MIDTERM - MATH 247

- Total points: 30

1) (6 pts) True or false. Provide an explanation for your answer as well.
i) The differential operator $\mathcal{L}[u]=-u^{\prime \prime}$ defined on the interval $x \in[0,1]$ with periodic boundary conditions, i.e. $u(0)=$ $u(1), u^{\prime}(0)=u^{\prime}(1)$ has no negative eigenvalues.

Solution:

True, with periodic boundary conditions $\left(u,-u^{\prime \prime}\right)=\int_{0}^{1}\left(u^{\prime}\right)^{2} d x \geq 0$.
ii) Consider the following solution to the heat equation defined on the domain $t \in[0,1], x \in[0, \pi]$

$$
u(x, t)=e^{-4 t} \sin (2 x)-3 e^{-t} \sin (x)+17 e^{-25 t} \sin (5 x) .
$$

The function $u(x, t)$ achieves it's maximum at $(x, t)=\left(0, \frac{\pi}{2}\right)$ and it's minimum at $(x, t)=\left(\frac{1}{e}, \frac{\pi}{3}\right)$.

Solution:

False, since u satisfies the heat equation, the maximum and minimum have to be achieved on the boundary
iii) Laplace's equation on the interval with Dirichlet data f, g (both constants)

$$
\begin{aligned}
u^{\prime \prime}(x) & =0, \quad 0<x<1 \\
u(0) & =f \\
u(1) & =g
\end{aligned}
$$

is well posed.

Solution:

Yes, the solution is given by $u=f+(g-f) x$, which is unique and depends continuously on f and g.
2) (8 pts) Consider the solution of the 1 D wave equation

$$
\begin{aligned}
u_{t t} & =u_{x x}, \quad x \in \mathbb{R}, t>0 \\
u(x, 0) & =\phi(x) \\
u_{t}(x, 0) & =\psi(x)
\end{aligned}
$$

where $\phi(x)=\psi(x)=0$ for all $|x| \geq 1$. Prove that the energy

$$
E(t)=K E(t)+P E(t)=\int_{\mathbb{R}}\left(\frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2}\right) d x
$$

is conserved, i.e. $E(t)$ is a constant. Here $K E(t)$ is the kinetic energy and $P E(t)$ is the potential energy. Furthermore, show that there exists T_{0} such that $K E(t)=P E(t)$ for all $t>T_{0}$ (Hint: Compute the kinetic and potential energy in terms of ϕ and ψ).

Solution:

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}(\phi(x+t)+\phi(x-t))+\frac{1}{2} \int_{x-t}^{x+t} \psi(s) d s \\
\partial_{x} u & =\frac{1}{2}\left(\phi^{\prime}(x+t)+\phi^{\prime}(x-t)+\psi(x+t)-\psi(x-t)\right)=a+b+c-d \\
\partial_{t} u & =\frac{1}{2}\left(\phi^{\prime}(x+t)-\phi^{\prime}(x-t)+\psi(x+t)+\psi(x-t)\right)=(a-b+c+d) \\
\left(\partial_{x} u\right)^{2} & =a^{2}+b^{2}+c^{2}+d^{2}+2 a b+2 a c-2 a d+2 b c-2 b d-2 c d \\
\left(\partial_{t} u\right)^{2} & =a^{2}+b^{2}+c^{2}+d^{2}-2 a b+2 a c+2 a d-2 b c-2 b d+2 c d
\end{aligned}
$$

Clearly the only terms that differ in the expression are of the form $f(x+t) g(x-t)$, where $f=\phi^{\prime}$ or ψ and $g=\phi^{\prime}$ or ψ. For $t>2$, for each x either $|x+t|>1$ or $|x-t|>1$. Thus, the product of $f(x+t) g(x-t)$ is pointwise 0 for $t>2$.
3) (10 pts) Compute all separation of variables solutions of

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad 0<x<1,0<t \\
u(0, t) & =u_{x}(0, t) \\
u(1, t) & =u_{x}(1, t) \\
u(x, 0) & =\phi(x) .
\end{aligned}
$$

You may assume that the operator

$$
\mathcal{L}[X]=-X^{\prime \prime}
$$

with the boundary conditions

$$
X(0)=X^{\prime}(0), \quad X(1)=X^{\prime}(1)
$$

is hermitian and has only positive eigenvalues. (+1 Bonus point for proving this result). Suppose $X_{n}(x)$ are the eigenfunctions for the operator above, and suppose

$$
\phi(x)=\sum_{n=1}^{\infty} A_{n} X_{n}(x),
$$

where $\left|A_{n}\right| \leq M$. Write down a formula for A_{n}. Compute the solution $\phi(x)$ corresponding to $\phi(x)$ defined above.
$\left(+1\right.$ Bonus point question) In what mode of convergence does the series representation of $u\left(x, t_{0}\right)$ converge for $t_{0}>0$?

Solution:

The eigen functions are

$$
X_{n}(x)=A_{n}(\cos (n \pi x)+n \pi \sin (n \pi x))
$$

Hermitian follows from the fact that

$$
(u, L v)-(L u, v)=u v^{\prime}-\left.v u^{\prime}\right|_{0} ^{1}=0
$$

Positivity follows from the fact that

$$
\begin{gathered}
(u, L u)=\left(u^{\prime}, u^{\prime}\right) \geq 0 \\
u(x, t)=\sum_{n=0}^{\infty} A_{n}(\cos (n \pi x)+n \pi \sin (n \pi x)) e^{-(n \pi)^{2} t}
\end{gathered}
$$

The convergence is uniform for $t=t_{0}>0$ since $\sum_{n} e^{-(n \pi)^{2} t}<\infty$.
4) (6 pts) Solve the following PDEs:
i)

$$
\begin{aligned}
2 u_{x}+3 u_{y} & =0 \\
u(x, 0) & =f(x),
\end{aligned}
$$

Compute $u(x, y)$ and sketch the characteristics.

Solution:

$$
u(x, y)=f\left(x-\frac{2}{3} y\right)
$$

ii) Compute the solution to the PDE

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad 0<x<\infty, t>0 \\
u(0, t) & =t^{2}, \quad t>0 \\
u(x, 0) & =0, \quad 0<x<\infty
\end{aligned}
$$

Solution:

Let

$$
f_{\text {odd }}(x, t)= \begin{cases}2 t & x>0 \\ -2 t & x<0\end{cases}
$$

The solution is given by

$$
u(x, t)=t^{2}+\int_{0}^{t} \int_{\mathbb{R}} S(x-y, t-s) f_{\text {odd }}(y, s) d y d s
$$

