (jk) is awake in Ya. By Lemma
4.3 (awake downstairs implies stationary upstairs), P (ja−1) and P (jk) are 6-close in
X = Ya−1 as they are close to ∂Ya. We have a − 1 ≥ 1 so by statement (2) we have
that P (ja−1) is tame in Ya−1 and hence P (jk) is not dominating in X = Ya−1. Now
we assume that X 6= Ya for 0 ≤ a ≤ k.

We may assume that P (jk) and P (jk + 1) are awake in X. By statement (3), P (jk)
and P (jk + 1) are also awake in Ya for 0 ≤ a ≤ k. We have that Yk nests in X so X
and Ya do not miss. By Lemma 4.4 either X nests in Ya or Ya nests in X. Therefore
for some 1 ≤ a ≤ k we have that Ya nests in X, X nests in Ya−1, but we may assume
that X /∈ {Ya−1, Ya} due to the earlier argument above. Statement (1) implies that
P (ja−1) and P (ja−1 + 1) are awake in Ya. By statement (3) we have that P (jk)
and P (jk + 1) are awake in Ya. By Lemma 4.3 (awake downstairs implies stationary
upstairs), P (ja−1), P (ja−1 + 1), P (jk) and P (jk + 1) are 6-close in X as they are close
to ∂Ya. However by statement (1) it is false that P (ja−1) and P (ja−1 + 1) are moving
and non-tame in X. But they are moving in X since Ya nests in X. Therefore they
cannot both be non-tame, so one is tame, and hence one of P (jk) or P (jk + 1) is not
dominating in X. �

Now we shall show:-
(5) For 1 ≤ a ≤ k, P (ja) and P (ja + 1) are moving and dominating in Y0.

Furthermore, P (ja) and P (j0) are 6-close in Y0.

Proof of statement (5). The moving statement is clear so now we prove the dominat-
ing statement. By statement (3), P (ja) is awake in Y1 and by statement (1), P (j0)
is awake in Y1, so by Lemma 4.3, P (j0) and P (ja) are 6-close in Y0. Now P (j0) is
overpowering in Y0 and so P (ja) is dominating in Y0, and the exact same argument
works for P (ja + 1). �

Now suppose that the edge P (jk), P (jk + 1) is not assigned to Y0. However by
statement (3), P (jk) and P (jk + 1) are moving and awake in Ya for 1 ≤ a ≤ k.
Furthermore by statement (5), P (jk) and P (jk+1) are moving and dominating in Y0.
Associated to the edge P (jk), P (jk +1) are at most two chains of nested, non-annular
subsurfaces Y such that P (jk) and P (jk + 1) are moving and awake in Y . At least
one of these chains contains the sequence of nested subsurfaces (Yk, Yk−1, ..., Y1, Y0).
Since the edge is not assigned to Y0, it must be the case that there is some non-
annular subsurface X such that P (jk) and P (jk + 1) are moving and dominating in
X, where either X nests in Yk, or, Yk nests in X and X nests in Y0. However the
latter cannot be true by statement (4), so instead X nests in Yk and X 6= Yk. Now we
pick Yk+1 maximal and non-annular such that Yk+1 nests in Yk, Yk+1 6= Yk, and P (jk)
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and P (jk + 1) are moving and non-tame in Yk+1. The existence of Yk+1 is guaranteed
since X exists. By construction, statement (1) holds in the new case a = k + 1.

Now by Lemma 4.2 (bounded jumps) there exists jk+1 such that P (jk+1) and
P (jk+1 + 1) are moving, active and tame in Yk+1. By construction, statement (2)
holds in the new case a = k + 1. Then we set k equal to k + 1.

Now we repeat this procedure starting from the inductive step. It must terminate
with some k ≤ ω(S) and P (jk), P (jk + 1) is the required edge. �

The following lemma is the punchline of the proof of the main result in this section.

Lemma 4.7. Suppose that P and P ′ are pants decompositions of S and that (P (i))i
is a path connecting P and P ′ in the pants graph of S. Suppose that Y is non-annular
and dC(Y )(ψY (P ), ψY (P ′)) ≥ D then there are at least b(D − 2A− 36− 4J)/(J + 6)c
edges of (P (i))i assigned to the subsurface Y .

Proof. Associated to Y is a geodesic GY in C(Y ) whose length is equal to the integer
dC(Y )(ψY (P ), ψY (P ′)). The set of vertices v such that v ∈ GY and dC(Y )(v, {ΠY P,ΠY P

′}) ≥
A+ 18 + 2J we shall call the overpowering interval of Y .

If the edge P (i), P (i+1) is assigned to the subsurface Y then we “colour” the vertex
ΠY P (i) in GY . By Lemma 4.2 (bounded jumps) and Proposition 4.6 (enough edges in
the middle), the set of coloured vertices in the overpowering interval is (J + 6)-dense,
provided that there are at least J + 7 vertices in the overpowering interval. This
implies the conclusion of the lemma. �

Theorem 4.8. There are uniform constants C0 and e0 such that whenever P and P ′
are pants decompositions of S then

e0

∑
Y ∈NA(S)

[dC(Y )(ψY (P ), ψY (P ′))]C0 ≤ dP(S)(P, P
′),

where NA(S) is the set of non-annular subsurfaces of S.

Proof. We take C0 = 4A+ 84 + 10J . By Lemma 4.7, there are at least

b(dY − 2A− 36− 4J)/(J + 6)c
edges assigned to any non-annular subsurface Y , where dY is the quantity dC(Y )(ψY (P ), ψY (P ′)).
Therefore if dY ≥ C0 then

b(dY − 2A− 36− 4J)/(J + 6)c ≥ (dY − 2A− 36− 4J − J − 6)/(J − 6)

≥ dY /(2J + 12).

However each edge is assigned to at most two non-annular subsurfaces. This pro-
vides the appropriate lower bound on the length of the path (P (i))i. We may take
e0 = 1/(4J + 24). �

Corollary 4.9. Let Y ⊂ S be a subsurface. Then there is a natural inclusion map
P(Y )→ P(S) that is a quasi-isometric embedding with constants only depending on
Y . Furthermore, this still holds even when S is a surface homeomorphic to a pants
decomposition with infinitely many pairs of pants.



28 T. AOUGAB, S.J. TAYLOR, AND R.C.H WEBB

Proof. Take a pants decomposition of the complement of Y in S. Then any pants
decomposition P of Y extends canonically to a pants decomposition P̄ of S. This
gives an injective map from P(Y ) to P(S). We have

dP(Y )(P, P
′) ≤ e

∑
Z∈NA(Y )

[dC(Z)(ψZ(P ), ψZ(P ′))]C +K,

where e, C and K depend only on Y . We may assume that C ≤ C0 where C0 is given
in Theorem 4.8. By Theorem 4.8 we obtain dP(Y )(P, P

′) ≤ e
e0
dP(S)(P̄ , P̄ ′) + K and

these constants only depend on Y .
We are done even in the (exotic) case that S is a union of infinitely many pairs of

pants because any such path of pants decompositions between P̄ and P̄ ′ has finite
length and therefore occurs on a compact subsurface of S, so the lower bound on
distance given above applies. �

Remark 4.10. The natural inclusion above is conjectured to be an isometric embed-
ding in general ([3]) (in fact, convex/totally geodesic). Currently it is only known
that simplicial embeddings of graph products of Farey graphs into the pants graphs
are convex ([41]). Our Corollary 4.9 gives quasi-isometric embedding constants that
only depend on Y and not on the ambient surface S.

We end this section with the following question.

Question 1. Is a similar result to Theorem 4.8 true for the marking graph?

The marking graph is more complicated because the subsurface projections of an-
nuli need to be considered. For a given edge in the marking graph, there may be an
arbitrary number of annuli Yi such that the image under the projection πYi changes
significantly. The methods given in this section do not handle this technicality, since
by Lemma 4.5, we only have two minimal subsurfaces to consider, rather than arbi-
trarily many. For the marking graph some extra analysis is required to understand
how much progress can be made in all annular subsurface projections with one mark-
ing move.

5. The conjugacy problem for pseudo-Anosovs

Fix S = Sg,p and let f ∈ Mod(S) be pseudo-Anosov with quasi-invariant tight
geodesic axis Af ⊂ C(S). That is, Af is a biinfinite tight geodesic of C(S) such that
for each n ∈ Z, Af and fnAf 2δ–fellow travel in C(S). By Proposition 7.6 of [32],
every pseudo-Anosov mapping class has a quasi-invariant tight geodesic axis in the
curve graph.

Fix µ ∈ M(S). For any h ∈ Mod(S), we use the notation d(h) to denote the dis-
placement dM(µ, hµ). Further, let pf : C(S)→ Af denote the nearest point retraction
to the geodesic Af , i.e. pf = nearAf . For a marking µ, we modify the projection
pf slightly: first, consider µ as a bounded diameter subset of the curve graph. Then,
let pf (µ) be the collection of curves on Af closest to the curves of µ enlarged so that
pf (µ) is a subsegment of Af of diameter at least 3. Note that by uniform hyperbol-
icity, there is a uniform constant D ≥ 0 so that diamS(pf (µ)) ≤ D. In fact, we may
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take D = 4δ + 1. Recall that by Lemma 7.7 of [32], for any n ∈ Z and x ∈ C(S),
dC(f

n(pf (x)), pf (f
n(x))) ≤ 10δ.

If f has curve graph translation length `C(f) ≥ M + 2D + 10δ + 4, then we say
that f is well-displacing.

Our first lemma is a simple exercise in hyperbolic geometry.

Lemma 5.1. With the notation as above, if f ∈ Mod(S) is well-displacing, then
dC(µ, pf (µ)) ≤ d(f)+2D+2δ

2
.

The next lemma controls properties of the mapping class f using only the displace-
ment of the fixed marking µ ∈M(S).

Lemma 5.2. Suppose that f ∈ Mod(S) is well-displacing. For any proper subsurface
Y ⊂ S we have the following bounds:

(1) diamY (pf (µ)) ≤ 4M + dY (f−1µ, fµ),
(2) dY (pf (µ), pf (fµ)) ≤ 4M + dY (f−1µ, f 2µ) + 2 · diamY (pf (µ)), and
(3) dY (µ, pf (µ)) ≤M + dY (µ, fµ) + dY (pf (µ), pf (fµ)) .

Hence, we get that

dY (µ, pf (µ)) ≤ 13M + dY (µ, fµ) + dY (f−1µ, f 2µ) + dY (f−1µ, fµ).

Proof. For any marking η ∈M(S), set η̄f = pf (η). For the proof of (1), suppose that
diamY (µ̄f ) ≥M + 1. Then by the Bounded Geodesic Image Theorem (Theorem 3.2),
µ̄f meets the 1-neighborhood of ∂Y in C(S). We claim that each of the geodesics
[f−1µ, f−1µf ] and [fµ, fµf ] miss N1(∂Y ), the 1-neighborhood of ∂Y in C(S). There-
fore, their projection to C(Y ) has diameter no more than M , again by the bounded
geodesic image theorem. To see this, suppose that some vertex v on, say, [f−1µ, f−1µf ]
has distance ≤ 1 from ∂Y . Then since ∂Y as distance at most 1 from some curve
w ∈ µ̄f ⊂ Af , dC(v, w) ≤ 2. However, f−1µf are the vertices of Af closest to f−1µ,
hence

dC(f
−1µ̄f , µ̄f ) ≤ dC(f−1µf , µ̄f ) + 10δ

≤ dC(f−1µf , w) + 2D + 10δ

≤ dC(f
−1µ̄f , v) + dC(v, w) + 2D + 10δ

≤ 4 + 2D + 10δ.

This contradicts our assumption that f is well-displacing on C(S) and verifies the
claim. Using the rectangle of geodesics (Figure 1) and tightness of the axis Af , we
conclude that

diamY (pf (µ)) ≤ 4M + dY (f−1µ, fµ).

The proof of (2) is similar. Suppose dY (µ̄f , fµf ) ≥ M + 1. Another application
of the bounded geodesic image theorem gives that the portion of Af between µ̄f and
fµf meets N1(∂Y ).

Consider the geodesic quadrilateral with sides [f−1µ, f 2µ], [f−1µ, f−1µf ], [f
2µ, f 2µf ]

and [f−1µf , f
2µf ] ⊂ Af . Exactly as in Part (1), we see that each of [f−1µ, f−1µf ]
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Figure 1. Avoiding ∂Y

and [f 2µ, f 2µ̄f ] miss N1(∂Y ). Therefore, their projection to C(Y ) has diameter no
more than M , again by the bounded geodesic image theorem. Using the indicated
rectangle and the fact that Af is tight, we see that

dY (pf (µ), pf (fµ)) ≤ 4M + dY (f−1µ, f 2µ) + 2 · diamY (pf (µ)).

To prove (3), first note that

dY (µ, µ̄f ) ≤ dY (µ, fµ) + dY (fµ, fµf ) + dY (fµf , µ̄f ).

Hence, it suffices to prove that if dY (µ, µ̄f ) ≥ M + 1 then dY (fµ, fµf ) ≤ M . If
not, then both geodesic segment [µ, µ̄f ] and [fµ, fµf ] meet N1(∂Y ). In this case,
however, we see from the nearest point projection that dC(µ̄f , fµf ) ≤ D + 10δ + 2, a
contradiction to the assumption that f is well-displacing. �

In light of Lemma 5.2, for each subsurface Y of S set

DY = max{dY (µ, fµ), dY (f−1µ, f 2µ), dY (f−1µ, fµ)}.
Further, let Yi (i = 1, 2, 3) be the collection of subsurfaces for which the ith term in
the definition of DY achieves the max. By Lemma 5.2, dY (µ, pf (µ)) ≤ 13M + 3DY

for each subsurface Y .

Corollary 5.3. There is a constant E ≥ 0 depending only on the complexity of S so
that

dM(µ, pf (µ)) ≤ E · d(f).

In particular, we may take E = (400ω(S))!.

Proof. Pick K ≥ 13M ; note that, assuming the value of 100 for M , this is larger
than 5M + 15, which is the cut-off obtained in Section 4.1 . Then there are constants
(200ω(S))! ≥ A,B ≥ 1 such that

dM(µ, pf (µ)) ≤ A
∑
Y

[dY (µ, pf (µ))]K +B.

Since K ≥ 13M , Lemma 5.2 and Lemma 5.1 imply

dM(µ, pf (µ)) ≤ A
∑

[13M + 3DY ]K +B
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≤ 6A
∑

[DY ]K +B

≤ 6A(
∑
Y1

[DY ]K +
∑
Y2

[DY ]K +
∑
Y3

[DY ]K) +B

≤ 6A(
∑
Y1

[dY (µ, fµ)]K +
∑
Y2

[dY (f−1µ, f 2µ)]K +
∑
Y3

[dY (f−1µ, fµ)]K) +B

≤ 6A · C(dM(µ, fµ) + dM(f−1µ, f 2µ) + dM(f−1µ, fµ)) +B

≤ 18A · C · d(f) +B

≤ 18A ·B · C · d(f),

where the last inequality holds because d(f) ≥ 1, and C = 40 · ω(S) − 120 is the
multiplicative error found in Section 4.1. �

Figure 2. Axes and projections

Proposition 5.4 (Effective linear conjugator bound). Suppose that h1 and h2 are
conjugate pseudo-Anosovs in Mod(S). Then there is a w ∈ Mod(S) such that h2 =
wh1w

−1 and
d(w) ≤ c(S) · (d(h1) + d(h2)).

Proof. First write h2 = uh1u
−1 for some u ∈ Mod(S). By [22], any pseudo-Anosov

h ∈ Mod(S) satisfies `C(h) ≥ 1
200·ω(S)2+133

. Hence, if we set

N = (M + 2D + 10δ + 4) · (200 · ω(S)2 + 133),

then f = hN1 is well-displacing. Set g = hN2 = ufu−1.
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As above, let Af denote a quasi-invariant tight axis of f in C(S) and set Ag = uAf ,
which is an axis for the pseudo–Anosov g. Set µ̄f = pf (µ) and µ̄g = pg(µ), the nearest
point retractions of µ to the geodesics Af and Ag, respectively.

By construction u · µ̄f lies on the axis Ag. Hence, by applying a power gk we have
that dC(gku · µ̄f , µ̄g) ≤ `(g) ≤ d(g). Set w = gku and note that w still conjugates h1

to h2. By applying Corollary 5.3 to both f and g, we have the following:
(1) dM(µ, µ̄f ) ≤ E · d(f),
(2) dM(µ, µ̄g) ≤ E · d(g).

Also, since wµ̄f lies within the portion of Ag between µ̄g and gµ̄g another application
of the bounded geodesic image theorem gives dY (µ̄g, wµ̄f ) ≤ 2M+dY (µ̄g, gµ̄g). Hence,
just an in Corollary 5.3 we conclude that dM(µ̄g, wµ̄f ) ≤ E · d(g).

We now compute,

d(w) = dM(µ,wµ)

= dM(µ, µ̄g) + dM(µ̄g, wµ̄f ) + dM(wµ̄f , wµ)

= dM(µ, µ̄g) + dM(µ̄g, wµ̄f ) + dM(µ, µ̄f )

≤ 2E · (d(f) + d(g))

≤ 2E ·N · (d(h1) + d(h2)).

Setting C(S) = 2E ·N completes the proof. �

To finish the proof of Theorem 1.6, we appeal to the Milnor-Svarc lemma in order
to use Proposition 5.4 to give bounds on the word length of w in a particular finite
generating set, S. Let D > 0 be an upper bound for the diameter of the marking
graphM(S), modulo the action of Mod(S). Then if S is the set of all mapping classes
s so that BD(µ) ∩ s ·BD(µ) 6= ∅, then S generates, and for any g ∈ Mod(S),

1

D
d(g) ≤ `S(g) ≤ d(g) + 1,

where `S(g) denotes the word length of g in the generating set S. Thus,

`S(g) ≤ 2EN · (d(h1) + d(h2)) ≤ 2E ·N · D · (`S(h1) + `S(h2)).

Theorem 1.6 then follows form a bound on D. For this, let DP denote the diameter
of P(S) modulo the action of Mod(S). Note that D ≤ 2 · DP + 3g− 3 + p. Indeed, if
a pair of markings µ1, µ2 have the same base, one can be obtained from the other by
applying a composition of twists and at most |base(µ)| many half-twists, and none of
the twists contribute to length in the quotient M(S)/Mod(S). If µ1, µ2 have different
bases, µ1 can be transformed into a marking with the same base as µ2 by performing
flip moves and cleaning, perhaps half-twisting once between each such flip move; each
flip move corresponds to an edge in P(S). Therefore, it suffices to give a bound for
DP . This has been obtained in [38] (see also [18]):

DP ≤ 2 · (ω(S) + 1) · (8 log2(ω(S) + 1)− 3).
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Hence,

2E ·N · D ≤ 824 · (200 · ω(S)2 + 133) · (400ω(S))! · (ω(S) + 1) · (8 log2(ω(S)) + 1− 3)

≤ (405ω(S))!

In particular, this yields the well-definedness of Calvez’s algorithm for determining
the Nielsen-Thurston type of braids (see Theorem 1.16). For example, if n ≤ 7,
there is a generating set S of the braid group Bn so that if u, v ∈ Bn are conjugate
pseudo-Anosov braids, then there is a conjugator w so that

`S(w) ≤ 10000 · (`S(u) + `S(v)).

6. Effectivizing Brock’s theorem and applications

6.1. Convex core bounds. In this section, we use the effective Masur–Minsky ma-
chinery developed in Section 3 to prove an effective version of Brock’s theorem [11]:
that the volume of a quasi-fuchsian manifold is coarsely related to distance in the
pants graph. We first address the upper bound on volume of the convex core by
pants distance in the case that S is closed. As mentioned in the introduction, when
S is closed and of genus at least 2 and X, Y ∈ T (S), Schlenker [39] has shown an
upper bound on volume of the convex core of a quasi-fuchsian manifold Q(X, Y ) in
terms of the Weil-Petersson distance dWP (X, Y ):

vol(core(Q(X, Y ))) ≤ 3
√
π(g − 1)dWP (X, Y ) +KS,

for some constant KS which grows at most linearly in g. As mentioned in the proof
of Theorem 1.15,

dWP (X, Y ) ≤q(ω) dP(PX , PY ),

where PX , PY are Bers short pants decompositions on X, Y respectively, and q is
a quadratically growing function of ω(S). Chaining together these two inequalities
proves the desired upper bound.

The remainder of this section is dedicated to proving the lower bound on volume
of the convex core. Recall that for pants decompositions PI , PT ∈ P(S), the set of
nonannular subsurfaces Y for which dY (PI , PT ) ≥ K is denoted Ω(PI , PT , K). Also,
for P ∈ P(S) we set

V (P ) := VL(P ) = {X ∈ T (S) : `X(α) ≤ L for all α ∈ P},

where L is the constant guaranteed to exist by Bers’ theorem. Buser-Seppälä showed
that L grows at most linearly in ω(S) ([15]).

Lemma 6.1. Suppose that P1, P2 ∈ P(S) are pants decompositions such that VL(P1)∩
VL(P2) 6= ∅. Then

max{i(αi, αi+1) : αi ∈ Pi, αi+1 ∈ Pi+1} ≤ Iω,

where Iω = O(exp(t(ω))) for some fixed affine function t.
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Proof. The collar lemma implies that a simple closed curve of length ` admits an
embedded neighborhood of radius log(coth(`/2)) =: R`. Thus, two curves of length
≤ ` can only intersect at most `/R` times. A calculation shows that this is eventually
smaller than exp(2`), and thus the lemma follows from the fact that L grows at most
linearly in ω(S). �

For X ∈ T (S) let PX denote a shortest pants decomposition for X. Note that
X ∈ V (PX).

Theorem 6.2 (Effective volume of convex core). There exists an affine function h
of ω satisfying the following. Let M be a quasi-fuchsian 3-manifold homeomorphic to
S × R with conformal boundary components X, Y ∈ T (S). Let core(M) denote the
convex core of M . Then

vol(core(M)) ≥ C1(ω) · dP(PX , PY )− C2(ω)

where 1/C1(ω), C2(ω) = O(h(ω)h(ω)).

Before proving Theorem 6.2, we require effective versions of several lemmas from
Brock’s [11].

Lemma 6.3 (Effective Lemma 4.3 of [11]). Let g = {PI = P0, P1, . . . , PN = PT} be
a sequence of pants decompositions, such that

max{i(αi, αi+1) : αi ∈ Pi, αi+1 ∈ Pi+1} ≤ Iω

for each i = 0, . . . , N − 1. Let Sg denote the image of g in C(S). Then,

d(PI , PT ) ≤ t(ω)t(ω) · 80ω(2 log(Iω) + 2) · |Sg|,

where t(ω) is the function of ω(S).

Proof. Since i(αi, αi+1) ≤ Iω for each αi ∈ Pi and αi+1 ∈ Pi+1, we have that for any
nonannular subsurface Y ⊂ S, dY (Pi, Pi+1) ≤ kω, for kω = 2 log(Iω) + 2. Let K =
5M+3kω+25, and for each Y ∈ Ω = Ω(PI , PT , K), define JY = [iY , tY ] ⊂ [0, N ]∩Z as
follows: iY is the largest index r with dY (PI , Pr) ≤ 2M +kω +9 and tY is the smallest
index s greater than iY with dY (Ps, PT ) ≤ 2M + kω + 9. Denote by diam(JY ) the
diameter of JY as a subset of R and set diamY (JY ) = max{dY (Pl, Pm) : l,m ∈ JY }.

Following the notation of Brock, for α ∈ S with πY (α) 6= ∅ define JY (α) ⊂ JY
to be collection of integers i ∈ JY for which α ∈ Pi. As in Brock, it is clear that
diamY (JY (α)) ≤ 4, and that each integer in JY is contained in JY (α) for some α ∈ S.
Hence, if we set SY = {α ∈ S : JY (α) 6= ∅}, then

diamY (JY ) ≤ 4kω · |SY |.

Claim: If Y, Z ∈ Ω(PI , PT , K) with Y t Z, then for any α ∈ C0(S) either JY (α) = ∅
or JZ(α) = ∅. Hence, SY ∩ SZ = ∅.

Proof. Toward a contradiction, suppose that k ∈ JY (α) ⊂ JY and m ∈ JZ(α) ⊂ JZ .
Since Y and Z overlap we have either dY (Z, PI) ≤ M or dZ(Y, PI) ≤ M by the
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Behrstock inequality. Assume the former; the latter case is proven by exchanging the
occurrences of Y and Z in the proof. By the triangle inequality,

dY (Z, Pk) ≥ dY (PI , Pk)− dY (Z, PI)

≥ 2M + 9−M ≥M + 1.

So again by the Behrstock inequality, we have dZ(Y, Pk) ≤ M . Combining this
with the fact that

dZ(Pk, Pm) ≤ dZ(Pk, α) + dZ(α, Pm) ≤ 8,

we see that

dZ(Y, PT ) ≥ dZ(Pk, PT )− dZ(Y, Pk)

≥ dZ(Pm, PT )− dZ(Y, Pk)− 8

≥ 2M + 9−M − 8

≥ M + 1.

Hence we conclude, using the Behrstock inequality once more, that dY (Z, PT ) ≤ M .
This, together with our initial assumption, implies

dY (PI , PT ) ≤ dY (PI , Z) + dY (Z, PT ) ≤ 2M < K

contradicting that Y ∈ Ω(PI , PT , K). �

We now return to the proof of the lemma. Since the size of a set of nonoverlapping
subsurfaces of S is bounded by 2ω(S), we have∑

Y ∈Ω

diamY (JY ) ≤ 4(2ω(S))kω · |S|.

Note that this follows since if α ∈ SZ ∩SY 6= ∅ then JZ(α)∩ JY (α) 6= ∅ and so Y and
Z are nonoverlapping on S (by our claim). By the definition of JY , we observe

dY (PI , PT ) ≤ diamY (JY ) + 4M + 2kω + 18.

Since, for each Y ∈ Ω(PI , PT , K), dY (PI , PT ) ≥ 5M + 3kω + 25 we have 1
5
·

dY (PI , PT ) ≤ diamY (JY ) and so putting this with the inequality above∑
Y ∈Ω

dY (PI , PT ) ≤ 5 ·
∑
Y ∈Ω

diamY (JY )

≤ 20(2ω(S))kω · |S|.

Now combining this with the effective distance formula for pants distance and
observing that K ≤ j(ω(S)) for j some affine function of ω, gives

d(PI , PT ) ≤ t(ω)t(ω) ·
∑
Y⊆S

[[dY (PI , PT )]]K + t(ω)t(ω)

≤ t(ω)t(ω) · 20(2ω(S))k′ · |S|+ t(ω)t(ω),
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where t(ω) is an affine function depending on j(ω) that can be explicitly bounded
from above using the proof of Proposition 3.5. Since S 6= ∅ whenever PI 6= PT , we
conclude

d(PI , PT ) ≤ t(ω)t(ω) · 40(2ω(S))kω · |S|. �

Following Brock, we now show how large pants distance produces many curves in
Q(X, Y ) whose lengths are less than L. This, via Brock’s packing argument, will give
a lower bound on the volume of the convex core of Q(X, Y ).

Lemma 6.4 (Effective Lemma 4.2 of [11]). Let Q(X, Y ) denote the quasi-fuchsian
manifold with conformal boundary X, Y ∈ T (S). Let PX , PY ∈ P(S) with X ∈ V (PX)
and Y ∈ V (PY ). Then for some constant K to be determined in the course of the
proof,

dP(PX , PY ) ≤ K(|SL|+ 1),

where SL is the set of geodesics in Q(X, Y ) of length no greater than L.

Proof. First, recall that by Bers, the Q(X, Y )–length of the curves in PX and PY
are no greater than 2L. Let ZX and ZY be pleated surfaces with pleating locus
containing PX and PY , respectively. Let PI and PT be pants decompositions such
that ZX ∈ V (PI) and ZY ∈ V (PT ).

Hence, both PX and PI are 2L–short on ZX and so we compute D such that
dP(PX , PI) ≤ D. In general, let IL denote the maximum number of intersections
between L–short pants decompositions on a hyperbolic surface.

With this set up, replace ZX and ZY with very close simplicial hyperbolic surfaces
that also map PX and PY to their geodesic representatives, respectively. This can
be achieved by Thurston’s spinning construction. By very close, we mean that with
respect to the uniformizations of these simplicial hyperbolic surfaces the pants de-
compositions PI and PT are still L + ε–short, for some very small ε. The point is
that we are now in the situation of Brock who, following Canary [17], builds a one
parameter family of simplicial hyperbolic surfaces kt : St → Q(X, Y ) with k0 = ZX
and k1 = ZY . Uniformizing these maps provides a 1-parameter family of 1-Lipschitz
maps ht : Zt → Q(X, Y ), from hyperbolic surface Zt ∈ T (S) such that:

• `Z0(PX) ≤ 2(L+ ε),
• `Z1(PY ) ≤ 2(L+ ε).

As in Brock, we may use this family of 1-Lipschitz maps to produce a sequence of
pants decompositions P0, . . . , PN ∈ P(S) such that:

(1) Z0 ∈ V2L(PX) ∩ V (P0),
(2) Z1 ∈ V2L(PY ) ∩ V (P0),
(3) V (Pi) ∩ V (Pi+1) 6= ∅ for i = 0, . . . N − 1,
(4) Zt ∈ ∪iV (Pi) for all t ∈ [0, 1], and each V (Pi) meets (Zt)t∈[0,1].
By (4) and Lemma 6.1, no curve in Pi intersects any curve in Pi+1 more than IL

times. Since the maps are 1-Lipschitz, we have that the length of each curve in Pi
has length no greater than L in Q(X, Y ) for each 0 ≤ i ≤ N . Hence the sequence
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g = {P0, . . . PN} satisfies the conditions of Lemma 6.3 and we conclude that

d(P0, PN) ≤ t(ω)t(ω) · 40(2ω − 6)(2 log(IL) + 2) · |SL|,
where we have used that Sg ⊂ SL. To complete the argument, we use the intersection
bound between PI and P0 (and PT and PN) bound the pants distance between PI
and P0. As L grows linearly in ω, the intersection bound grows exponentially in ω.
It follows that all non-annular projections between PI and P0 are bounded above by
an affine function of ω. Then using the distance formulas developed in section 3, we
obtain a bound on dP(PI , P0) on the order of t(ω)t(ω), where we have replaced t with
a larger affine function if necessary. �

Finally, we state the following result of Brock:

Lemma 6.5 (Lemma 4.8 of [11]). Let M be a geometrically finite hyperbolic 3-
manifold with ∂M incompressible, and let vol(M) denote its convex core volume.
Then there is a constant C1 > 1 depending only on L and C2 > 0 depending only on
χ(∂M) for which

|SL|
C1

− C2 < vol(M).

We refer to Brock for a proof of Lemma 6.5, however, we make a few remarks on
the constants C1 and C2, as computed in Brock’s proof. First, if we denote by VR the
volume of an R-ball in H3, then

C1 =
VL+2ε

Vε/2 · Vε/4
,

where ε is the 3-dimensional Margulis constant. The constant C2 is defined to be the
difference between the volume of an ε-neighborhood of the core of M and the volume
of the core itself. This difference is bounded by twice the volume of an ε-neighborhood
of a pleated surface in M representing the convex core boundary. This is computed
in Proposition 8.12.1 of Thurston’s notes [42], where the following upper bound is
obtained:

−2πχ(S) · Vε+a
Aa

.

Here, a is the length of the shortest curve on ∂M which is homotopically trivial in
M , and Aa is the area of a disk of radius a in H2. Since in our setting, no curve in
S is trivial in the 3-manifold, we are free to choose any value for a. We set a = 1 to
obtain the desired bound.

6.2. Mapping tori. We now prove Theorem 1.10. Indeed, it follows readily from
Brock’s original argument in [12]; the constants that appear in that argument are all
either the same as, or are controlled by, those in the argument above for the convex
core case. In the case that S is closed, we also present an alternative proof suggested
in [12], which uses Theorem 1.8 and a recent result of Brock–Bromberg [14].

Given X ∈ T (S) and ψ ∈ Mod(S) pseudo-Anosov, let Qn,X denote the quasifuch-
sian manifold Q(ψ−n(X), ψn(X)). The relevant result of Brock–Bromberg states that
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the quantity |vol(core(Qn,X)) − 2n · vol(Mψ)| is uniformly bounded for all n ∈ N.
Combining this with Theorem 1.8 yields

dP(ψ−n(PX), ψn(PX)) ≤(h(ω))! vol(core(Qn,X)) ≤ 2n · vol(Mψ) +K,

where PX is a Bers pants decomposition on X, and K ∈ N exists by the Brock–
Bromberg result. Then dividing by 2n and taking a limit as n goes to infinity yields
the desired inequality:

τP(ψ) ≤h(ω)h(ω) vol(Mψ).

7. Covering maps and Pants graphs

In this section, we prove Theorem 1.13. First, we describe how a cover p : S → S ′

gives rise to a map between pants graphs p̃ : P(S ′) → P(S). As mentioned in the
introduction, a pants decomposition on S ′ will lift to a multi-curve on S, but not
necessarily to one that is maximal. Thus to define p̃, we must make a choice of how
to extend the lift of a pants decomposition on S ′ to a full pants decomposition on S.

To do this, first choose a hyperbolic metric σ on S ′, which we can lift via p to a
metric p∗σ on S ′. Then given a pants decomposition P ∈ P(S ′), p∗(P ) is a multi-
curve on S, which we extend to a shortest possible pants decomposition with respect
to p∗σ. This yields a map p̃ from P(S ′) to 2P(S). We first show that p̃ is coarsely
well-defined.

Given P a pants decomposition of S ′, if P1, P2 are two pants decompositions of S
obtained by extending p∗(P ) to a full pants decomposition, then by the collar lemma
(and as stated in Lemma 6.1),

i(P1, P2) ≤ exp(t1(ω(S))),

for some affine function t1.

Lemma 7.1. Let P1, P2 be pants decompositions on a surface S. Then

dP(P1, P2) ≤A
ω(S)∏
j=1

[2 · log2(4 · i(P1, P2) + 2) + 2],

for A = (200 · ω(S))!.

Proof. Proposition 3.5 implies the desired inequality, so long as the sum of sufficiently
large non-annular subsurface projections dY (P1, P2) is bounded from above by the
right hand side. Indeed, for any Y ⊆ S, the projection of P1 can intersect the
projection of P2 no more than 4 · i(P1, P2) + 2 times. Thus, using the basic bound on
curve graph distance in terms of intersection number, dY (P1, P2) is bounded above
by 2 · log2(4 · i(P1, P2) + 2) + 2. �

We now turn to the proof of Theorem 1.13. Lemma 7.1 implies that for P1, P2 as
above,

dP(S)(P1, P2) ≤ (200 · ω)! · (t2(ω))ω(S)
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≤ ω(S)t3(ω(S)),

for t2, t3 some fixed affine functions. This proves the coarse well-definedness of p̃.
Next, suppose that P1, P2 ∈ P(S ′) differ by a single elementary move. Then there

is some affine t5 satisfying

i(p∗(P1), p∗(P2)) ≤ t5(ω(S));

indeed, i(P1, P2) = 1, and this intersection will have deg(p) many pre-images, which
is bounded by ω(S). Furthermore, we can extend p∗(P1) and p∗(P2) to full pants
decompositions of S ′ by appending the same multi-curve to both. Thus Lemma 7.1
together with the proof of the coarse well-definedness of p̃ implies that

dP(S)(p̃(P1), p̃(P2)) ≤ ω(S)t6(ω(S)),

for some affine t6.
It remains to show that for any P1, P2 ∈ P(S ′),

dP(S)(p̃(P1), p̃(P2)) ≥ωt(ω) dP(S′)(P1, P2),

where t is some affine function to be determined, and chosen to be larger than
maxi=1,...,6 ti.

To show this, let Q(P1, P2) be a quasi-fuchsian manifold homotopy equivalent to
S ′, chosen so that P1 is Bers short on one conformal structure at infinity and P2 is
Bers short on the other. Then applying Theorem 1.8,

dP(S′)(P1, P2) ≤(h(ω))! vol(core(Q(P1, P2))).

The covering map p induces a covering p̃ : Q(p∗(P1), p∗(P2)) → Q(P1, P2) between
quasi-fuchsian manifolds, and the volume of the convex core of Q(p∗(P1), p∗(P2)) is
at least vol(core(Q(P1, P2))).

Moreover, applying Theorem 1.14, the volume of the convex core ofQ(p∗(P1), p∗(P2))

is at most 3
√
π(g − 1)dWP (X(p∗(P1)), X(p∗(P2)))+KS, where X(p∗(Pi)) denotes the

conformal structures at infinity. As mentioned in the proof of Theorem 1.15, Weil-
Petersson distance is bounded above by an affine function of pants distance whose
coefficients depend quadratically on ω, and therefore we conclude that

vol(core(Q(p∗(P1), p∗(P2)))) ≤q(ω) 3
√
π(g − 1)dP(S)(p

∗(P1), p∗(P2)) +KS,

for some quadratic function q(ω). Also as mentioned in the proof of Theorem 1.15,
the constant KS grows at most linearly in ω(S), and therefore after collecting all
constants and combining inequalities, we obtain

dP(S′)(P1, P2) ≤ωt(ω) dP(S)(p
∗(P1), p∗(P2)),

for some affine t, as desired.

8. Poorly behaving hierarchies and optimal bounds

In this final section, we provide examples of “bad hierarchies,” i.e. hierarchies having
pathological behavior which becomes worse as complexity grows. These examples
establish, for example, the lower bound on C(ω) in Theorem 1.2.
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y1Y

v1 v2 v3 v4

Figure 3. The surface S1,n+2 where n = 4. The horizontal sides and
vertical sides are suitably identified.

8.1. Linearly large links. The main motivation for this section is to illustrate that
the large link lemma has no uniform constant, despite there being a uniform constant
for the bounded geodesic image theorem (Theorem 3.2). This indicates that finding
an exponential upper bound on the multiplicative and additive errors for the distance
estimates (in the marking/pants graph) is a difficult problem.

We provide linear lower bounds in ω(S) for the constants in the large link lemma
(Lemma 3.4 in Section 3 above) and the sigma projection lemma (Lemma 3.3 above)
of Masur and Minsky [32] in the case where the subsurface Y is an annulus. At the
end of the section we briefly describe how to obtain logarithmic lower bounds in ω(S)
when the subsurface Y is non-annular. Since the large link lemma is a corollary of
the sigma projection lemma, we focus only on the large link lemma constants, and
then deduce similar lower bounds for the sigma projection lemma constants.

Let v and w be multicurves. Recall that the subsurface filled by v and w is denoted
by F (v, w). We begin with the following lemma:

Lemma 8.1. Let n be a positive integer. There is an annular subsurface Y of S =
S1,n+2 and there are curves y1, ..., yn+1, v1, ..., vn of S with the following properties.

• The curves v1, ..., vn miss Y .
• The curves y1, ..., yn+1 cut Y .
• The curves v1, ..., vn form a multicurve v1 ∪ ... ∪ vn.
• There exist curves u2, ..., un+1 such that we have ∂F (v1, y1) = y2 ∪ u2, and
inside a component domain of (S, vi−1) we have ∂F (vi, yi) = yi+1 ∪ ui+1.
• diamC(Y )(πY (y1) ∪ πY (yn+1)) ≥ n.

Proof. On S there exists an annulus Y and a curve y1 such that y1 intersects the core
curve of Y exactly once. We then define the curves v1, ..., vn as in Figure 3. It is clear
that each vi separates S into two components. We set W1 = S and define Wi+1 to
be the component domain of (S, vi) that contains vi+1 (hence also vi+1, ..., vn). It is
clear that W1 ⊃ W2 ⊃ ... ⊃ Wn. We deduce that Wi+1 is also a component domain
of (Wi, vi). The other component domain of (Wi, vi) is homeomorphic to a pair of
pants.
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y1Y

y5

Figure 4. The curves y1 and yn+1 are shown where n = 4. The curves
are in minimal position. Notice the twisting about the annulus Y .

The reader should now check inductively that the curve yi intersects vi twice but vi
bounds a pair of pants in Wi, and so F (vi, yi) is a four holed sphere of which exactly
two boundary components are essential, non-peripheral and non-isotopic in Wi (we
point out that this is where we require n + 2 punctures when i = n). Exactly one
of these boundary components intersects vi+1 twice, and we set yi+1 to be this curve,
the other curve we call ui+1. We deduce that yi+1 ∪ ui+1 is a multicurve in Wi+1. We
have defined y1, ..., yn+1.

Finally we show that diamC(Y )(πY (y1) ∪ πY (yn+1)) ≥ n. See Figure 4. There are
subarcs a ⊂ y1 and a′ ⊂ yn+1 such that a, a′ ⊂ Y and |a ∩ a′| = n− 1. Given a cover
of S corresponding to Y , we pick lifts of a and a′ within the homeomorphic lift of Y .
This proves that there are lifts of y1 and yn+1 that intersect at least n − 1 times in
the cover. By equation (2.1) we have that the distance between these arcs of πY (y1)
and πY (yn+1) is at least n. �

Using Lemma 8.1 throughout, for the surface S = S1,n+2 we shall construct a par-
tial hierarchy H which restricts to a hierarchy H ′ on a subsurface properly containing
Y so that Y is not a domain of H ′. Therefore H, and any extension of H to a hierar-
chy, does not have a geodesic whose support is Y . On the other hand, we shall have
diamC(Y )(πY I(H)∪πYT(H)) bounded from below in terms of n. This provides a lower
bound on the constant in the first clause of the large link lemma of Masur and Minsky.

The construction: There is a component domain S ′ of (S, vn), homeomorphic to
S1,2, that contains the annulus Y . For each n, the curves yn+1 and un+1 are essential
and non-peripheral in S ′, but their homeomorphism classes in S ′ are simultaneously
independent of n (they only differ by twisting about the core curve of Y ). Therefore
for each n we may pick a hierarchyK between some µ = I(K) and T(K) = yn+1∪un+1

such that the support of K is S ′, Y is not the support of any geodesic in K, and
µ cuts Y . Therefore diamC(Y )(πY I(K) ∪ πYT(K)) is uniformly bounded because the
surface S ′ is homeomorphic to S1,2. The forward and backward sequences Σ±(Y,K)
are non-empty and share the same top geodesic by Theorem 4.7 of [32].
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Now we use an inductive procedure to describe some of the geodesics of the required
(partial) hierarchy H. We use the Wi from the proof of Lemma 8.1. The base
case is the main geodesic g1, where D(g1) = W1 = S, the tight sequence of g1 is
(v1, y2 ∪ u2, y1), I(g1) = µ ∪ v1 ∪ ... ∪ vn where µ = I(K) above, and, T(g1) = y1.

The inductive step is as follows. Assume that 1 ≤ i ≤ n − 1, so in particular
i + 1 ≤ n. We have D(gi) = Wi, the tight sequence of gi is (vi, yi+1 ∪ ui+1, yi),
I(gi) = µ ∪ vi ∪ ... ∪ vn, and, T(gi) = yi ∪ ui, unless i = 1 where we have T(g1) = y1.
To complete the inductive step we are required to construct gi+1 andWi+1 = D(gi+1).
There is a component domain Wi+1 of (Wi, vi) that contains µ, vi+1, ..., vn, yi+1 and
ui+1. Therefore Wi+1 is directly forwards and backwards subordinate to gi. We
have I(Wi+1, gi) = µ ∪ vi+1 ∪ ... ∪ vn and T(Wi+1, gi) = yi+1 ∪ ui+1. Now we may
define gi+1 to be a tight geodesic whose tight sequence is (vi+1, yi+2 ∪ ui+2, yi+1), and
D(gi+1) = Wi+1, with the required initial and terminal markings relative to gi. We
have completed the inductive step and hence constructed g1, ..., gn. These geodesics
will belong to our (partial) hierarchy H.

We have that S ′ is directly forwards and backwards subordinate to gn: I(S ′, gn) =
µ = I(K) and T(S ′, gn) = yn+1 ∪ un+1 = T(K).

Now we include the geodesics ofK in the partial hierarchyH. Note that Y is not the
support of any geodesic of H. This is because Σ+(Y,H) = Σ+(Y,K) ∪ {gn, ..., g1},
Σ−(Y,H) = {g1, ..., gn} ∪ Σ−(Y,K), and K is a hierarchy not containing Y as a
domain.

By Lemma 8.1 we have diamC(Y )(πY y1 ∪ πY yn+1) ≥ n. Therefore
diamC(Y )(πYT(K) ∪ πYT(H)) ≥ n.

However diamC(Y )(πY I(K)∪πYT(K)) and diamC(Y )(πY I(H)∪πY I(K)) are uniformly
bounded, and so we deduce that

diamC(Y )(πY I(H) ∪ πYT(H))

grows linearly in n, but Y is not the support of a geodesic in H. This provides a
linear lower bound in n for the constant in the large link lemma.

We remark that the above construction can be easily extended to complete hierar-
chies using Theorem 4.6 of [32] which extends a partial hierarchy to a hierarchy. We
have shown the following:

Proposition 8.2. There are hierarchies Hn between markings in S1,n and annular
subsurfaces Yn such that dYn(I(H),T(H)) � n yet Yn is not a domain in Hn.

8.2. Lower bounds for non-annular subsurfaces. We shall briefly describe a
method that shows that for each fixed non-annular subsurface Y the large link con-
stant is at least logarithmic in ω(S).

All that is required is a version of Lemma 8.1, namely, some curves y1, ..., yn+1

and v1, ..., vn to go with the subsurface Y with all the properties of Lemma 8.1,
except that this time diamC(Y )(πY (y1) ∪ πY (yn+1)) will be bounded from below by a
logarithmic function in n (depending on ξ(Y )), rather than a linear function of n.
The constructions of the hierarchies will follow as they did for the case when Y is an
annulus. We now construct the desired curves.
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Y

a

y1

Figure 5. A general construction. The non-annular subsurface Y is
shaded. The curves v1, ..., vn are darkest with v1 innermost. In this
figure we have n = 3.

Fix a surface S ′ of which Y is a subsurface (S ′ assumed to be minimal if desired).
The construction begins with a curve y inside the subsurface Y . Take any essential
arc a of Y . We assume that a cuts y in Y . We set n = i(a, y). Isotope a and y into
minimal position. Drag the curve y along a, in one direction, outside of the subsurface
Y , see Figure 5. This process produces bigons between the representative of y and
∂Y . We then puncture n+ 1 times the surface S ′, so that the representative of y no
longer shares a bigon with ∂Y , but of course this is an entirely new curve on a new
surface which we call y1 and S respectively. See Figure 5. We add curves v1, ..., vn as
illustrated.

Tightening y1 and v1 produces two curves y2 and u2. The curve y2 will intersect
∂Y fewer times than y1, but its image under πY will intersect a. Indeed, we may
inductively define yi similarly as before. Informally, the curve yi is the result of
passing i− 1 strands of the curve y1 past the additional punctures and back into Y .
We have that yn+1 represents the original curve y in Y . These are the required curves
y1, ..., yn+1 and v1, ..., vn.

We wish to bound diamC(Y )(πY (y1) ∪ πY (yn+1)) from below. The key observation
is that a misses πY (y1). Therefore it is enough to consider dC(Y )(σ(a), πY (yn+1)), or
equivalently, dC(Y )(σ(a), y). We have i(σ(a), y) = 2n. It is understood that there is a
logarithmic upper bound for dC(Y )(σ(a), y) in terms of i(σ(a), y), so this construction
cannot possibly provide a linear lower bound for diamC(Y )(πY (y1)∪πY (yn+1)) in ω(S).

But these logarithmic bounds on distance in C(Y ) in terms of intersection number
are sharp by considering pseudo-Anosov mapping classes. For instance, we may fix a
pseudo-Anosov f of Y and fix the arc a, and consider the pair a and f i(y) for large
i. Then i(a, f i(y)) is exponential in i, and so ω(S) would be exponential in i, yet
diamC(Y )(πY (y1)∪πY (yn+1)) would be linear in i. Since the latter quantity is directly
related to the large link constant we are done.

8.3. Hierarchies with small subsurface projections. This section culminates in
Theorem 8.11: we construct hierarchies which are exponentially long as a function of
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both the complexity of the underlying surface and the length of the main geodesic, and
so that all subsurface projections are bounded by a linear function in co-complexity.

We first show the existence of an affine N-valued function K, and a complete
hierarchy H0,p on S0,p satisfying the following:

(1) dY (I(H),T(H)) ≤ K(p− ω(Y ));
(2) |H| ≥ 2p;
(3) For k any tight geodesic of H, every vertex of k is a simple closed curve (as

opposed to being a multi-curve).
(4) If α and β are the initial and terminal vertices of the main geodesic of H, then

both α and β bound 3-holed spheres on one side.

The strategy is to induct on p. When p = 4, pick a length 3 geodesic.
To construct the desired partial hierarchy H0,p on S0,p, we assume by induction

the existence of H0,p−1 on S0,p−1, which we identify with the subsurface S ′: one side
of a curve v on S0,p which bounds a 3-holed sphere on the other side of S ′. Let
α(p−1), β(p−1) denote the initial and terminal vertices of the main geodesic of H0,p−1;
by induction, both bound 3-holed spheres on one side.

We will also not assume that H0,p−1 is complete, only that it is a partial hierarchy.
From this, we will obtain a partial hierarchy H0,p and we will prove the desired
subsurface projection bounds for its initial and terminal markings. Once we construct
such a partial hierarchy for each p, we can then complete each one, yielding a complete
hierarchy satisfying the desired properties on each planar surface.

We can assume, by including S0,p−1 into S0,p in the appropriate way, that both
α(p−1) and β(p−1) bound 3-holed spheres on one side in S0,p; then the curve v is the
relative boundary of S ′ = S0,p−1. Henceforth, we will refer to α(p−1) as α (resp. β(p−1)

as β). Denote by S ′ ⊂ S0,p the copy of S0,p−1 on which the hierarchy H0,p−1 is defined.
We assume that dC(S′)(α, β) = 3.

Note that β and v are disjoint and in the same Mod(S0,p) orbit. Let S ′′ := S\(β∪v).

Proposition 8.3. There exists a pants decomposition P of S ′′ such that the following
holds.

(1) For every curve c of P and for every arc a of πS′′(α) we have that i(a, c) ≤ 2.
(2) There is a mapping class φ of S that preserves P and interchanges β and

v such that πS′′α and φ(πS′′α) have uniformly bounded combinatorics in S ′′.
That is, for any subsurface Y of S ′′ (including S ′′) we have dY (πY α, πY φ(α))
is at most 6.

Proof. If S is a 5-holed the proposition holds trivially because S ′′ is a 3-holed sphere,
and φ is the unique (up to isotopy) map which interchanges β and v. Now assuming
p > 5, we construct P . Set X(0) = S ′′, i = 1 and c0 = β. We proceed inductively.
The pants decomposition P will be of the form c1, ..., ci.

Inductive step: by induction we have that α only intersects one boundary compo-
nent of X(j−1), namely cj−1. Furthermore, X(j−1) is not a pair of pants. We have
that πX(j−1)α fills X(j − 1) and that X(j − 1) is a planar surface. By considering
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outermost arcs of πX(j−1)α, there is an arc aj of πX(j−1)α that cuts off an annulus in
X(j − 1), one of whose boundary components is a boundary component of S.

We surger the arc aj with cj−1 to construct the curve cj. Note that cj−1 and cj cut
off a pair of pants in S. Because cj−1 intersects each arc of πS′′α at most twice, we
have that cj intersects each of arc πS′′α at most twice.

If j = ω(S ′′) then c1, ..., cj is a pants decomposition P of Z and we stop. If not
then j < ω(S ′′) and we set X(j) to be the unique subsurface of X(j − 1) that is
complementary to cj and is not a pair of pants and then we repeat the inductive step.
This concludes the construction of P . Note that we have proved also the first clause
of the proposition, namely, the existence of P = c1, ..., ci. We now show the second
clause.

Each cj and cj+1 of P cuts off a pair of pants in S. Moreover, c1 cuts off a pair
of pants in S ′′ that has boundary {c1, β, δ1} for δ1 some boundary component of S,
and ci cuts off a pair of pants in S ′′ with boundary {ci, v, δi} for δi some boundary
component of S. Consider the dual tree T (P ) to the pants decomposition P of S ′′;
that is T has one vertex on the interior of each complementary region of P and an edge
connecting two vertices when the corresponding pairs of pants are adjacent. Then
since each pair of pants is bounded by two of the c′is and one boundary component of
the full surface, there is some n ∈ N so that T is obtained by taking n−2 disconnected
vertices v1, ..., vn−2, a path on n vertices w0, w1, ..., wn−1 and connecting vi to wi by
an edge.

It follows that there is a homeomorphism of S ′′ that interchanges β and v, and
preserves P . Indeed, the desired homeomorphism corresponds to an automorphism
of T interchanging the two end vertices of the path. Because β and v cut off pairs
of pants in S, such a homeomorphism can easily be extended to a homeomorphism
φ′ : S → S.

Now we prove that for any such homeomorphism φ′ : S → S we have the following.
For any subsurface Y ⊂ S ′′ that is not an annulus with core curve in P , we have that
dY (πY α, πY φ

′(α)) ≤ 6, that is, the distance is uniformly bounded. Indeed, P must
cut such Y , therefore for any curve c of P and for any arcs a ∈ πS′′α and a′ ∈ πS′′g′(α)
that cut Y , we have i(a, c) ≤ 2 and i(c, a′) ≤ 2. The intersection bound now implies
the distance bound.

Finally, to deal with subsurface projections where Y is an annulus with core curve
of P , we simply postcompose φ′ with Dehn twists about each core curve of P so that
dY (πY α, πY φ

′(α)) ≤ 2. This constructs the required mapping class φ of S. �

Lemma 8.4. For any pants decomposition R of S ′′, there exists an essential simple
closed curve γ such that γ intersects each element of R essentially, and exactly twice.

Proof. Let Γ be the dual tree to R on S ′′. Let N(Γ) be a small regular neighborhood
of Γ, and let γ′ be the boundary of this neighborhood. Note that γ′ is a simple closed
curve. Then define γ to agree with γ′ in each pair of pants of S ′′ \ R which is not
associated to a univalent vertex of Γ. If P in R is associated to a univalent vertex,
P has one boundary component b and two punctures; we require that within P , γ
separates the two punctures from one another and intersects b twice.
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Then γ is a simple closed curve intersecting each curve in R exactly twice, and
γ intersects exactly once the simple arc separating the two boundary components
contained in any pair of pants corresponding to a univalent vertex. As there must
be at least two univalent vertices, γ intersects two of these simple arcs, each exactly
once and these arcs are in distinct pairs of pants. it follows that γ is homotopically
non-trivial and non-peripheral, and hence essential. �

In accordance with Lemma 8.4, let ρ be a simple closed curve in S ′′ intersecting
every element of P exactly twice, and let ε denote the right Dehn twist of ρ about
each curve in P .

Lemma 8.5. ρ ∪ ε fills S ′′, and for Y ⊆ S ′′ any essential subsurface,

dY (ρ, ε) < 5.

Proof. That ρ∪ ε fills S ′′ follows from Proposition 3.5 of [21]. Given Y ⊆ S ′′, suppose
first that some curve c ∈ P projects to Y . Then since both ρ and ε intersect c twice,

dY (ρ, ε) ≤ dY (ρ, c) + dY (c, ε) < 5.

If no curve in P projects to Y , since P is a pants decomposition, it follows that
Y must be an annulus whose core curve is homotopic to an element of P . By con-
struction, the arc πY (ε) is obtained from πY (ρ) by applying one twist, and therefore
in this case,

dY (ρ, ε) ≤ 2.

�

We require the following proposition:

Proposition 8.6. Let α, β be simple closed curves which fill a surface S so that
dY (α, β) < K. Then if f is the pseudo-Anosov f = T−Bβ TBα , where B = 2M + 3 for
M the bounded geodesic image theorem constant, then f admits a geodesic axis A in
C(S), and diamY (A) ≤ 4M + 4K + 8 for any proper essential subsurface Y .

Proof. We begin by constructing the geodesic axis A for f .
Let dC(α, β) = d + 2 and let [α, γ0, ..., γd, β] be a geodesic segment in C(S). Here,

square brackets denote an oriented path of adjacent vertices; set p to be the subpath
between γ0 and γd. Applying T−Bβ to the geodesic p and reversing orientation, we
obtain the geodesic segment

T−Bβ (p) = [γd, γd+1 . . . , γ2d] = [T−Bβ (γd), T
−B
β (γd−1), . . . , T−Bβ (γ0)].

Set
A = ∪n∈Zfn(p · T−Bβ (p)),

where p · T−Bβ (p) denotes the length 2d path obtained by concatenating the paths at
γd = T−Bβ (γd).
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Since fn+1(γ0) = fn(T−Bβ (γ0)) = fn(γ2d), A is a path of adjacent vertices that is
f -invariant. For convenience, set γ2id = f i(γ0) and γ(2i+1)d = f i(γd) so that we may
label A as the biinfinite path

A = . . . , γ−1, γ0, γ1, . . . .

Note that γ2id is adjacent to f i(α) and γ(2i+1)d is adjacent to f i(β) in C(S); we say
that these translates of α and β are associated to the corresponding vertices of A.

Lemma 8.7. A is a geodesic axis for f .

Proof. We define vertex paths Bk that begin and end on the f -orbit of α and β and
show that these paths are geodesics. Each of these paths begins at a vertex in the
orbit, moves to the associated vertex of A, follows a subpath of A, and finally moves
to an adjacent vertex in the f -orbit of α or β. We use square brackets to denote the
path between vertices using this construction.

For i ∈ Z≥0, define B2i = [f−i(α), α] and B2i+1 = [f−i(α), β]. Note that in each
case `(Bk) = kd+ 2 and so

`(Bk+1) = `(Bk) + d(α, β)− 2.

We show that Bk is a geodesic path by induction on k. When k = 1, B1 is the
original geodesic of C(S) between α and β of length d + 2. Now suppose that Bj

is a geodesic for j ≤ k. The proof that Bk+1 is geodesic depends on the parity
of k. First assume that k = 2i so that Bk = [f−i(α), α] is a geodesic of length
2di + 2, and Bk+1 = [f−i(α), β] is a path of length (2i + 1)d + 2. By the induction
hypothesis, f−1Bk−1 = [f−i(α), f−1(β)] is a geodesic segment and it is clear that
each vertex of this path intersects α (e.g. using that Bk is a geodesic). Hence,
diamα([f−i(α), f−1(β)]) ≤ M by the bounded geodesic image theorem (Theorem
3.2). Then

dα(f−i(α), β) ≥ dα(f−1(β), β)− diamα([f−i(α), f−1(β)])

≥ dα(T−(2M+3)
α (β), β)−M

≥ M + 1.

So again by the bounded geodesic image theorem, any geodesic from f−i(α) to β
must pass through the 1-neighborhood of α. Hence,

d(f−i(α), β) ≥ `(Bk) + d(α, β)− 2 = `(Bk+1).

This implies that Bk+1 is a geodesic segment in the case when k is even.
The proof when k is odd is similar and is included for completeness. Assume k =

2i+ 1. By the induction hypothesis Bk−1 = [f−i(α), α] is a geodesic of length 2di+ 2
and each vertex of this path meets β. As above, this implies that diamβ(Bk−1) ≤M
and so

dβ(f−i(α), f(α)) ≥M + 1.
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Since this implies that any geodesic from f−i(α) to f(α) passes through a 1-neighborhood
of β,

d(f−i(α), f(α)) ≥ `(Bk) + d(β, f(α))− 2 = `(Bk) + d(α, β)− 2

Hence, Bk+1 = [f−(i+1)(α), α] = f−1([f−i(α), f(α)]) is a geodesic segment of length
(2i+ 1)d+ 2, as required.

Now to see that A is a geodesic, observe that any finite subpath is a subpath of
some Bk. Since A is invariant under f by construction, A is a geodesic axis for f . �

To complete the proof of the proposition, we will need the standard (bigon) train
tracks for α and β, as constructed in [36]. Our convention will be that for positive
dehn twists, transverse curves “turn left.” Define the train track τ to be the track
obtained by smoothing intersections of α and β. Let τ ′ be the track obtained by using
the other smoothing. Then, τ is an invariant track for f and τ ′ is an invariant track
for f−1.

Let Y be a proper subsurface of S. If every vertex of A meets Y , then diamY (A) ≤
M by the bounded geodesic image theorem. So for the remainder of the proof we
assume that this is not the case.

Suppose first that Y is not an annulus corresponding to a translate of α or β and
there is an n ∈ Z such that Y misses either fn(α) or fn(β).

Suppose that Y misses fn(α); the case for a translate of β is similar. Note that
since A is an axis of f ,

diamY (A) = diamf−n(Y )(A)

so we may replace Y with f−n(Y ) and assume that Y missed α. Let X = S \ α
and let ε be any curve in the orbit of α or β, except α. We show that every arc of
ε ∩X is isotopic to an arc of β ∩X. Since, in this case, Y ⊂ X, this proves that the
Y -diameter of the set of orbits of α and β is less than or equal to 3. As these orbits
are distance 1 from A, we have

diamY (A) ≤ 5.

To this end, note that the claim is obvious if ε = β, so assume that ε = fn(α)
or fn(β) for n 6= 0. If n > 0 then ε ≺ τ and if n < 0 then ε ≺ τ ′. In either case,
realize ε in a small tie neighborhood N of the track and realize X so that either track
intersects X in precisely β ∩ X. With ε and X in this position, our assertion that
each arc of ε ∩X is isotopic to an arc of β ∩X is clear since ε crosses every branch
of either τ or τ ′. It only remains to show that these representatives of ε and ∂X are
in minimal position. For this, assume without loss of generality that ε ≺ τ .

First note that any bigon in the complement of ε and ∂X implies that there is a
bigon in S \ (∂X ∪ τ). To see this, pass to the universal cover S̃ → S and let τ̃ , ˜∂X,
and ε̃ be the complete preimages of τ,X and ε, respectively. Then any bigon B lifts
to a bigon B̃ between ε̃ and ˜∂X. Since ε̃ is a train route, i.e. it makes only legal turns
on τ , the complement B̃ \ τ̃ must contain an outer most bigon. A standard argument
now implies that there is a bigon in S in the complement of ∂X and τ .

By inspection, no such bigon between τ and ∂X can be contained in the annular
neighborhood S \X of α. Further, any bigon contained in X would correspond to a
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bigon between α and β, a contradiction. This completes the argument that every arc
of ε ∩X is isotopic to an arc of β ∩X.

Suppose next that Y meets every translate of α and β.
By assumption, the distance between the subsurface projections of α and β is

bounded by K for any proper subsurface of S. This bounds the projection between
consecutive vertices in the orbits of α and β to the subsurface Y :

dY (f i(α), f i(β)) = df−i(Y )(α, β) ≤ K

and
dY (f i+1(α), f i(β)) = df−i(Y )(T

−B
β (α), β) = dTBβ f−i(Y )(α, β) ≤ K.

Now suppose that γl is the first vertex of A that does not meet Y . Then γl+4 meets
Y , as does every vertex after it. Set i to be the largest integer less than l/d and j be
the smallest integer greater then (l + 4)/d. Noe that j − i ≤ 4.

Let A− denote the ray . . . , γd(i−1), γdi and let A+ denote the ray γdj, γdj+1, . . ., both
contained in A. Then

diamY (A) ≤ diamY (A−) + dY (γdi, γdj) + diamY (A+).

By the bounded geodesic image theorem, diamY (A−), diamY (A+) ≤ M . Also note
that d(f i(x), γdi), d(f j(x′), γdj) ≤ 1 for x, x′ ∈ {α, β} (depending on the parity of
i and j). Since j − i ≤ 4, the bounds above on the subsurface distances between
translates of α and β imply that dY (γid, γjd) ≤ 6 + 4K. We conclude that in this case

diamY (A) ≤ 2M + 4K + 6.

Finally, suppose Y is an annulus with core fn(α) or fn(β) for some n ∈ Z. As
before, we are free to assume that Y is an annulus with core, say, α. Then the
geodesic rays . . . , γ−2, γ−1 and γ1, γ2, . . . each have projection to C(Y ) bounded by
M . Moreover,

dY (γ−1, γ1) = dα(T−Bα (γ1), γ1) ≤ B + 1.

In this case, we conclude that diamY (A) ≤ 2M +B + 1 = 4M + 4.
This exhausts all cases and completes the proof of the proposition. �

Using Proposition 8.6, it follows that the map F = TBρ T
−B
ε satisfies

dY (ε, F n(ε)) + dY (ρ, F n(ρ)) < C,

where C is independent of n, Y, and S. We say that F is the pseudo-Anosov with
uniformly bounded projections that is adapted to the pants decomposition P .

We now define H0,p, a collection of tight geodesics as follows:
As a collection of vertices in various curve graphs,

H0,p := H0,p−1 ∪ F 19φ(H0,p−1),

As a collection of tight geodesics, H0,p consists of the geodesic {α, v, β, F 19φ(α)},
and all geodesics of H0,p−1 and their images under F 19φ. Thus the domains appearing
in H0,p are either domains of H0,p−1, their images under F 19φ, or the vertex v.
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Lemma 8.8. The distance between α and F 19φ(α) in C(S0,p) is 3. Furthermore, let
D(β) be the domains Y of H0,p−1 which support geodesics, and so that ∂Y is disjoint
from β. Then for each Y ∈ D(β), we have

dC(S′′)(D(β), F 19φ(∂Y )) > 1.

That is, for each such Y , ∂Y meets the boundary of F 19φ(Z) for all Z ∈ D(β).

Remark 8.9. If the lemma is true, β can not be in D(β), and indeed it is not because
the annulus β does not support a geodesic in H0,p−1.

Proof. First note that {α, v, β, F 19φ(α)} constitutes a length 3 path in C(S ′′), so to
prove the first part of Lemma 8.8 it suffices to show that dC(S′′)(α, F 19φ(α)) ≥ 3.
Since F has translation length 2 in C(S ′′) and πS′′(α) is at most 6 from πS′′(φ(α)),

dC(S′′)(πS′′(α), F 19πS′′(φ(α))) > 5.

Then let w be any simple closed curve on S. If w = v or β, then w intersects either
α or F 19φ(α). Otherwise, w projects to S ′′, and therefore it must intersect either
πS′′(α) or F 19πS′′φ(α), and thus dC(S0,p)(α, F

19φ(α)) = 3 as desired.
As for the second claim, recall that S ′ = S0,p−1 and we can identify S ′′ with S ′ \ β.

Let
{
α, v(p−1), u, β

}
be the main geodesic of H0,p−1. By induction, there is some map

J on S0,p−1 (identified with S ′ = S0,p \ v) so that J(α) = β and J interchanges u and
v(p−1).

Also by induction, for any domain Y of H0,p−1, one of the following three must
hold:

(1) Y is a domain of H0,p−2;
(2) Y is the image of a domain in H0,p−2 under the map J ;
(3) Y = v(p−1).

If Y is a domain of H0,p−2, then ∂Y is disjoint from v(p−1). In the case of (2), ∂Y is
disjoint from u, which is itself disjoint from v(p−1). Thus

(8.1) diamC(S′′)D(β) ≤ 10,

and

(8.2) dS′′(α, ∂Y ) ≤ 10,

since both v(p−1) and u project to S ′′, and the projection map is coarse Lipschitz.
Then using (8.2),

dS′′(∂Y, φ(∂Y )) ≤ dS′′(∂Y, α) + dS′′(α, φ(α)) + dS′′(φ(α), φ(∂Y )) ≤ 26.

Here we are using the fact that φ fixes S ′′ = S0,p−1 \ β.
Then by the triangle inequality in C(S ′′),
dS′′(D(β), F 19φ(∂Y )) ≥ dS′′(∂Y, F

19∂Y )− diamS′′(D(β))− dS′′(F 19∂Y, F 19φ(∂Y ))

≥ 38− 10− 26 > 1,

as desired.
�
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We now show that H0,p satisfies the axioms of being a partial hierarchy (as seen at
the beginning of the proof of Theorem 4.6 in [32]:)

(1) There is a distinguished main geodesic g whose domain is the full surface
S0,p, and whose initial and terminal markings are equal to I(H) and T(H),
respectively;

(2) If b, f are tight geodesics in H and Y ⊆ S, with Y directly backwards subordi-
nate to b and directly forwards subordinate to f , then H contains at most one
tight geodesic k such that D(k) = Y , and k is directly forward subordinate to
f and directly backwards subordinate to b;

(3) For every geodesic k in H other than g, there exists geodesics b, f in H such
that k is directly forward subordinate to f , and directly backwards subordinate
to b.

Let g denote the main geodesic; we must check that g is tight. Indeed, α ∪ β fill
S ′, which is the complement of v, and v ∪ F nφ(α) fill S \ β for the same reason.

To check (2), it suffices to show that given any domain Y of H0,p−1, Y can not be
expressed as F 19φ(W ), for some W which is a domain of H0,p−1. Note that if ∂W
intersects β, then F 19φ(W ) must intersect v, and therefore it can not be equal to a
domain in S ′. Thus it suffices to consider domains W ∈ D(β). By Lemma 8.8, for
any such W , F 19φ(W ) /∈ D(β). However, F 19φ(W ) ⊂ S ′′ and therefore it is disjoint
from β, hence if F 19φ(W ) was a domain of H0,p−1, it would have to be in D(β).

For (3), by induction H0,p−1 is a partial hierarchy, and therefore (3) is immediate for
geodesics of H0,p which are geodesics of H0,p−1. Then (3) follows, since any geodesic
of H0,p which is not the main geodesic is a homeomorphic image of some geodesic of
H0,p−1.

Therefore H0,p is indeed a partial hierarchy. By construction,

|H0,p| ≥ 2|H0,p−1|.
It remains to show that for any subsurface Y ⊆ S0,p,

dY (α, F 19φ(α)) < K(p, Y ).

We first remark that the desired bound for Y = β or Y = v is vacuous as α, F 19φ(α)
do not both project to these domains.

Note also that dS′′(α, F 19φ(α)) < 100 follows immediately from the fact that the
projection of α and φ(α) to S ′′ are at most 6 apart, that F has translation length 2
on C(S ′′), α is close by to the axis for F , and that πS′′ is coarse Lipschitz.

We next address subsurfaces Y ( S ′′. Note that α must project to Y ; indeed,
α intersects ∂Y non-trivially since i(∂Y, β) = 0 and α fills S \ v with β. Similarly,
φ(α) projects to Y by applying the same argument after interchanging β and v via
φ. Therefore, using Proposition 8.6 to bound dF−19Y (F−19α, α), and part (2) of
Proposition 8.3 to bound dF−19Y (α, φ(α)), we obtain

dY (α, F 19φ(α)) = dF−19Y (F−19α, φ(α))

≤ dF−19Y (F−19α, α) + dF−19Y (α, φ(α))
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≤ 428 + 6 = 434.

It remains to consider the following three cases:
(1) Both v and β project to Y ;
(2) β projects to Y but v does not;
(3) v projects to Y but β does not.
In the first case, we have

dY (α, F 19φ(α)) ≤ dY (α, v) + dY (v, β) + dY (β, F 19φ(α)) ≤ 10.

In the second case,

dY (α, F 19φ(α)) ≤ dY (α, β) + dY (β, F 19φ(α)).

Since Y is disjoint from v and is therefore a subsurface of S ′, by the induction
hypothesis,

dY (α, β) < K(p− 1− ω(Y )).

Furthermore, β and F 19φ(α) are disjoint, and therefore

dY (α, F 19φ(α)) < K(p− 1− ω(Y )) + 6.

Finally in the third case, v projects to Y , and therefore
dY (α, F 19φ(α)) ≤ dY (α, v) + dY (v, F 19φ(α)),

and note that

dY (v, F 19φ(α)) = dF−19Y (v, φ(α)) = dφ−1F−19Y (β, α).

Since F−19Y is disjoint from β, its image under φ−1 is disjoint from v, and it is
therefore contained in S ′. Hence again by the induction hypothesis,

dY (α, F 19φ(α)) ≤ K(p− 1− ω(Y )) + 6.

Therefore, we define K(p− ω(Y )) := max(K(p− 1− ω(Y )) + 6, 10 +K1 + C).

Remark 8.10. We can complete H0,p to a hierarchy with or without annuli, and there-
fore this construction applies to both pants decompositions and markings.

The existence of the hierarchies H0,p implies exponential growth for the additive
error in the inequality bounding hierarchy length above by sums of subsurface projec-
tions. We conclude this section by promoting the previous construction to hierarchies
with arbitrarily long main geodesic, which will establish exponential growth of the
multiplicative error as well. We record this in the following theorem:

Theorem 8.11. Given k, p ∈ N, there exists a hierarchy H(k)
0,p on S0,p satisfying the

following properties:
(1) the main geodesic of H(k)

0,p has length at least k and at most 2k;
(2) |H(k)

0,p | ≥ 2p+k;
(3) There is a uniform constant Q so that for any essential subsurface Y ⊂ S0,p,

dY (I(H(k)),T(H(k))) < 3K(p− ω(Y )) +Q.
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Let h be an oriented tight geodesic segment; given k ∈ N we call a tight geodesic
h̃ a left (resp. right) tight k-extension of h if h̃ is obtained by concatenating a length
k tight geodesic segment to the left (resp. right) endpoint of h. Let g(p) denote the
main geodesic of the hierarchy H0,p. We show:

Lemma 8.12. For any k ∈ N, there exists a right tight k-extension of g(p).

Proof. Label the vertices of g(p) by g(p) = {α, v0, v1, β}; recall that by construction,
both α and β bound 3-holed spheres on one side. Let γ be any simple closed curve
on S0,p satisfying the following properties:

(1) γ is disjoint from β;
(2) γ bounds a 3-holed sphere on one side;
(3) dS\β(γ, α) > M + 3, for M the bounded geodesic image theorem constant.
To find such a γ, start with a pants decomposition Q of S \ β intersecting each

component of πS\β(α) at most twice, as in Lemma 8.3. There must be some curve
δ ∈ Q which bounds a 3-holed sphere on one side. Then let γ be the image of δ
under a high power of the pseudo-Anosov supported on S \β with uniformly bounded
projections, adapted to Q.

We claim that g′ := {α, v0, v1, β, γ} is a tight geodesic. Indeed, any geodesic h
connecting α to γ must pass through the 1-neighborhood of β by Theorem 3.2. How-
ever, since β bounds a 3-holed sphere on one side, h must actually pass through β;
otherwise every vertex of h projects non-trivially to S \ β, which contradicts the fact
that dS\β(α, γ) is large. Therefore g′ is geodesic.

To check that g′ is tight, we need only show that

dS\β(v1, γ) ≥ 3.

Suppose not; again since β bounds a 3-holed sphere on one side, v1 projects non-
trivially to S \ β, and therefore dS\β(v1, γ) < 3 implies that dS\β(α, γ) < M + 3 by
Theorem 3.2, which is a contradiction.

This argument can be repeated indefinitely, and hence there exists a (left or right)
k-tight extension of g(p) for any k ∈ N. �

Remark 8.13. In general, it is not the case that a geodesic segment can be extended to
a larger geodesic, let alone one that is tight (see [6]). However, we avoid the pathology
of ‘dead-ends’ by choosing our geodesic such that all vertices bound 3-holed spheres
on one side.

Remark 8.14. Since γ was produced by taking a high power of a pseudo-Anosov on
S \ β with bounded subsurface projections, we remark that γ can also be chosen to
satisfy the following additional property:

For Y ⊆ S \β any proper essential subsurface, dY (α, γ) < E, where E is a uniform
constant.

Let {α, v0, v1, β, γ1, γ2} = {g(p), γ1, γ2} be the right tight 2-extension of g(p) whose
existence is guaranteed by Lemma 8.12. We will choose this extension so that the
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Figure 6. A schematic picture of H̃(2). H0,p, and its image under TBγ2
are pictured in black.

third property listed in the proof of Lemma 8.12 is replaced by a lower bound of
2M + 3 on projections to S \ β. Then consider the following path g̃(p) in C(S0,p):

g̃(p) :=
{
α, v0, v1, β, γ1, T

B
γ2

(β), TBγ2(v1), TBγ2(v0), TBγ2(α)
}
,

where B is the constant from Proposition 8.6.
We claim that g̃ is a tight geodesic. To show this, it suffices to check tightness at

the node γ1. By tightness of {g(p), γ1, γ2}, the choice of γ1, γ2, and the same argument
used in the proof of Lemma 8.12,

dS\γ1(β, γ2) ≥ 3.

By choice of B and applying Theorem 3.2, any geodesic in C(S \ γ1) connecting β
to TBγ2(β) must pass through the 1-neighborhood of γ2, and therefore

dS\γ1(β, T
B
γ2

(β)) > 3.

We now define the partial hierarchy H̃(2) := H̃
(2)
0,p as follows. The main geodesic of

H̃(2) is g̃(p); if k is any other geodesic of H̃(2), then k satisfies one of the following:
(1) k is a geodesic of H0,p;
(2) k is the image of a geodesic in H0,p under the map TBγ2 ;
(3) k is an arbitrarily chosen geodesic with endpoints β and TBγ2(β) in C(S \γ1), or

a geodesic with endpoints v1 and γ1 in C(S \β) or an image of such a geodesic
under TBγ2 ;

Note that (3) describes three possible types of geodesics, each type determined by the
endpoints: either β and TBγ2(β), v1 and γ1, or TBγ2(v1) and γ1; these three geodesics
are represented by the three red pin-wheels in Figure 8.3. We require that there is
exactly one such geodesic of H̃(2) for each of these three types.
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Let D(H0,p) denote the set of domains supporting tight geodesics of H0,p. To check
that H̃(2) is a partial hierarchy, we now show that no domain appears more than once
in the list {

D(H0,p), T
B
γ2

(D(H0,p))
}
.

If there is a repetition, then there is some Y,W ∈ D(H0,p) such that

TBγ2(Y ) = W.

Any domain Y of H0,p must be disjoint from some vertex of g(p). Similarly, TBγ2(Y )
must be disjoint from some vertex of g̃(p) which is the image of an original vertex of
g(p). Suppose that Y is disjoint from either α, v0, or v1. Note that the distance in
the full curve complex between v1 and the image of any domain of H0,p is at least 2,
and therefore if Y is disjoint from v1 its distance to the image of any domain must
be at least 1, so in particular it can not equal any such image. If Y is disjoint from
either v0 or α, then the distance between it and any image of a domain of H0,p is at
least 2 and so the same argument applies. Finally, if Y is disjoint from β, it must
also be disjoint from some other vertex of g(p) since β is not a central vertex of any
pin-wheel in H0,p (see Figure 8.3– β is the central vertex of a red geodesic, which does
not appear as an original geodesic of H0,p), and so again the same argument applies.

Therefore H̃(2) is indeed a partial hierarchy, and by construction its total length is
more than twice that of H0,p. We now show that for any Y ⊂ S,

dY (α, TBγ2(α)) ≤ 3K(p− ω(Y )) + 2 max(E, 10,M).

We first prove the inequality in the case that Y is a domain of H̃(2). If the geodesic
k supported on Y is a geodesic of H0,p (or an image of such a geodesic under TBγ2),
then by the large link lemma, Lemma 3.4, and the construction of H0,p, k has length
at most 2K(p, Y ); applying Lemma 3.4 once more yields the desired result.

If k is the geodesic of H̃(2) supported on S \ γ1 connecting β to TBγ2(β), or the
geodesic in C(S \β), note that in the construction of a 1-tight extension, the quantity
dS\β(v1, γ1) can be bounded from above by choosing γ1 appropriately. Namely, we
can choose γ1 such that

dS\β(γ1, α) < 2 max(5,M).

Since v0 and v1 both project to S \ β, it follows that
dS\β(v1, γ1) ≤ 2(1 + max(5,M)).

A similar argument works for bounding dS\γ1(β, γ2), and therefore we can also
bound the length of the geodesic supported on S \ γ1, and so we obtain

dS\γ1(β, T
B
γ2

(β)) ≤ dS\γ1(β, γ2) + dS\γ1(γ2, T
B
γ2

(β))

≤ 2dS\γ1(β, γ2).

Next, suppose that Y is not a domain of H̃(2). We consider the following three
possibilities:
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(1) γ1 and β project to Y ;
(2) γ1 projects but β does not;
(3) γ1 does not project to Y .
First observe that in all cases, we can assume that γ2 projects, for if not, the

projection of TBγ2(α) to Y will have arcs in common with the projection of α to Y .
In case (1), note that

dY (α, γ1) ≤ dY (α, β) + dY (β, γ1)

≤ K(p− ω(Y )) + 1.

Therefore by the triangle inequality and the fact that γ1 is fixed by TBγ2 ,

dY (α, TBγ2(α)) ≤ 2K(p− ω(Y )) + 2.

In case (2), Y ⊆ S \ β, and therefore using Remark 8.14,

dY (α, γ1) < max(E, 10, 2M),

and the desired bound follows since γ1 is disjoint from γ2. In case (3), Y is in the
complement of γ1, so by applying Remark 8.14 to the second stage of the right-tight
construction, we obtain

dY (α, γ2) < max(E, 10, 2M),

and again we have the desired inequality by applying the triangle inequality. Thus,
all projections are bounded; we can then complete the partial hierarchy to a hierarchy
H(2).

We next observe that this process can be repeated indefinitely; that is, we induc-
tively define a partial H̃(k), with completion H(k), as follows:

Let z1, z2 be the two right-most endpoints of a right 2-tight extension of the main
geodesic g of H̃(k−1); let z denote the right-most endpoint of g. Then define H̃(k) to
be the partial hierarchy whose geodesics h satisfy one of the following:

(1) h is a geodesic of H̃(k−1);
(2) h is an image of a geodesic of H̃(k−1) under the map TBz ;
(3) h is a geodesic supported on S \ z or on S \ z1.

By the same argument used for H̃(2), H̃(k) is a partial hierarchy, whose length is at
least twice that of H̃(k−1). Furthermore, we claim that for any subsurface Y ,

dY (α, TBz (α)) < 3K(p− ω(Y )) + 2 max(E, 10,M),

whenever it is defined.
To show this, first suppose that Y is a domain of H(j) for some j < k. Then either

Y is a domain of the partial hierarchy H̃(j), or Y is a domain that must be added
to the partial hierarchy to complete it. In either case, it follows from the process by
which a partial hierarchy is completed to a hierarchy that Y must also be a domain
of H(j+1). Moreover, the geodesic supported on Y does not change as j increases.
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Either Y is a domain of H0,p, or there exists some j < k such that Y is a domain
of H(j) but Y is not a domain of H(j−1). If Y is a domain of H0,p, then the geodesic
supported on Y is at most 2K(p, Y ), and therefore by Lemma 3.4,

dY (α, TBz (α)) < 3K(p− ω(Y )) + 1.

If, on the other hand, there exists j such that Y is not a domain of H(j−1), let z(j−1)
1

denote the last vertex of the main geodesic of H̃(j−1), and let z(j−1)
2 , z(j−1) denote the

pennultimate and final vertex, respectively, of the right 2-tight extension of the main
geodesic of H̃(j−1). Then at least one of the following holds:

(1) z(j−1)
1 and z(j−1)

2 project to Y ;
(2) z(j−1)

2 projects to Y but z(j−1)
1 does not;

(3) z(j−1)
2 does not project to Y .

The argument is similar to the argument used above to bound the projection to a
subsurface Y between α and γ2 when Y is not a domain of H̃(2): In case (1), by
Lemma 3.4, since Y is not a domain of H(j−1) it follows that

dY (α, z
(j−1)
1 ) < K(p− ω(Y ))

⇒ dY (α, TB
z
(j−1)
2

(α)) ≤ K(p− ω(Y )) + 1.

Therefore, the geodesic ofH(j) supported on Y has length at most 2K(p−ω(Y ))+1.
Thus by applying the large link lemma and noting that the geodesic of H(k) supported
on Y has the same length as the geodesic of H(j) supported on Y , we obtain

dY (α, TBz (α)) ≤ 3K(p− ω(Y )) + 1.

In case (2), Y ⊆ S \ z(j−1)
1 , and therefore using Remark 8.14,

dY (α, z
(j−1)
2 ) < max(E, 10, 2M).

Thus by the triangle inequality and the fact that z(j−1)
2 is fixed by TB

z(j−1) , we have

dY (α, TBz(j−1)(α)) ≤ 2 max(E, 10,M),

and thus the geodesic supported on Y in H(j) has length at most K(p − ω(Y )) +
2 max(E, 10,M). Then the large link lemma implies

dY (α, TBz (α)) ≤ 2K(p− ω(Y )) + 2 max(E, 10,M).

The final case again follows by Remark 8.14 of the right-tight extension, the triangle
inequality and the large link lemma and the argument is completely analogous to the
third case for H̃(2) above.

It remains to bound the projection to a subsurface Y which is not a domain of
H(j) for any j < k. Whether Y is a domain of H̃(k) or not, a completely analogous
argument to the one used directly above implies the desired inequality.

This completes the construction.
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