1) (6 pts) True or false. Provide an explanation for your answer as well.
 i) The differential operator \(L[u] = -u'' \) defined on the interval \(x \in [0, 1] \) with periodic boundary conditions, i.e. \(u(0) = u(1), \ u'(0) = u'(1) \) has no negative eigenvalues.

 Solution:
 True, with periodic boundary conditions \((u, -u'') = \int_0^1 (u')^2 \, dx \geq 0 \).

 ii) Consider the following solution to the heat equation defined on the domain \(t \in [0, 1], \ x \in [0, \pi] \)
 \[u(x, t) = e^{-4t} \sin(2x) - 3e^{-t} \sin(x) + 17e^{-25t} \sin(5x). \]

 The function \(u(x, t) \) achieves its maximum at \((x, t) = (0, \frac{\pi}{2}) \) and its minimum at \((x, t) = \left(\frac{1}{3}, \frac{\pi}{3} \right) \).

 Solution:
 False, since \(u \) satisfies the heat equation, the maximum and minimum have to be achieved on the boundary.

 iii) Laplace’s equation on the interval with Dirichlet data \(f, g \) (both constants)
 \[u''(x) = 0, \quad 0 < x < 1, \]
 \[u(0) = f, \]
 \[u(1) = g, \]
 is well posed.

 Solution:
 Yes, the solution is given by \(u = f + (g - f) x \), which is unique and depends continuously on \(f \) and \(g \).

2) (8 pts) Consider the solution of the 1D wave equation
 \[u_{tt} = u_{xx}, \quad x \in \mathbb{R}, t > 0 \]
 \[u(x, 0) = \phi(x), \]
 \[u_t(x, 0) = \psi(x), \]
 where \(\phi(x) = \psi(x) = 0 \) for all \(|x| \geq 1 \). Prove that the energy
 \[E(t) = KE(t) + PE(t) = \int_{\mathbb{R}} \left(\frac{1}{2} u_t^2 + \frac{1}{2} u_x^2 \right) \, dx, \]
 is conserved, i.e. \(E(t) \) is a constant. Here \(KE(t) \) is the kinetic energy and \(PE(t) \) is the potential energy. Furthermore, show that there exists \(T_0 \) such that \(KE(t) = PE(t) \) for all \(t > T_0 \) (Hint: Compute the kinetic and potential energy in terms of \(\phi \) and \(\psi \)).

 Solution:
 \[u(x, t) = \frac{1}{2} (\phi(x + t) + \phi(x - t)) + \frac{1}{2} \int_{x-t}^{x+t} \psi(s) \, ds \]
 \[\partial_x u = \frac{1}{2} (\phi'(x + t) + \phi'(x - t)), \]
 \[\partial_t u = \frac{1}{2} (\phi'(x + t) + \phi'(x - t) + \psi(x + t) + \psi(x - t)) = (a - b + c + d) \]
 \[(\partial_x u)^2 = a^2 + b^2 + c^2 + d^2 + 2ab + 2ac - 2ad + 2bc - 2bd + 2cd \]
 \[(\partial_t u)^2 = a^2 + b^2 + c^2 + d^2 - 2ab + 2ac + 2ad - 2bc - 2bd + 2cd \]
 Clearly the only terms that differ in the expression are of the form \(f(x + t) \, g(x - t) \), where \(f = \phi' \) or \(\psi \) and \(g = \phi' \) or \(\psi \).
 For \(t > 2 \), for each \(x \) either \(|x + t| > 1 \) or \(|x - t| > 1 \). Thus, the product of \(f(x + t) \, g(x - t) \) is pointwise 0 for \(t > 2 \).
3) (10 pts) Compute all separation of variables solutions of
\[u_t = u_{xx}, \quad 0 < x < 1, 0 < t \]
\[u(0, t) = u_x(0, t) \]
\[u(1, t) = u_x(1, t) \]
\[u(x, 0) = \phi(x). \]

You may assume that the operator
\[\mathcal{L}[X] = -X'' \]
with the boundary conditions
\[X(0) = X'(0), \quad X(1) = X'(1), \]
is hermitian and has only positive eigenvalues. (+1 Bonus point for proving this result). Suppose \(X_n(x) \) are the eigenfunctions for the operator above, and suppose
\[\phi(x) = \sum_{n=1}^{\infty} A_n X_n(x), \]
where \(|A_n| \leq M\). Write down a formula for \(A_n \). Compute the solution \(\phi(x) \) corresponding to \(\phi(x) \) defined above.

(1 Bonus point question) In what mode of convergence does the series representation of \(u(x, t_0) \) converge for \(t_0 > 0 \)?

Solution:
The eigen functions are
\[X_n(x) = A_n (\cos(n \pi x) + n \pi \sin(n \pi x)) \]

Hermitian follows from the fact that
\[(u, Lv) - (Lu, v) = uv' - vu'|_0^1 = 0 \]

Positivity follows from the fact that
\[(u, Lu) = (u', u') \geq 0 \]

\[u(x, t) = \sum_{n=0}^{\infty} A_n (\cos(n \pi x) + n \pi \sin(n \pi x)) e^{-(n \pi)^2 t} \]

The convergence is uniform for \(t = t_0 > 0 \) since \(\sum_n e^{-(n \pi)^2 t} < \infty \).

4) (6 pts) Solve the following PDEs:
i) \[2u_x + 3u_y = 0, \]
\[u(x, 0) = f(x), \]
Compute \(u(x, y) \) and sketch the characteristics.

Solution:
\[u(x, y) = f \left(x - \frac{2}{3} y \right) \]

ii) Compute the solution to the PDE
\[u_t = u_{xx}, \quad 0 < x < \infty, t > 0, \]
\[u(0, t) = t^2, \quad t > 0, \]
\[u(x, 0) = 0, \quad 0 < x < \infty. \]

Solution:
Let
\[f_{\text{odd}}(x, t) = \begin{cases} 2t & x > 0 \\ -2t & x < 0 \end{cases} \]

The solution is given by
\[u(x, t) = t^2 + \int_0^t \int_{\mathbb{R}} S(x - y, t - s) f_{\text{odd}}(y, s) \, dy \, ds \]