PRACTICE PROBLEM SET 5

- Chap 5

- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 9.2

1) (Prob $6, \operatorname{Pg} 240)$ a) Let S be the spehere of center \boldsymbol{x} and radius R. What is the surface area of $S \cap\{|\boldsymbol{x}|<\rho\}$, the portion of S that lies within the spehere of center 0 and radius ρ ?
b) Solve the wave equation in three dimensions for $t>0$ with the initial conditions $\phi(\boldsymbol{x})=0, \psi(\boldsymbol{x})=A$ for $|\boldsymbol{x}|<\rho$, and $\psi(\boldsymbol{x})=0$ for $|\boldsymbol{x}|>\rho$, where A is a constant.
c) Let $\left|\boldsymbol{x}_{0}\right|<\rho$. Ride the wave along a light ray emanating from $\left(\boldsymbol{x}_{0}, 0\right)$. That is, look at $u\left(\boldsymbol{x}_{0}+t \boldsymbol{v}, t\right)$, where $|\boldsymbol{v}|=c$. Prove that

$$
t \cdot u\left(\boldsymbol{x}_{0}+t \boldsymbol{v}, t\right) \text { converges as } t \rightarrow \infty
$$

Solution:

a)

$$
S \cap\{|\boldsymbol{x}|<\rho\}= \begin{cases}\frac{\pi R}{|\boldsymbol{x}|}\left(\rho^{2}-(|\boldsymbol{x}|-R)^{2}\right) & |\rho-R| \leq|\boldsymbol{x}|<\rho+R \\ 0 & |\boldsymbol{x}|>\rho+R \\ \min \left\{4 \pi \rho^{2}, 4 \pi R^{2}\right\} & |\boldsymbol{x}| \leq|\rho-R|\end{cases}
$$

b)

$$
u(\boldsymbol{x}, t)= \begin{cases}A t & |\boldsymbol{x}| \leq \rho-c t \\ \frac{A}{4 c|\boldsymbol{x}|}\left(\rho^{2}-(|\boldsymbol{x}|-c t)^{2}\right) & |\rho-c t| \leq|\boldsymbol{x}| \leq \rho+c t\end{cases}
$$

c)

$$
\lim _{t \rightarrow \infty} t \cdot u\left(\boldsymbol{x}_{0}+t \boldsymbol{v}, t\right)=\lim _{t \rightarrow \infty} \frac{A t}{4 c\left|\boldsymbol{x}_{0}+t \boldsymbol{v}\right|}\left(\rho^{2}-\left(\left|\boldsymbol{x}_{0}+t \boldsymbol{v}\right|-c t\right)^{2}\right)=\frac{A}{4 c^{2}}\left(\rho^{2}-\frac{\left(\boldsymbol{x}_{0}, v\right)^{2}}{c^{2}}\right)
$$

2) (Prob 13, Pg 241) Solve the wave equation in the half-space $\{(x, y, z, t): z>0\}$ with the Neumann condition $\frac{\partial u}{\partial z}=0$ on $z=0$ and with initial data $\phi(x, y, z) \equiv 0$ and general $\psi(x, y, z)$.

Just use the even extension of ψ about the z axis. Then $\partial_{z} \psi(x, y, z)$ is an odd function of z. Just think in a one dimensional form.

Using this even extension, the solution is given by

$$
\begin{aligned}
u(x, y, z, t) & =\frac{1}{4 \pi c^{2} t} \iint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=c^{2} t^{2}} \psi\left(x+x_{0}, y+y_{0} z+z_{0}\right) d S \\
\partial_{z} u(x, y, z, t) & =\frac{1}{4 \pi c^{2} t} \iint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=c^{2} t^{2}} \partial_{z} \psi\left(x+x_{0}, y+y_{0} z+z_{0}\right) d S
\end{aligned}
$$

Then

$$
\begin{aligned}
\partial_{z} u(x, y, 0, t) & =\frac{1}{4 \pi c^{2} t} \iint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=c^{2} t^{2}} \partial_{z} \psi\left(x+x_{0}, y+y_{0}, z_{0}\right) d S \\
& =\iint_{z_{0}=\sqrt{c^{2} t^{2}-x_{0}^{2}-y_{0}^{2}}} \partial_{z} \psi\left(x+x_{0}, y+y_{0} z_{0}\right) d S+\iint_{z_{0}=-\sqrt{c^{2} t^{2}-x_{0}^{2}-y_{0}^{2}}} \partial_{z} \psi\left(x+x_{0}, y+y_{0}, z_{0}\right) d S \\
& =\iint_{z_{0}=\sqrt{c^{2} t^{2}-x_{0}^{2}-y_{0}^{2}}} \partial_{z} \psi\left(x+x_{0}, y+y_{0} z_{0}\right) d S+\iint_{z_{0}=\sqrt{c^{2} t^{2}-x_{0}^{2}-y_{0}^{2}}} \partial_{z} \psi\left(x+x_{0}, y+y_{0},-z_{0}\right) d S=0
\end{aligned}
$$

3) (Prob 16, Pg 241) Solve part b) for the same problem in 2 dimensions. Furthermore, compute $u(0, t)$ by computing the integral explicitly and compute the limit of $u(0, t)$ as $t \rightarrow \infty$.

Solution:
$\frac{A \rho^{2}}{2 c^{2}}$

Section 14.1

4) (Prob 5, Pg 389) Solve $u_{t}+u^{2} u_{x}=0$ with $u(x, 0)=2+x$

Solution:

$$
x-x_{0}=\left(2+x_{0}\right)^{2} t
$$

are the chacteristics. The solution is then given by

$$
u(t, x)=[\sqrt{4 t x+8 t+1}-1] / 2 t
$$

5) (Prob 10, Pg 389) Solve $u_{t}+u u_{x}=0$ with initial conditions $u(x, 0)=1$ for $x \leq 0,1-x$ for $0 \leq x \leq 1$ and 0 for $x \geq 1$. Solve for all $t \geq 0$, allowing for a shock wave.

Solution:

$$
u(t, x)= \begin{cases}1 & x<t, t \leq 1 \\ 0 & x>1, t \leq 1 \\ \frac{1-x}{1-t} & t<x<1, t \leq 1 \\ 1 & x-1<\frac{1}{2}(t-1), t>1 \\ 0 & x-1>\frac{1}{2}(t-1), t>1\end{cases}
$$

Section 14.3

6) (Prob 4, Pg 400) Find the curve $y=u(x)$ that makes the integral $\int_{0}^{1}\left(\left(u^{\prime}\right)^{2}+x u\right) d x$ sationary subject to the constraints $u(0)=0$ and $u(1)=1$.

Solution

$$
u(x)=\frac{x^{3}+11 x}{12}
$$

7) (Prob 7, Pg 401) Show that there are an infinite number of functions that minimize the integral

$$
\int_{0}^{2}\left(y^{\prime}\right)^{2}\left(1+y^{\prime}\right)^{2} \quad \text { subject to } y(0)=1 \text { and } y(2)=0
$$

They are continuous functions with piecewise continuous first derivatives.

Solution:

Keep on alternating the derivative to change between -1 and 0 so that net change in value is 1 over interval length of 2 . For example,

$$
\begin{aligned}
& y^{\prime}= \begin{cases}0 & 0<x<1 \\
-1 & 1<x<2\end{cases} \\
& y^{\prime}= \begin{cases}-1 & 0<x<1 \\
0 & 1<x<2\end{cases}
\end{aligned}
$$

In general let $y^{\prime}=-1$ on some subinterval whose length is 1 and 0 on the other subinterval.
8) (Prob 11, Pg 401) If the action $A[u]=\iint\left(u_{x x}^{2}-u_{t}^{2}\right) d x d t$, show that the Euler-Lagrange equation is the beam equation $u_{t t}+u_{x x x x}=0$, the equation for a stiff rod.

Solution:

$$
\begin{aligned}
f(\epsilon)=A[u+\epsilon v] & =\iint\left(u_{x x}^{2}+\epsilon^{2} v_{x x}^{2}+2 u_{x x} \epsilon v_{x x}-u_{t}^{2}-\epsilon^{2} v_{t}^{2}-2 \epsilon u_{t} v_{t}\right) d x d t \\
f^{\prime}(0) & =\iint\left(u_{x x} v_{x x}-u_{t} v_{t}\right) d x d t \\
& =\iint\left(u_{x x x x}+u_{t t}\right) v d x d t \quad \text { (Integration by parts) }
\end{aligned}
$$

