PRACTICE PROBLEM SET 2

Practice problems:

1) (Sec 2.3, prob 6) Prove the comparison principle for the diffusion equation or heat equation. If w,v are both solutions
to the heat equation for 2 € [0,1] and ¢ € [0,T], and if u < v for t =0, for 2 = 0 and for 2 = 1. Then u < v for all z € [0, 1]
and ¢ € [0, T

2) (Sec 2.3, prob 8) Consider the diffusion equation for z € [0, 1] with the Robin boundary condition, u,, (0,¢)—aou (0,¢) = 0
and ug (1,t) + a1u (1,t) = 0. If ag, a1 > 0 show that

e(t) :/01u2 (z,t)dx

is a decreasing function of time, i.e. energy is lost at the boundary.
3) (Sec 2.4, prob 1) Solve the diffusion equation with initial condition

qi)(x):{l “2<w<l

0 otherwise

You may express the solution in terms of the erf function defined below:
erf (z / e P dp
f

/ / (= +v? d:vdy

by transforming the integral to polar coordinates. Using the computation above and symmetry arguments, compute

o 2
/ e” " dx.
—00
Using a suitable change of variables, deduce that

/ St =1 Vi

Suppose u (x,t) is a solution to the heat equation with initial data ¢ (x). Show that

4) (Sec 2.4, Prob 6,7) Compute

/OO lu(z,t)|dx < /OO |6 (z)|da V.

— 00 — 00
5) (Sec 2.5, Prob 1) Construct an example to show that there is no maximum principle for the wave equation.
6) Solve the following heat and wave equation on the half line 0 < 2 < 0o and comment on the results:

Ut = Uz u(x,0) = ¢ (x)
Ut = Uge w(2,0)=¢ () u(x,0)=0
where ¢ (x) is the function

¢<x>:{1 e

0 otherwise

Carefully sketch the solution for the wave equation.

Additional problem:

1) Maximum principle and Uniqueness for solutions to heat equation on the real line:
Consider the heat equation on the real line:

(1) Ut = Ugy @ € (—00,00) te€(0,T],
(2) u(z,0) =g ()
Unfortunately, it is known that without additional conditions on u or g, there exist more than one solution to the above

equation. For those interested, you should look up Tychonoff solutions to the heat equation. However, let us make a further
assumption on the growth of u:
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(3) u(z,t)] < Me®™* vt € [0, T

Prove that if u satisfies equations 1, 2, and 3, then u satisfies the maximum principle

(4) u(z,t) < sup g(z) Vze€(—oo,00), te]0,7T].

—oo<x <00
To prove this result fill follow the steps outlined below:
i) Without loss of generality, one may assume that sup g < oo and furthermore assume 4a7" < 1. Consider the function

v(z,t) =u(x,t) — pw(z,t) x € (—o00,00) te€][0,T]

(2.1) 1 . Ll
w(x,t) = X
(T+e—1t)2 P\Tve—t

What initial value problem does v (z,t) satisfy? How do the initial values of v (x,t) compare to the initial values of u (z,t),
i.e. what is the relation between v (x,0) and sup,, g (y)
ii) Using the growth condition for u (x,t) ,show that there exists a sufficiently large R such that

(5) v(z,t) < sup  g(y) |x|>R,te0,T]
ye(foo’oo)

where

iii) Apply the maximum principle for v (x,t) on the finite domain |z| < R,t € [0,T] to conclude that
v(z,t) < sup  g(y) @€ (—00,00),t€[0,T]
y€(—00,00)
iv) The above result was valid for all values of . Take the limit g — 0 to conclude that u satisfies the maximum principle
v) Use the maximum principle to show that the heat equation coupled with the growth conditions on v has a unique
solution.



